1
|
Sandoval ZE, Schmidt RJ, Bhutada JS, Shillingford N, Zhou S. A Novel TEK::GAB2 Gene Fusion in Pediatric Angiosarcoma of Pelvic soft Tissue: A Case Report and Literature Review. Pediatr Dev Pathol 2024:10935266241279073. [PMID: 39248342 DOI: 10.1177/10935266241279073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Pediatric angiosarcoma of soft tissue, an extremely rare entity, remains poorly understood from a genetic standpoint. Herein, we present the case of a previously healthy 17-year-old girl with acute left hip pain. Subsequent magnetic resonance imaging revealed a 21.8 cm left pelvic sidewall mass with heterogeneous enhancement and multiple lung nodules. Biopsy of the tumor showed an infiltrative, hemorrhagic neoplasm composed primarily of atypical spindle to epithelioid cells. Focal vasoformative architecture was appreciated. Immunohistochemically, the tumor cells were strongly positive for CD31, ERG, and FLI-1, supporting the diagnosis of angiosarcoma. Genetic analysis identified a novel TEK::GAB2 gene fusion. TEK belongs to the angiopoietin receptor family, and its fusion with GAB2 is predicted to mediate tumorigenesis. This report expands the current knowledge on the spectrum of gene rearrangements of angiosarcoma.
Collapse
Affiliation(s)
| | - Ryan J Schmidt
- Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica Sheth Bhutada
- Children's Hospital Los Angeles, Los Angeles, CA, USA
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Nick Shillingford
- Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shengmei Zhou
- Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Park HK, Choi YD, Shim HJ, Choi Y, Chung IJ, Yun SJ. Comparative Whole-Genome Sequencing Analysis of In-situ and Invasive Acral Lentiginous Melanoma: Markedly Increased Copy Number Gains of GAB2 , PAK1 , UCP2 , and CCND1 are Associated with Melanoma Invasion. Am J Surg Pathol 2024; 48:1061-1071. [PMID: 38916228 DOI: 10.1097/pas.0000000000002273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Acral lentiginous melanoma (ALM) is the most common subtype of acral melanoma. Even though recent genetic studies are reported in acral melanomas, the genetic differences between in-situ and invasive ALM remain unclear. We aimed to analyze specific genetic changes in ALM and compare genetic differences between in-situ and invasive lesions to identify genetic changes associated with the pathogenesis and progression of ALM. We performed whole genome sequencing of 71 tissue samples from 29 patients with ALM. Comparative analyses were performed, pairing in-situ ALMs with normal tissues and, furthermore, invasive ALMs with normal and in-situ tissues. Among 21 patients with in-situ ALMs, 3 patients (14.3%) had SMIM14 , SLC9B1 , FRG1 , FAM205A , ESRRA , and ESPN mutations, and copy number (CN) gains were identified in only 2 patients (9.5%). Comparing 13 invasive ALMs with in-situ tissues, CN gains were identified in GAB2 in 8 patients (61.5%), PAK1 in 6 patients (46.2%), and UCP2 and CCND1 in 5 patients (38.5%). Structural variants were frequent in in-situ and invasive ALM lesions. Both in-situ and invasive ALMs had very low frequencies of common driver mutations. Structural variants were common in both in-situ and invasive ALMs. Invasive ALMs had markedly increased CN gains, such as GAB2 , PAK1 , UCP2 , and CCND1 , compared with in-situ lesions. These results suggest that they are associated with melanoma invasion.
Collapse
Affiliation(s)
| | | | - Hyun Jeong Shim
- Internal medicine, Division of Hemato-Oncology, Chonnam National University Medical School, Gwangju
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Korea
| | - Ik Joo Chung
- Internal medicine, Division of Hemato-Oncology, Chonnam National University Medical School, Gwangju
| | | |
Collapse
|
3
|
Alves LF, Marson LA, Sielski MS, Vicente CP, Kimura ET, Geraldo MV. DLK1-DIO3 region as a source of tumor suppressor miRNAs in papillary thyroid carcinoma. Transl Oncol 2024; 46:101849. [PMID: 38823258 PMCID: PMC11176784 DOI: 10.1016/j.tranon.2023.101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/01/2023] [Accepted: 11/26/2023] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND In previous studies, we demonstrated the downregulation of several miRNAs from the DLK1-DIO3 genomic region in papillary thyroid carcinoma (PTC). Due to the large number of miRNAs within this region, the individual contribution of these molecules to PTC development and progression remains unclear. OBJECTIVE In this study, we aimed to clarify the contribution of DLK1-DIO3-derived miRNAs to PTC. METHODS We used different computational approaches and in vitro resources to assess the biological processes and signaling pathways potentially modulated by these miRNAs. RESULTS Our analysis suggests that, out of more than 100 mature miRNAs originated from the DLK1-DIO3 region, a set of 12 miRNAs accounts for most of the impact on PTC development and progression, cooperating to modulate distinct cancer-relevant biological processes, such as cell migration, extracellular matrix remodeling, and signal transduction. The restoration of the expression of one of these miRNAs (miR-485-5p) in a BRAFT199A-positive PTC cell line impaired proliferation and migration, suppressing the expression of GAB2 and RAC1, validated miR-485-5p targets. CONCLUSIONS Overall, our results shed light on the role of the DLK1-DIO3 region, which harbors promising tumor suppressor miRNAs in thyroid cancer, and open prospects for the functional exploration of these miRNAs as therapeutic targets for PTC.
Collapse
Affiliation(s)
- Letícia Ferreira Alves
- Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas, Brazil
| | - Leonardo Augusto Marson
- Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas, Brazil
| | - Micheli Severo Sielski
- Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas, Brazil
| | - Cristina Pontes Vicente
- Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas, Brazil
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Murilo Vieira Geraldo
- Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas, Brazil.
| |
Collapse
|
4
|
Shen W, Hou Y, Yi Y, Li F, He C, Wang J. G-Clamp Heterocycle Modification Containing Interstrand Photo-Cross-Linker to Capture Intracellular MicroRNA Targets. J Am Chem Soc 2024; 146:12778-12789. [PMID: 38679963 DOI: 10.1021/jacs.4c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
MicroRNAs (miRNAs) play indispensable roles in post-transcriptional gene regulation. The identification of target mRNAs is essential for dissecting the recognition basis, dynamics, and regulatory mechanism of miRNA-mRNA interactions. However, the lack of an unbiased method for detecting weak miRNA-mRNA interactions remains a long-standing obstacle for miRNA research. Here, we develop and provide proof-of-concept evidence demonstrating a chemical G-clamp-enhanced photo-cross-linking strategy for covalent capture of intracellular miRNA targets in different cell lines. This approach relies on an aryl-diazirine-G-clamp-modified-nucleoside (ARAGON) miRNA probe containing an alkynyl group that improves the thermal stability of miRNA-target mRNA duplex molecules and can rapidly cross-link with the complementary strand upon UV 365 nm activation, enhancing the transient capture of mRNA targets. After validating the accuracy and binding properties of ARAGON-based miRNA probes through the successful enrichment for the known targets of miR-106a, miR-21, and miR-101, we then extend ARAGON's application to screen for previously unknown targets of different miRNAs in various cell lines. Ultimately, results in this study uncover GAB1 as a target of miR-101 in H1299 lung cancer cells and show that miR-101 silencing of GAB1 can promote apoptosis in H1299 cells, suggesting an oncogenic mechanism of GAB1. This study thus provides a powerful and versatile tool for enhanced screening of global miRNA targets in cells to facilitate investigations of miRNA functions in fundamental cellular processes and disease pathogenesis.
Collapse
Affiliation(s)
- Weiguo Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yongkang Hou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yunpeng Yi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
Zhu X, Chen X, Zhang X, Zhao L, Shen X. MicroRNA‑373‑3p inhibits the proliferation and invasion of non‑small‑cell lung cancer cells by targeting the GAB2/PI3K/AKT pathway. Oncol Lett 2024; 27:221. [PMID: 38586211 PMCID: PMC10996020 DOI: 10.3892/ol.2024.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/23/2023] [Indexed: 04/09/2024] Open
Abstract
MicroRNAs (miRNAs) were previously demonstrated to be involved in the pathogenesis of non-small-cell lung cancer (NSCLC); however, the roles of certain miRNAs in NSCLC remain to be elucidated. The present study aimed to investigate the functions of screened miRNAs in NSCLC and the potential mechanisms. First, expression profiles of miRNAs were downloaded from the Gene Expression Omnibus (dataset no. GSE29248) and the differentially expressed miRNAs were analyzed by bioinformatics methods. Reverse transcription-quantitative PCR was used to validate the differential expression of miR-373 in clinical samples. The association between miR-373 expression levels and clinicopathological characteristics was also investigated. To further examine how miR-373 mediates the emergence of NSCLC, western blot, Cell Counting Kit-8, cell invasion and wound-healing assays, as well as apoptosis detection and a luciferase assay were used. The results indicated significant downregulation of miR-373 in NSCLC tissues and its low expression was closely associated with the degree of differentiation, clinical stage and tumor size, and was indicative of an unfavorable prognosis for patients with NSCLC. A functional study indicated that overexpression of miR-373 inhibited the proliferation, promoted apoptosis, and suppressed invasion and migration of NSCLC cells. Bioinformatics prediction and functional assays suggested that Grb-associated binding protein 2 (GAB2) was a direct target of miR-373. In addition, GAB2 was found to be significantly upregulated in NSCLC tissues, and clinically, miR-373 was negatively associated with GAB2. Furthermore, overexpression of GAB2 blocked the tumor suppressive effects of miR-373 on NSCLC cells. Mechanistically, miR-373 mimics were able to reduce the expression of GAB2 and subsequently decrease the phosphorylation level of AKT and mTOR protein. The present results indicate that miR-373 exerts its anti-tumor effects in NSCLC cells by targeting the GAB2/PI3K/AKT pathway, suggesting that miR-373 may be a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Xunxia Zhu
- Department of Thoracic Surgery, Huadong Hospital, Shanghai 200040, P.R. China
| | - Xiaoyu Chen
- Department of Thoracic Surgery, Huadong Hospital, Shanghai 200040, P.R. China
| | - Xuelin Zhang
- Department of Thoracic Surgery, Huadong Hospital, Shanghai 200040, P.R. China
| | - Liting Zhao
- Department of Thoracic Surgery, Huadong Hospital, Shanghai 200040, P.R. China
| | - Xiaoyong Shen
- Department of Thoracic Surgery, Huadong Hospital, Shanghai 200040, P.R. China
| |
Collapse
|
6
|
Shaban N, Raevskiy M, Zakharova G, Shipunova V, Deyev S, Suntsova M, Sorokin M, Buzdin A, Kamashev D. Human Blood Serum Counteracts EGFR/HER2-Targeted Drug Lapatinib Impact on Squamous Carcinoma SK-BR-3 Cell Growth and Gene Expression. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:487-506. [PMID: 38648768 DOI: 10.1134/s000629792403009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 04/25/2024]
Abstract
Lapatinib is a targeted therapeutic inhibiting HER2 and EGFR proteins. It is used for the therapy of HER2-positive breast cancer, although not all the patients respond to it. Using human blood serum samples from 14 female donors (separately taken or combined), we found that human blood serum dramatically abolishes the lapatinib-mediated inhibition of growth of the human breast squamous carcinoma SK-BR-3 cell line. This antagonism between lapatinib and human serum was associated with cancelation of the drug induced G1/S cell cycle transition arrest. RNA sequencing revealed 308 differentially expressed genes in the presence of lapatinib. Remarkably, when combined with lapatinib, human blood serum showed the capacity of restoring both the rate of cell growth, and the expression of 96.1% of the genes expression of which were altered by the lapatinib treatment alone. Co-administration of EGF with lapatinib also restores the cell growth and cancels alteration of expression of 95.8% of the genes specific to lapatinib treatment of SK-BR-3 cells. Differential gene expression analysis also showed that in the presence of human serum or EGF, lapatinib was unable to inhibit the Toll-Like Receptor signaling pathway and alter expression of genes linked to the Gene Ontology term of Focal adhesion.
Collapse
Affiliation(s)
- Nina Shaban
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- The National Medical Research Center for Endocrinology, Moscow, 117036, Russia
| | - Mikhail Raevskiy
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Galina Zakharova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Victoria Shipunova
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Sergey Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- "Biomarker" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russia
| | - Maria Suntsova
- The National Medical Research Center for Endocrinology, Moscow, 117036, Russia.
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Maksim Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, 1200, Belgium
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- The National Medical Research Center for Endocrinology, Moscow, 117036, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Dmitri Kamashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- The National Medical Research Center for Endocrinology, Moscow, 117036, Russia
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Chelladurai M, Xu D, Izraely S, Ben-Menachem S, Bengaiev R, Sagi-Assif O, Yuan W, Pasmanik Chor M, Hoon DS, Lu W, Witz IP. A heterodimer of α and β hemoglobin chains functions as an innate anticancer agent. Int J Cancer 2024; 154:561-572. [PMID: 37675956 DOI: 10.1002/ijc.34702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023]
Abstract
Metastatic (as well as tumor) microenvironments contain both cancer-promoting and cancer-restraining factors. The balance between these opposing forces determines the fate of cancer cells that disseminate to secondary organ sites. In search for microenvironmental drivers or inhibitors of metastasis, we identified, in a previous study, the beta subunit of hemoglobin (HBB) as a lung-derived antimetastatic factor. In the present study, exploring mechanisms regulating melanoma brain metastasis, we discovered that brain-derived factors restrain proliferation and induce apoptosis and necrosis of brain-metastasizing melanoma cells. Employing various purification procedures, we identified a heterodimer composed of hemoglobin alpha and beta chains that perform these antimetastatic functions. Neither the alpha nor the beta subunit alone was inhibitory. An alpha/beta chain dimer chemically purified from human hemoglobin inhibited the cell viability of primary melanomas, melanoma brain metastasis (MBM), and breast cancer cell lines. The dimer-induced DNA damage, cell cycle arrest at the SubG1 phase, apoptosis, and significant necrosis in four MBM cell lines. Proteomic analysis of dimer-treated MBM cells revealed that the dimer downregulates the expression of BRD4, GAB2, and IRS2 proteins, playing crucial roles in cancer cell sustainability and progression. Thus, we hypothesize that the hemoglobin dimer functions as a resistance factor against brain-metastasizing cancer cells.
Collapse
Affiliation(s)
- Maharrish Chelladurai
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Dan Xu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Roman Bengaiev
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Weirong Yuan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Metsada Pasmanik Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel-Aviv, Israel
| | - Dave S Hoon
- Department of Translational Molecular Medicine and Sequencing Center, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Gao X, Long R, Qin M, Zhu W, Wei L, Dong P, Chen J, Luo J, Feng J. Gab2 promotes the growth of colorectal cancer by regulating the M2 polarization of tumor‑associated macrophages. Int J Mol Med 2024; 53:3. [PMID: 37937666 PMCID: PMC10688767 DOI: 10.3892/ijmm.2023.5327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
Tumor‑associated macrophages (TAMs) are pivotal components in colorectal cancer (CRC) progression, markedly influencing the tumor microenvironment through their polarization into the pro‑inflammatory M1 or pro‑tumorigenic M2 phenotypes. Recent studies have highlighted that the Grb2‑associated binder 2 (Gab2) is a critical gene involved in the development of various types of tumor, including CRC. However, the precise role of Gab2 in mediating TAM polarization remains incompletely elucidated. In the present study, it was discovered that Gab2 was highly expressed within CRC tissue TAMs, and was associated with a poor prognosis of patients with CRC. Functionally, it was identified that the tumor‑conditioned medium (TCM) induced Gab2 expression, facilitating the TAMs towards an M2‑like phenotype polarization. Of note, the suppression of Gab2 expression using shRNA markedly inhibited the TCM‑induced expression of M2‑associated molecules, without affecting M1‑type markers. Furthermore, the xenotransplantation model demonstrated that Gab2 deficiency in TAMs inhibited tumor growth in the mouse model of CRC. Mechanistically, Gab2 induced the M2 polarization of TAMs by regulating the AKT and ERK signaling pathways, promoting CRC growth and metastasis. In summary, the present study study elucidates that decreasing Gab2 expression hinders the transition of TAMs towards the M2 phenotype, thereby suppressing the growth of CRC. The exploration of the regulatory mechanisms of Gab2 in TAM polarization may enhance the current understanding of the core molecular pathways of CRC development and may thus provide a foundation for the development of novel immunotherapeutic strategies targeted against TAMs.
Collapse
Affiliation(s)
- Xuehan Gao
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Runying Long
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Ming Qin
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Wenfang Zhu
- Department of Oncology, Lishui People's Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| | - Linna Wei
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Pinzhi Dong
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jin Chen
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Junmin Luo
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jihong Feng
- Department of Oncology, Lishui People's Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
9
|
Howell MC, Green R, Cianne J, Dayhoff GW, Uversky VN, Mohapatra S, Mohapatra S. EGFR TKI resistance in lung cancer cells using RNA sequencing and analytical bioinformatics tools. J Biomol Struct Dyn 2023; 41:9808-9827. [PMID: 36524419 PMCID: PMC10272293 DOI: 10.1080/07391102.2022.2153269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
Epidermal Growth Factor Receptor (EGFR) signaling and EGFR mutations play key roles in cancer pathogenesis, particularly in the development of drug resistance. For the ∼20% of all non-small cell lung cancer (NSCLC) patients that harbor an activating mutation, EGFR tyrosine kinase inhibitors (TKIs) provide initial clinical responses. However, long-term efficacy is not possible due to acquired drug resistance. Despite a gradually increasing knowledge of the mechanisms underpinning the development of resistance in tumors, there has been very little success in overcoming it and it is probable that many additional mechanisms are still unknown. Herein, publicly available RNASeq (RNA sequencing) datasets comparing lung cancer cell lines treated with EGFR TKIs until resistance developed with their corresponding parental cells and protein array data from our own EGFR TKI treated xenograft tumors, were analyzed for differential gene expression, with the intent to investigate the potential mechanisms of drug resistance to EGFR TKIs. Pathway analysis, as well as structural disorder analysis of proteins in these pathways, revealed several key proteins, including DUSP1, DUSP6, GAB2, and FOS, that could be targeted using novel combination therapies to overcome EGFR TKI resistance in lung cancer.
Collapse
Affiliation(s)
- Mark C Howell
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ryan Green
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Junior Cianne
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Shyam Mohapatra
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|
10
|
Payá-Milans M, Peña-Chilet M, Loucera C, Esteban-Medina M, Dopazo J. Functional Profiling of Soft Tissue Sarcoma Using Mechanistic Models. Int J Mol Sci 2023; 24:14732. [PMID: 37834179 PMCID: PMC10572617 DOI: 10.3390/ijms241914732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Soft tissue sarcoma is an umbrella term for a group of rare cancers that are difficult to treat. In addition to surgery, neoadjuvant chemotherapy has shown the potential to downstage tumors and prevent micrometastases. However, finding effective therapeutic targets remains a research challenge. Here, a previously developed computational approach called mechanistic models of signaling pathways has been employed to unravel the impact of observed changes at the gene expression level on the ultimate functional behavior of cells. In the context of such a mechanistic model, RNA-Seq counts sourced from the Recount3 resource, from The Cancer Genome Atlas (TCGA) Sarcoma project, and non-diseased sarcomagenic tissues from the Genotype-Tissue Expression (GTEx) project were utilized to investigate signal transduction activity through signaling pathways. This approach provides a precise view of the relationship between sarcoma patient survival and the signaling landscape in tumors and their environment. Despite the distinct regulatory alterations observed in each sarcoma subtype, this study identified 13 signaling circuits, or elementary sub-pathways triggering specific cell functions, present across all subtypes, belonging to eight signaling pathways, which served as predictors for patient survival. Additionally, nine signaling circuits from five signaling pathways that highlighted the modifications tumor samples underwent in comparison to normal tissues were found. These results describe the protective role of the immune system, suggesting an anti-tumorigenic effect in the tumor microenvironment, in the process of tumor cell detachment and migration, or the dysregulation of ion homeostasis. Also, the analysis of signaling circuit intermediary proteins suggests multiple strategies for therapy.
Collapse
Affiliation(s)
- Miriam Payá-Milans
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Carlos Loucera
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Joaquín Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
- FPS/ELIXIR-ES, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| |
Collapse
|
11
|
Bufano M, Puxeddu M, Nalli M, La Regina G, Toto A, Liberati FR, Paone A, Cutruzzolà F, Masci D, Bigogno C, Dondio G, Silvestri R, Gianni S, Coluccia A. Targeting the Grb2 cSH3 domain: Design, synthesis and biological evaluation of the first series of modulators. Bioorg Chem 2023; 138:106607. [PMID: 37210829 DOI: 10.1016/j.bioorg.2023.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
Growth factor receptor bound protein 2 (Grb2) is an adaptor protein featured by a nSH3-SH2-cSH3 domains. Grb2 finely regulates important cellular pathways such as growth, proliferation and metabolism and a minor lapse of this tight control may totally change the entire pathway to the oncogenic. Indeed, Grb2 is found overexpressed in many tumours type. Consequently, Grb2 is an attractive therapeutic target for the development of new anticancer drug. Herein, we reported the synthesis and the biological evaluation of a series of Grb2 inhibitors, developed starting from a hit-compound already reported by this research unit. The newly synthesized compounds were evaluated by kinetic binding experiments, and the most promising derivatives were assayed in a short panel of cancer cells. Five of the newly synthesized derivatives proved to be able to bind the targeted protein with valuable inhibitory concentration in one-digit micromolar concentration. The most active compound of this series, derivative 12, showed an inhibitory concentration of about 6 μM for glioblastoma and ovarian cancer cells, and an IC50 of 1.67 for lung cancer cell. For derivative 12, the metabolic stability and the ROS production was also evaluated. The biological data together with the docking studies led to rationalize an early structure activity relationship.
Collapse
Affiliation(s)
- Marianna Bufano
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Michela Puxeddu
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Marianna Nalli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Giuseppe La Regina
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Francesca Romana Liberati
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Alessio Paone
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Francesca Cutruzzolà
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Chiara Bigogno
- Aphad SrL, Via della Resistenza 65, 20090 Buccinasco, Italy
| | - Giulio Dondio
- Aphad SrL, Via della Resistenza 65, 20090 Buccinasco, Italy
| | - Romano Silvestri
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Antonio Coluccia
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
| |
Collapse
|
12
|
Yin Y, Zhang L, Li Y, Zhang C, He A. Gab2 plays a carcinogenic role in ovarian cancer by regulating CrkII. J Ovarian Res 2023; 16:79. [PMID: 37085900 PMCID: PMC10120224 DOI: 10.1186/s13048-023-01152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVE To detect the expression of Growth factor binding protein 2 associated binding protein 2 (Gab2) and CT10 regulator of kinase II (CrkII) in ovarian cancer and analyze their clinical significance. To explore the effects of Gab2 and CrkII on the biological behavior of ovarian cancer cells. To analyze the possible molecular mechanism of Gab2 in the development of ovarian cancer. METHODS Immunohistochemistry was used to detect the expression of Gab2 and CrkII in ovarian cancer. Chi square test was used to analyze the correlation between Gab2, CrkII and clinical parameters. Using Cox regression model to evaluate the risk factors affecting the prognosis. To analyze the correlation between Gab2, CrkII and survival rate by Kaplan-Meier. Cell experiments were preformed to explore the effects of Gab2 and CrkII on the biological behavior of cells. The interaction between Gab2 and CrkII was explored by immunoprecipitation. RESULTS Immunohistochemistry revealed that high expression of Gab2 and CrkII in ovarian cancer. Patients with high expression of Gab2 or CrkII had higher International Federation of Gynecology and Obstetrics (FIGO) stage, grade and platinum-resistance recurrence. Multivariate analysis showed that Gab2 and CrkII were independent prognostic factors. Kaplan-Meier curve showed that the higher Gab2 and CrkII were, the poor prognosis the patients had. We observed that the overexpression of Gab2 and CrkII promoted the proliferation, metastasis and reduced chemosensitivity of cells. Conversely, the knockdown of Gab2 and CrkII resulted in the opposite results. In CrkII-knockdown cells, we found that Gab2 mediates biological behavior through CrkII. CONCLUSIONS The expression of Gab2 and CrkII increase in ovarian cancer. The higher expression of Gab2 and CrkII predict the poor prognosis of patients. Gab2 and CrkII promote the proliferation and migration and reduce the chemosensitivity of cells. Gab2 regulates the biological behaviors of ovarian cancer cells through CrkII.
Collapse
Affiliation(s)
- Yi Yin
- Department of Gynecological Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Li Zhang
- Department of Cancer Research Center, The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Yong Li
- Department of Gynecological Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Can Zhang
- Department of Gynecological Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Aiqin He
- Department of Gynecological Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| |
Collapse
|
13
|
Vigoda M, Mathieson C, Evans N, Hale C, Jennings J, Lucero O, Jeng S, Bottomly D, Clayburgh D, Andersen P, Li R, Petrisor D, Tyner JW, McWeeney S, Kulesz-Martin M. Functional proteomics of patient derived head and neck squamous cell carcinoma cells reveal novel applications of trametinib. Cancer Biol Ther 2022; 23:310-318. [PMID: 35343367 PMCID: PMC8966983 DOI: 10.1080/15384047.2022.2055420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study, we report a differential response of mitogen-activated protein kinase–kinase (MEK) inhibitor trametinib in 20 head and neck squamous cell carcinoma (HNSCC) patients’ tumor-derived cell cultures. Relatively sensitive and resistant cases to trametinib were identified using high throughput metabolic assays and validated in extended dose response studies in vitro. High throughput metabolic assays exploring combination therapies with trametinib were subjected to synergy models and maximal synergistic dose analyses. These yielded several candidates, including axtinib, GDC-0032, GSK-690693, and SGX-523. The combination regimen of trametinib and AXL/MET/VEGFR inhibitor glesatinib showed initial efficacy both in vitro and in vivo (92% reduction in tumor volume). Sensitivity was validated in vivo in a patient-derived xenograft (PDX) model in which trametinib as a single agent effected reduction in tumor volume up to 72%. Reverse Phase Protein Arrays (RPPA) demonstrated differentially expressed proteins and phosphoproteins upon trametinib treatment. Furthermore, resistant cell lines showed a compensatory mechanism via increases in MAPK and non-MAPK pathway proteins that may represent targets for future combination regimens. Intrinsic-targeted options have potential to address paucity of medical treatment options for HNSCC cancer patients, enhance response to extrinsic targeted agents, and/or reduce morbidity as neoadjuvant to surgical treatments.
Collapse
Affiliation(s)
- Myles Vigoda
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA.,Michigan State University College of Osteopathic Medicine, East Lansing, MI, USA
| | - Chase Mathieson
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA
| | - Nathaniel Evans
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics and Clinical Epidemiolog, Oregon Health & Science University, Portland, OR, USA
| | - Carolyn Hale
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Jennings
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA
| | - Olivia Lucero
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Sophia Jeng
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Clayburgh
- Department of Otolaryngology Head and Neck Surgery, Oregon Health & Science University, Operative Care Division, Portland VA Health Care System, Portland, OR, USA
| | - Peter Andersen
- Department of Otolaryngology Head and Neck Surgery, Oregon Health & Science University, Operative Care Division, Portland VA Health Care System, Portland, OR, USA
| | - Ryan Li
- Department of Otolaryngology Head and Neck Surgery, Oregon Health & Science University, Operative Care Division, Portland VA Health Care System, Portland, OR, USA
| | - Daniel Petrisor
- Department of Otolaryngology Head and Neck Surgery, Oregon Health & Science University, Operative Care Division, Portland VA Health Care System, Portland, OR, USA
| | - Jeffrey W Tyner
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Shannon McWeeney
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics and Clinical Epidemiolog, Oregon Health & Science University, Portland, OR, USA
| | - Molly Kulesz-Martin
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
14
|
SH2 Domains: Folding, Binding and Therapeutical Approaches. Int J Mol Sci 2022; 23:ijms232415944. [PMID: 36555586 PMCID: PMC9783222 DOI: 10.3390/ijms232415944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
SH2 (Src Homology 2) domains are among the best characterized and most studied protein-protein interaction (PPIs) modules able to bind and recognize sequences presenting a phosphorylated tyrosine. This post-translational modification is a key regulator of a plethora of physiological and molecular pathways in the eukaryotic cell, so SH2 domains possess a fundamental role in cell signaling. Consequently, several pathologies arise from the dysregulation of such SH2-domains mediated PPIs. In this review, we recapitulate the current knowledge about the structural, folding stability, and binding properties of SH2 domains and their roles in molecular pathways and pathogenesis. Moreover, we focus attention on the different strategies employed to modulate/inhibit SH2 domains binding. Altogether, the information gathered points to evidence that pharmacological interest in SH2 domains is highly strategic to developing new therapeutics. Moreover, a deeper understanding of the molecular determinants of the thermodynamic stability as well as of the binding properties of SH2 domains appears to be fundamental in order to improve the possibility of preventing their dysregulated interactions.
Collapse
|
15
|
Frenay J, Bellaye PS, Oudot A, Helbling A, Petitot C, Ferrand C, Collin B, Dias AMM. IL-1RAP, a Key Therapeutic Target in Cancer. Int J Mol Sci 2022; 23:ijms232314918. [PMID: 36499246 PMCID: PMC9735758 DOI: 10.3390/ijms232314918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer is a major cause of death worldwide and especially in high- and upper-middle-income countries. Despite recent progress in cancer therapies, such as chimeric antigen receptor T (CAR-T) cells or antibody-drug conjugate (ADC), new targets expressed by the tumor cells need to be identified in order to selectively drive these innovative therapies to tumors. In this context, IL-1RAP recently showed great potential to become one of these new targets for cancer therapy. IL-1RAP is highly involved in the inflammation process through the interleukins 1, 33, and 36 (IL-1, IL-33, IL-36) signaling pathways. Inflammation is now recognized as a hallmark of carcinogenesis, suggesting that IL-1RAP could play a role in cancer development and progression. Furthermore, IL-1RAP was found overexpressed on tumor cells from several hematological and solid cancers, thus confirming its potential involvement in carcinogenesis. This review will first describe the structure and genetics of IL-1RAP as well as its role in tumor development. Finally, a focus will be made on the therapies based on IL-1RAP targeting, which are now under preclinical or clinical development.
Collapse
Affiliation(s)
- Jame Frenay
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Pierre-Simon Bellaye
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Alexandra Oudot
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Alex Helbling
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Camille Petitot
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Christophe Ferrand
- INSERM UMR1098, EFS BFC, Université de Bourgogne Franche-Comté, 25000 Besançon, France
- CanCell Therapeutics, 25000 Besançon, France
| | - Bertrand Collin
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, 21000 Dijon, France
| | - Alexandre M M Dias
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| |
Collapse
|
16
|
Kondreddy V, Keshava S, Das K, Magisetty J, Rao LVM, Pendurthi UR. The Gab2-MALT1 axis regulates thromboinflammation and deep vein thrombosis. Blood 2022; 140:1549-1564. [PMID: 35895897 PMCID: PMC9523376 DOI: 10.1182/blood.2022016424] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Deep vein thrombosis (DVT) is the third most common cause of cardiovascular mortality. Several studies suggest that DVT occurs at the intersection of dysregulated inflammation and coagulation upon activation of inflammasome and secretion of interleukin 1β (IL-1β) in restricted venous flow conditions. Our recent studies showed a signaling adapter protein, Gab2 (Grb2-associated binder 2), plays a crucial role in propagating inflammatory signaling triggered by IL-1β and other inflammatory mediators in endothelial cells. The present study shows that Gab2 facilitates the assembly of the CBM (CARMA3 [CARD recruited membrane-associated guanylate kinase protein 3]-BCL-10 [B-cell lymphoma 10]-MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) signalosome, which mediates the activation of Rho and NF-κB in endothelial cells. Gene silencing of Gab2 or MALT1, the effector signaling molecule in the CBM signalosome, or pharmacological inhibition of MALT1 with a specific inhibitor, mepazine, significantly reduced IL-1β-induced Rho-dependent exocytosis of P-selectin and von Willebrand factor (VWF) and the subsequent adhesion of neutrophils to endothelial cells. MALT1 inhibition also reduced IL-1β-induced NF-κB-dependent expression of tissue factor and vascular cell adhesion molecule 1. Consistent with the in vitro data, Gab2 deficiency or pharmacological inhibition of MALT1 suppressed the accumulation of monocytes and neutrophils at the injury site and attenuated venous thrombosis induced by the inferior vena cava ligation-induced stenosis or stasis in mice. Overall, our data reveal a previously unrecognized role of the Gab2-MALT1 axis in thromboinflammation. Targeting the Gab2-MALT1 axis with MALT1 inhibitors may become an effective strategy to treat DVT by suppressing thromboinflammation without inducing bleeding complications.
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| |
Collapse
|
17
|
Cao M, Wang Y, Lu G, Qi H, Li P, Dai X, Lu J. Classical Angiogenic Signaling Pathways and Novel Anti-Angiogenic Strategies for Colorectal Cancer. Curr Issues Mol Biol 2022; 44:4447-4471. [PMID: 36286020 PMCID: PMC9601273 DOI: 10.3390/cimb44100305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Although productive progress has been made in colorectal cancer (CRC) researchs, CRC is the second most frequent type of malignancy and the major cause of cancer-related death among gastrointestinal cancers. As angiogenesis constitutes an important point in the control of CRC progression and metastasis, understanding the key signaling pathways that regulate CRC angiogenesis is critical in elucidating ways to inhibit CRC. Herein, we comprehensively summarized the angiogenesis-related pathways of CRC, including vascular endothelial growth factor (VEGF), nuclear factor-kappa B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), Wingless and int-1 (Wnt), and Notch signaling pathways. We divided the factors influencing the specific pathway into promoters and inhibitors. Among these, some drugs or natural compounds that have antiangiogenic effects were emphasized. Furthermore, the interactions of these pathways in angiogenesis were discussed. The current review provides a comprehensive overview of the key signaling pathways that are involved in the angiogenesis of CRC and contributes to the new anti-angiogenic strategies for CRC.
Collapse
Affiliation(s)
- Mengyuan Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yunmeng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guige Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haoran Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peiyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, China
- Correspondence:
| |
Collapse
|
18
|
Mo H, Yang S, Chen AM. Inhibition of GAB2 expression has a protective effect on osteoarthritis:An in vitro and in vivo study. Biochem Biophys Res Commun 2022; 626:229-235. [PMID: 36007472 DOI: 10.1016/j.bbrc.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Osteoarthritis is a chronic age-related degenerative disease associated with varying degrees of pain and joint mobility disorders. Grb2-associated-Binding protein-2 (GAB2) is an intermediate molecule that plays a role downstream in a variety of signaling pathways, such as inflammatory signaling pathways. The role of GAB2 in the pathogenesis of OA has not been fully studied. In this study, we found that GAB2 expression was elevated in chondrocytes after constructing in vivo and in vitro models of OA. Inhibition of GAB2 by siRNA decreased the expression of MMP3, MMP13, iNOS, COX2, p62, and increased the expression of COL2, SOX9, ATG7, Beclin-1 and LC3II/LC3I. Furthermore, inhibition of GAB2 expression inhibited interleukin-1β (IL-1β) -induced mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling. In vivo studies, we found that reduced GAB2 expression effectively delayed cartilage destruction in a mouse model of OA induced by destabilisation of the medial meniscus (DMM). In conclusion, our study demonstrates that GAB2 is a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Haokun Mo
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siying Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An-Min Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Liu R, Sun Y, Chen S, Hong Y, Lu Z. FOXD3 and GAB2 as a pair of rivals antagonistically control hepatocellular carcinogenesis. FEBS J 2022; 289:4536-4548. [DOI: 10.1111/febs.16403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/05/2021] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Ruimin Liu
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
| | - Yan Sun
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
| | - Shuai Chen
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
| | - Yun Hong
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
| | - Zhongxian Lu
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research School of Pharmaceutical Sciences Xiamen China
| |
Collapse
|
20
|
Association of GAB2 with Quality of Life and Negative Emotions in Patients with Gastric Cancer after Postoperative Comprehensive Care. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1732214. [PMID: 35958936 PMCID: PMC9357693 DOI: 10.1155/2022/1732214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022]
Abstract
GRB2-associated binding protein 2 (GAB2), a highly conserved scaffold protein, is abnormally expressed and activated in patients with gastric cancer (GC). However, the genetic diversity of GAB2 in GC and its association with the clinical manifestations of patients are still unclear. Here, we explored the polymorphism of GAB2 rs2373115 in GC and its association with quality of life (QOL) and negative emotions of patients with GC after postoperative comprehensive care. A case-control study showed that the frequency of the GG genotype of GAB2 rs2373115 in the GC patients was higher than that in the healthy people, while the frequency of the TT + TG genotype was lower than that in the healthy people. Obvious distinctions were observed in the histological grade and TNM staging between the GG genotype and TT + TG genotype. In addition, SAS and SDS scores in the patients with GG genotype were higher than those in patients with TT + TG genotype, while the emotional function, cognitive function, dyspnea, fatigue, sleep disorder, and overall QOL in patients with GG genotype were lower than those in patients with TT + TG genotype. These results showed that GAB2 rs2373115 polymorphism was related to QOL and negative emotions in patients with GC after postoperative comprehensive care.
Collapse
|
21
|
Marazzi L, Shah M, Balakrishnan S, Patil A, Vera-Licona P. NETISCE: a network-based tool for cell fate reprogramming. NPJ Syst Biol Appl 2022; 8:21. [PMID: 35725577 PMCID: PMC9209484 DOI: 10.1038/s41540-022-00231-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
The search for effective therapeutic targets in fields like regenerative medicine and cancer research has generated interest in cell fate reprogramming. This cellular reprogramming paradigm can drive cells to a desired target state from any initial state. However, methods for identifying reprogramming targets remain limited for biological systems that lack large sets of experimental data or a dynamical characterization. We present NETISCE, a novel computational tool for identifying cell fate reprogramming targets in static networks. In combination with machine learning algorithms, NETISCE estimates the attractor landscape and predicts reprogramming targets using signal flow analysis and feedback vertex set control, respectively. Through validations in studies of cell fate reprogramming from developmental, stem cell, and cancer biology, we show that NETISCE can predict previously identified cell fate reprogramming targets and identify potentially novel combinations of targets. NETISCE extends cell fate reprogramming studies to larger-scale biological networks without the need for full model parameterization and can be implemented by experimental and computational biologists to identify parts of a biological system relevant to the desired reprogramming task.
Collapse
Affiliation(s)
- Lauren Marazzi
- Center for Quantitative Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Milan Shah
- Center for Quantitative Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Shreedula Balakrishnan
- Center for Quantitative Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Ananya Patil
- Center for Quantitative Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Paola Vera-Licona
- Center for Quantitative Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA. .,Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA. .,Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA. .,Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| |
Collapse
|
22
|
Wang LN, Zhang ZT, Wang L, Wei HX, Zhang T, Zhang LM, Lin H, Zhang H, Wang SQ. TGF-β1/SH2B3 axis regulates anoikis resistance and EMT of lung cancer cells by modulating JAK2/STAT3 and SHP2/Grb2 signaling pathways. Cell Death Dis 2022; 13:472. [PMID: 35589677 PMCID: PMC9120066 DOI: 10.1038/s41419-022-04890-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022]
Abstract
The pathogenesis of lung cancer, the most common cancer, is complex and unclear, leading to limited treatment options and poor prognosis. To provide molecular insights into lung cancer development, we investigated the function and underlying mechanism of SH2B3 in the regulation of lung cancer. We indicated SH2B3 was diminished while TGF-β1 was elevated in lung cancer tissues and cells. Low SH2B3 level was correlated with poor prognosis of lung cancer patients. SH2B3 overexpression suppressed cancer cell anoikis resistance, proliferation, migration, invasion, and EMT, while TGF-β1 promoted those processes via reducing SH2B3. SH2B3 bound to JAK2 and SHP2 to repress JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling pathways, respectively, resulting in reduced cancer cell anoikis resistance, proliferation, migration, invasion, and EMT. Overexpression of SH2B3 suppressed lung cancer growth and metastasis in vivo. In conclusion, SH2B3 restrained the development of anoikis resistance and EMT of lung cancer cells via suppressing JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling cascades, leading to decreased cancer cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Li-Na Wang
- grid.449428.70000 0004 1797 7280Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029 Jining, Shandong Province P. R. China ,grid.449428.70000 0004 1797 7280Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029 Jining, Shandong Province P. R. China
| | - Zi-Teng Zhang
- grid.449428.70000 0004 1797 7280Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029 Jining, Shandong Province P. R. China
| | - Li Wang
- grid.452708.c0000 0004 1803 0208Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan Province P. R. China ,grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan Province P. R. China
| | - Hai-Xiang Wei
- grid.449428.70000 0004 1797 7280Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029 Jining, Shandong Province P. R. China
| | - Tao Zhang
- grid.449428.70000 0004 1797 7280Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029 Jining, Shandong Province P. R. China
| | - Li-Ming Zhang
- grid.449428.70000 0004 1797 7280Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029 Jining, Shandong Province P. R. China
| | - Hang Lin
- grid.452223.00000 0004 1757 7615Department of General Thoracic Surgery, Xiangya Hospital, Central South University, 410008 Changsha, Hunan Province P. R. China
| | - Heng Zhang
- grid.452223.00000 0004 1757 7615Department of General Thoracic Surgery, Xiangya Hospital, Central South University, 410008 Changsha, Hunan Province P. R. China ,grid.216417.70000 0001 0379 7164Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, 410008 Changsha, Hunan Province P. R. China ,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, 410008 Changsha, Hunan Province P. R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, P. R. China
| | - Shao-Qiang Wang
- grid.449428.70000 0004 1797 7280Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029 Jining, Shandong Province P. R. China
| |
Collapse
|
23
|
Jin T, Zhang Y, Botchway BOA, Zhang J, Fan R, Zhang Y, Liu X. Curcumin can improve Parkinson's disease via activating BDNF/PI3k/Akt signaling pathways. Food Chem Toxicol 2022; 164:113091. [PMID: 35526734 DOI: 10.1016/j.fct.2022.113091] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a common progressive neurodegenerative disease, and presently has no curative agent. Curcumin, as one of the natural polyphenols, has great potential in neurodegenerative diseases and other different pathological settings. The brain-derived neurotrophic factor (BDNF) and phosphatidylinositol 3 kinase (PI3k)/protein kinase B (Akt) signaling pathways are significantly involved nerve regeneration and anti-apoptotic activities. Currently, relevant studies have confirmed that curcumin has an optimistic impact on neuroprotection via regulating BDNF and PI3k/Akt signaling pathways in neurodegenerative disease. Here, we summarized the relationship between BDNF and PI3k/Akt signaling pathway, the main biological functions and neuroprotective effects of curcumin via activating BDNF and PI3k/Akt signaling pathways in Parkinson's disease. This paper illustrates that curcumin, as a neuroprotective agent, can delay the progression of Parkinson's disease by protecting nerve cells.
Collapse
Affiliation(s)
- Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhang
- Department of Pharmacology, Medical College, Shaoxing University, Zhejiang, China
| | - Ruihua Fan
- School of Life Science, Shaoxing University, Zhejiang, China
| | - Yufeng Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
24
|
Liver-specific overexpression of Gab2 accelerates hepatocellular carcinoma progression by activating immunosuppression of myeloid-derived suppressor cells. Oncogene 2022; 41:3316-3327. [DOI: 10.1038/s41388-022-02298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 12/09/2022]
|
25
|
Bondos SE, Dunker AK, Uversky VN. Intrinsically disordered proteins play diverse roles in cell signaling. Cell Commun Signal 2022; 20:20. [PMID: 35177069 PMCID: PMC8851865 DOI: 10.1186/s12964-022-00821-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling pathways allow cells to detect and respond to a wide variety of chemical (e.g. Ca2+ or chemokine proteins) and physical stimuli (e.g., sheer stress, light). Together, these pathways form an extensive communication network that regulates basic cell activities and coordinates the function of multiple cells or tissues. The process of cell signaling imposes many demands on the proteins that comprise these pathways, including the abilities to form active and inactive states, and to engage in multiple protein interactions. Furthermore, successful signaling often requires amplifying the signal, regulating or tuning the response to the signal, combining information sourced from multiple pathways, all while ensuring fidelity of the process. This sensitivity, adaptability, and tunability are possible, in part, due to the inclusion of intrinsically disordered regions in many proteins involved in cell signaling. The goal of this collection is to highlight the many roles of intrinsic disorder in cell signaling. Following an overview of resources that can be used to study intrinsically disordered proteins, this review highlights the critical role of intrinsically disordered proteins for signaling in widely diverse organisms (animals, plants, bacteria, fungi), in every category of cell signaling pathway (autocrine, juxtacrine, intracrine, paracrine, and endocrine) and at each stage (ligand, receptor, transducer, effector, terminator) in the cell signaling process. Thus, a cell signaling pathway cannot be fully described without understanding how intrinsically disordered protein regions contribute to its function. The ubiquitous presence of intrinsic disorder in different stages of diverse cell signaling pathways suggest that more mechanisms by which disorder modulates intra- and inter-cell signals remain to be discovered.
Collapse
Affiliation(s)
- Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia 142290
| |
Collapse
|
26
|
Integrative Bioinformatics approaches to therapeutic gene target selection in various cancers for Nitroglycerin. Sci Rep 2021; 11:22036. [PMID: 34764329 PMCID: PMC8586365 DOI: 10.1038/s41598-021-01508-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
Integrative Bioinformatics analysis helps to explore various mechanisms of Nitroglycerin activity in different types of cancers and help predict target genes through which Nitroglycerin affect cancers. Many publicly available databases and tools were used for our study. First step in this study is identification of Interconnected Genes. Using Pubchem and SwissTargetPrediction Direct Target Genes (activator, inhibitor, agonist and suppressor) of Nitroglycerin were identified. PPI network was constructed to identify different types of cancers that the 12 direct target genes affected and the Closeness Coefficient of the direct target genes so identified. Pathway analysis was performed to ascertain biomolecules functions for the direct target genes using CluePedia App. Mutation Analysis revealed Mutated Genes and types of cancers that are affected by the mutated genes. While the PPI network construction revealed the types of cancer that are affected by 12 target genes this step reveals the types of cancers affected by mutated cancers only. Only mutated genes were chosen for further study. These mutated genes were input into STRING to perform NW Analysis. NW Analysis revealed Interconnected Genes within the mutated genes as identified above. Second Step in this study is to predict and identify Upregulated and Downregulated genes. Data Sets for the identified cancers from the above procedure were obtained from GEO Database. DEG Analysis on the above Data sets was performed to predict Upregulated and Downregulated genes. A comparison of interconnected genes identified in step 1 with Upregulated and Downregulated genes obtained in step 2 revealed Co-Expressed Genes among Interconnected Genes. NW Analysis using STRING was performed on Co-Expressed Genes to ascertain Closeness Coefficient of Co-Expressed genes. Gene Ontology was performed on Co-Expressed Genes to ascertain their Functions. Pathway Analysis was performed on Co-Expressed Genes to identify the Types of Cancers that are influenced by co-expressed genes. The four types of cancers identified in Mutation analysis in step 1 were the same as the ones that were identified in this pathway analysis. This further corroborates the 4 types of cancers identified in Mutation analysis. Survival Analysis was done on the co-expressed genes as identified above using Survexpress. BIOMARKERS for Nitroglycerin were identified for four types of cancers through Survival Analysis. The four types of cancers are Bladder cancer, Endometrial cancer, Melanoma and Non-small cell lung cancer.
Collapse
|
27
|
Nardella C, Malagrinò F, Pagano L, Rinaldo S, Gianni S, Toto A. Determining folding and binding properties of the C-terminal SH2 domain of SHP2. Protein Sci 2021; 30:2385-2395. [PMID: 34605082 PMCID: PMC8605372 DOI: 10.1002/pro.4201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 01/17/2023]
Abstract
SH2 domains are a class of protein–protein interaction modules with the function to recognize and bind sequences characterized by the presence of a phosphorylated tyrosine. SHP2 is a protein phosphatase involved in the Ras‐ERK1/2 signaling pathway that possess two SH2 domains, namely, N‐SH2 and C‐SH2, that mediate the interaction of SHP2 with various partners and determine the regulation of its catalytic activity. One of the main interactors of the SH2 domains of SHP2 is Gab2, a scaffolding protein with critical role in determining cell differentiation. Despite their key biological role and the importance of a correct native fold to ensure it, the mechanism of binding of SH2 domains with their ligands and the determinants of their stability have been poorly characterized. In this article, we present a comprehensive kinetic study of the folding of the C‐SH2 domain and the binding mechanism with a peptide mimicking a region of Gab2. Our data, obtained at different pH and ionic strength conditions and supported by site‐directed mutagenesis, highlight the role of electrostatic interactions in the early events of recognition. Interestingly, our results suggest a key role of a highly conserved histidine residue among SH2 family in the interaction with negative charges carried by the phosphotyrosine of Gab2. Moreover, the analysis of the equilibrium and kinetic folding data of C‐SH2 describes a complex mechanism implying a change in rate‐limiting step at high denaturant concentrations. Our data are discussed under the light of previous works on N‐SH2 domain of SHP2 and other SH2 domains.
Collapse
Affiliation(s)
- Caterina Nardella
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Serena Rinaldo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Angelo Toto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
28
|
Wu J, Huang Y, Yu C, Li X, Wang L, Hong J, Lin D, Han X, Guo G, Hu T, Huang H. The Key Gene Expression Patterns and Prognostic Factors in Malignant Transformation from Enchondroma to Chondrosarcoma. Front Oncol 2021; 11:693034. [PMID: 34568022 PMCID: PMC8461174 DOI: 10.3389/fonc.2021.693034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Enchondroma (EC) is a common benign bone tumor. It has the risk of malignant transformation to Chondrosarcoma (CS). However, the underlying mechanism is unclear. The gene expression profile of EC and CS was obtained from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified using GEO2R. We conducted the enrichment analysis and constructed the gene interaction network using the DEGs. We found that the epithelial-mesenchymal transition (EMT) and the VEGFA-VEGF2R signaling pathway were more active in CS. The CD8+ T cell immunity was enhanced in CS I. We believed that four genes (MFAP2, GOLM1, STMN1, and HN1) were poor predictors of prognosis, while two genes (CAB39L and GAB2) indicated a good prognosis. We have revealed the mechanism in the tumor progression and identified the key genes that predicted the prognosis. This study provided new ideas for the diagnosis and treatment of EC and CS.
Collapse
Affiliation(s)
- Junqing Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yue Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Chengxuan Yu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Limengmeng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Jundong Hong
- Zhejiang University City College, Hangzhou, China
| | - Daochao Lin
- Department of Orthopaedic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Xiaoping Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China.,Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoji Guo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China.,Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, China
| | - Tianye Hu
- Department of Orthopaedic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
29
|
Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia-From Molecular Mechanisms to Clinical Relevance. Cancers (Basel) 2021; 13:cancers13194820. [PMID: 34638304 PMCID: PMC8508378 DOI: 10.3390/cancers13194820] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic myeloid leukemia (CML) is a myeloproliferative neoplasia associated with a molecular alteration, the fusion gene BCR-ABL1, that encodes the tyrosine kinase oncoprotein BCR-ABL1. This led to the development of tyrosine kinase inhibitors (TKI), with Imatinib being the first TKI approved. Although the vast majority of CML patients respond to Imatinib, resistance to this targeted therapy contributes to therapeutic failure and relapse. Here we review the molecular mechanisms and other factors (e.g., patient adherence) involved in TKI resistance, the methodologies to access these mechanisms, and the possible therapeutic approaches to circumvent TKI resistance in CML. Abstract Resistance to targeted therapies is a complex and multifactorial process that culminates in the selection of a cancer clone with the ability to evade treatment. Chronic myeloid leukemia (CML) was the first malignancy recognized to be associated with a genetic alteration, the t(9;22)(q34;q11). This translocation originates the BCR-ABL1 fusion gene, encoding the cytoplasmic chimeric BCR-ABL1 protein that displays an abnormally high tyrosine kinase activity. Although the vast majority of patients with CML respond to Imatinib, a tyrosine kinase inhibitor (TKI), resistance might occur either de novo or during treatment. In CML, the TKI resistance mechanisms are usually subdivided into BCR-ABL1-dependent and independent mechanisms. Furthermore, patients’ compliance/adherence to therapy is critical to CML management. Techniques with enhanced sensitivity like NGS and dPCR, the use of artificial intelligence (AI) techniques, and the development of mathematical modeling and computational prediction methods could reveal the underlying mechanisms of drug resistance and facilitate the design of more effective treatment strategies for improving drug efficacy in CML patients. Here we review the molecular mechanisms and other factors involved in resistance to TKIs in CML and the new methodologies to access these mechanisms, and the therapeutic approaches to circumvent TKI resistance.
Collapse
|
30
|
Kondreddy V, Magisetty J, Keshava S, Rao LVM, Pendurthi UR. Gab2 (Grb2-Associated Binder2) Plays a Crucial Role in Inflammatory Signaling and Endothelial Dysfunction. Arterioscler Thromb Vasc Biol 2021; 41:1987-2005. [PMID: 33827252 PMCID: PMC8147699 DOI: 10.1161/atvbaha.121.316153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 01/21/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Usha R. Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| |
Collapse
|
31
|
Liu Z, Zhang X, Dong M, Liu Z, Wang Y, Yu H, Yu K, Xu N, Liu W, Song H. Analysis of the microRNA and mRNA expression profile of ricin toxin-treated RAW264.7 cells reveals that miR-155-3p suppresses cell inflammation by targeting GAB2. Toxicol Lett 2021; 347:67-77. [PMID: 33865919 DOI: 10.1016/j.toxlet.2021.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Ricin toxin (RT) is one of the most lethal toxins derived from the seed of castor beans. In addition to its main toxic mechanism of inhibiting the synthesis of cellular proteins, RT can induce the production of inflammatory cytokines. MicroRNAs (miRNAs) play a key role in regulating both innate and adaptive immunity. To elucidate the regulation of miRNAs in RT-induced inflammation injury, the RNA high-throughput sequencing (RNA-Seq) technology was used to analyze the expression profile of miRNAs and mRNAs in RT-treated RAW264.7 cells. Results showed that a total of 323 mRNAs and 19 miRNAs differentially expressed after RT treated. Meanwhile, 713 miRNA-mRNA interaction pairs were identified by bioinformatics analysis. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that those interaction pairs were mainly involved in JAK-STAT, T cell receptor, and MAPK signaling pathways. Moreover, we further predicted and determined the targeting relationship between miR-155-3p and GAB2 through TargetScan and dual-luciferase reporter assay. Mechanically, overexpression of miR-155-3p can reduce the secretion of TNF-α in RAW264.7 cells, revealing a possible mechanism of miR-155-3p regulating RT-induced inflammatory injury. This study provides a new perspective for clarifying the mechanism of RT-induced inflammatory injury and reveals the potential role of miRNAs in innate immune regulation.
Collapse
Affiliation(s)
- Zhongliang Liu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China
| | - Xiaohao Zhang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Mingxin Dong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, PR China
| | - Ziwei Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yan Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, PR China
| | - Haotian Yu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, PR China
| | - Kaikai Yu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, PR China
| | - Na Xu
- Jilin Medical University, Jilin, 132013, PR China.
| | - Wensen Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, PR China.
| | - Hui Song
- College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China.
| |
Collapse
|
32
|
Spatiotemporal profiling of cytosolic signaling complexes in living cells by selective proximity proteomics. Nat Commun 2021; 12:71. [PMID: 33397984 PMCID: PMC7782698 DOI: 10.1038/s41467-020-20367-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/27/2020] [Indexed: 02/02/2023] Open
Abstract
Signaling complexes are often organized in a spatiotemporal manner and on a minute timescale. Proximity labeling based on engineered ascorbate peroxidase APEX2 pioneered in situ capture of spatiotemporal membrane protein complexes in living cells, but its application to cytosolic proteins remains limited due to the high labeling background. Here, we develop proximity labeling probes with increased labeling selectivity. These probes, in combination with label-free quantitative proteomics, allow exploring cytosolic protein assemblies such as phosphotyrosine-mediated protein complexes formed in response to minute-scale EGF stimulation. As proof-of-concept, we systematically profile the spatiotemporal interactome of the EGFR signaling component STS1. For STS1 core complexes, our proximity proteomics approach shows comparable performance to affinity purification-mass spectrometry-based temporal interactome profiling, while also capturing additional—especially endosomally-located—protein complexes. In summary, we provide a generic approach for exploring the interactome of mobile cytosolic proteins in living cells at a temporal resolution of minutes. APEX-based proximity labeling allows capturing protein interaction dynamics but its high labeling background limits its utility for cytosolic proteins. Here, the authors develop more selective proximity labeling probes, enabling the APEX-based characterization of time-resolved cytosolic protein interactomes.
Collapse
|
33
|
Manasa P, Sidhanth C, Krishnapriya S, Vasudevan S, Ganesan TS. Oncogenes in high grade serous adenocarcinoma of the ovary. Genes Cancer 2020; 11:122-136. [PMID: 33488950 PMCID: PMC7805537 DOI: 10.18632/genesandcancer.206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
High grade serous ovarian cancer is characterized by relatively few mutations occurring at low frequency, except in TP53. However other genetic aberrations such as copy number variation alter numerous oncogenes and tumor suppressor genes. Oncogenes are positive regulators of tumorigenesis and play a critical role in cancer cell growth, proliferation, and survival. Accumulating evidence suggests that they are crucial for the development and the progression of high grade serous ovarian carcinoma (HGSOC). Though many oncogenes have been identified, no successful inhibitors targeting these molecules and their associated pathways are available. This review discusses oncogenes that have been identified recently in HGSOC using different screening strategies. All the genes discussed in this review have been functionally characterized both in vitro and in vivo and some of them are able to transform immortalized ovarian surface epithelial and fallopian tube cells upon overexpression. However, it is necessary to delineate the molecular pathways affected by these oncogenes for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Pacharla Manasa
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Chirukandath Sidhanth
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Syama Krishnapriya
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Sekar Vasudevan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Trivadi S Ganesan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| |
Collapse
|
34
|
Visconti L, Toto A, Jarvis JA, Troilo F, Malagrinò F, De Simone A, Gianni S. Demonstration of Binding Induced Structural Plasticity in a SH2 Domain. Front Mol Biosci 2020; 7:89. [PMID: 32528972 PMCID: PMC7247818 DOI: 10.3389/fmolb.2020.00089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/17/2020] [Indexed: 01/13/2023] Open
Abstract
SH2 domains are common protein interaction domains able to recognize short aminoacidic sequences presenting a phosphorylated tyrosine (pY). In spite of their fundamental importance for cell physiology there is a lack of information about the mechanism by which these domains recognize and bind their natural ligands. The N-terminal SH2 (N-SH2) domain of PI3K mediates the interaction with different scaffolding proteins and is known to recognize a specific pY-X-X-M consensus sequence. These interactions are at the cross roads of different molecular pathways and play a key role for cell development and division. By combining mutagenesis, chemical kinetics and NMR, here we provide a complete characterization of the interaction between N-SH2 and a peptide mimicking the scaffolding protein Gab2. Our results highlight that N-SH2 is characterized by a remarkable structural plasticity, with the binding reaction being mediated by a diffused structural region and not solely by the residues located in the binding pocket. Furthermore, the analysis of kinetic data allow us to pinpoint an allosteric network involving residues far from the binding pocket involved in specificity. Results are discussed on the light of previous works on the binding properties of SH2 domains.
Collapse
Affiliation(s)
- Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - James A Jarvis
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Francesca Troilo
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
35
|
Understanding the Mechanism of Recognition of Gab2 by the N-SH2 Domain of SHP2. Life (Basel) 2020; 10:life10060085. [PMID: 32545165 PMCID: PMC7345789 DOI: 10.3390/life10060085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Gab2 is a scaffold protein with a crucial role in colocalizing signaling proteins and it is involved in the regulation of several important molecular pathways. SHP2 is a protein phosphatase that binds, through its two SH2 domains, specific consensus sequences presenting a phosphorylated tyrosine located on the disordered tail of Gab2. To shed light on the details of such a fundamental interaction for the physiology of the cell, we present a complete mutational analysis of the kinetics of binding between the N-SH2 domain of SHP2 and a peptide mimicking a specific region of Gab2. By analyzing kinetic data, we determined structural features of the transition state of the N-SH2 domain binding to Gab2, highlighting a remarkable cooperativity of the binding reaction. Furthermore, comparison of these data with ones previously obtained for another SH2 domain suggests the presence of underlying general features characterizing the binding process of SH2 domains. Data are discussed under the light of previous works on SH2 domains.
Collapse
|
36
|
Therapeutic potential of targeting SHP2 in human developmental disorders and cancers. Eur J Med Chem 2020; 190:112117. [PMID: 32061959 DOI: 10.1016/j.ejmech.2020.112117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), encoded by PTPN11, regulates cell proliferation, differentiation, apoptosis and survival via releasing intramolecular autoinhibition and modulating various signaling pathways, such as mitogen-activated protein kinase (MAPK) pathway. Mutations and aberrant expression of SHP2 are implicated in human developmental disorders, leukemias and several solid tumors. As an oncoprotein in some cancers, SHP2 represents a rational target for inhibitors to interfere. Nevertheless, its tumor suppressive effect has also been uncovered, indicating the context-specificity. Even so, two types of SHP2 inhibitors including targeting catalytic pocket and allosteric sites have been developed associated with resolved cocrystal complexes. Herein, we describe its structure, biological function, deregulation in human diseases and summarize recent advance in development of SHP2 inhibitors, trying to give an insight into the therapeutic potential in future.
Collapse
|
37
|
Arkun Y. Modeling and Analysis of Gab1 Mediated Feedback Loops to Understand Gab's Role in Erk-Akt Signaling and Cancer .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2939-2942. [PMID: 31946506 DOI: 10.1109/embc.2019.8857855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A mathematical model is presented to study the dynamics of the docking protein Gab1 that plays an important role in the regulation of ERK and AKT signaling pathways. Model predictions can be used to understand the role of Gab1 in the development of cancer which can give insight into targeted therapy.
Collapse
|
38
|
Shi X, Gong L, Liu Y, Hou K, Fan Y, Li C, Wen T, Qu X, Che X. 4-phenylbutyric acid promotes migration of gastric cancer cells by histone deacetylase inhibition-mediated IL-8 upregulation. Epigenetics 2019; 15:632-645. [PMID: 31814524 DOI: 10.1080/15592294.2019.1700032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). It is associated with gene transcription and expression. 4-Phenylbutyric acid (4-PBA), an HDAC inhibitor (HDACi), can inhibit cancer cell proliferation by increasing the level of histone acetylation. However, 4-PBA did not show any efficacy in clinical trials. In this study, we found that 4-PBA induced epithelial-mesenchymal transition (EMT) in gastric cancer cell lines MGC-803 and BGC-823 with ectopic E-cadherin expression. Based on the expression profile microarray, IL-8 was the most significantly up-regulated gene by 4-PBA, and was selected for further investigation. Knockdown of IL-8 partially prevented 4-PBA-induced-EMT by blocking the activation of the downstream Gab2-ERK pathway. Furthermore, CHIP assay confirmed that acetyl-H3 directly combined with the promoter region of IL-8 to promote its transcription. Therefore, the results of this study demonstrated that 4-PBA-mediated inhibition of HDAC activity could induce EMT in gastric cancer cells via acetyl-histone-mediated IL-8 upregulation, and the downstream Gab2/ERK activation. These data indicated the possible reason for the failure of 4-PBA in clinical trials.
Collapse
Affiliation(s)
- Xiaonan Shi
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China.,Department of Oncology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Libao Gong
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University , Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University , Shenyang, China
| |
Collapse
|
39
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
40
|
Lanata CM, Paranjpe I, Nititham J, Taylor KE, Gianfrancesco M, Paranjpe M, Andrews S, Chung SA, Rhead B, Barcellos LF, Trupin L, Katz P, Dall'Era M, Yazdany J, Sirota M, Criswell LA. A phenotypic and genomics approach in a multi-ethnic cohort to subtype systemic lupus erythematosus. Nat Commun 2019; 10:3902. [PMID: 31467281 PMCID: PMC6715644 DOI: 10.1038/s41467-019-11845-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/13/2019] [Indexed: 01/05/2023] Open
Abstract
Systemic lupus erythematous (SLE) is a heterogeneous autoimmune disease in which outcomes vary among different racial groups. Here, we aim to identify SLE subgroups within a multiethnic cohort using an unsupervised clustering approach based on the American College of Rheumatology (ACR) classification criteria. We identify three patient clusters that vary according to disease severity. Methylation association analysis identifies a set of 256 differentially methylated CpGs across clusters, including 101 CpGs in genes in the Type I Interferon pathway, and we validate these associations in an external cohort. A cis-methylation quantitative trait loci analysis identifies 744 significant CpG-SNP pairs. The methylation signature is enriched for ethnic-associated CpGs suggesting that genetic and non-genetic factors may drive outcomes and ethnic-associated methylation differences. Our computational approach highlights molecular differences associated with clusters rather than single outcome measures. This work demonstrates the utility of applying integrative methods to address clinical heterogeneity in multifactorial multi-ethnic disease settings.
Collapse
Affiliation(s)
- Cristina M Lanata
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ishan Paranjpe
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joanne Nititham
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kimberly E Taylor
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Milena Gianfrancesco
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Manish Paranjpe
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Shan Andrews
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Sharon A Chung
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Laura Trupin
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Patricia Katz
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Maria Dall'Era
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jinoos Yazdany
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
41
|
Das MK, Kleppa L, Haugen TB. Functions of genes related to testicular germ cell tumour development. Andrology 2019; 7:527-535. [DOI: 10.1111/andr.12663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- M. K. Das
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
- Department of Molecular Medicine, Faculty of Medicine; University of Oslo; Oslo Norway
| | - L. Kleppa
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
| | - T. B. Haugen
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
| |
Collapse
|
42
|
Yoshida S, Pacitto R, Sesi C, Kotula L, Swanson JA. Dorsal ruffles enhance activation of Akt by growth factors. J Cell Sci 2018; 131:jcs.220517. [PMID: 30333140 DOI: 10.1242/jcs.220517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
In fibroblasts, platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) stimulate the formation of actin-rich, circular dorsal ruffles (CDRs) and phosphatidylinositol 3-kinase (PI3K)-dependent phosphorylation of Akt. To test the hypothesis that CDRs increase synthesis of phosphorylated Akt1 (pAkt), we analyzed the contributions of CDRs to Akt phosphorylation in response to PDGF and EGF. CDRs appeared within several minutes of growth factor addition, coincident with a peak of pAkt. Microtubule depolymerization with nocodazole blocked CDR formation and inhibited phosphorylation of Akt in response to EGF but not PDGF. Quantitative immunofluorescence showed increased concentrations of Akt, pAkt and phosphatidylinositol (3,4,5)-trisphosphate (PIP3), the phosphoinositide product of PI3K that activates Akt, concentrated in CDRs and ruffles. EGF stimulated lower maximal levels of pAkt than did PDGF, which suggests that Akt phosphorylation requires amplification in CDRs only when PI3K activities are low. Accordingly, stimulation with low concentrations of PDGF elicited lower levels of Akt phosphorylation, which, like responses to EGF, were inhibited by nocodazole. These results indicate that when receptor signaling generates low levels of PI3K activity, CDRs facilitate local amplification of PI3K and phosphorylation of Akt.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sei Yoshida
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA .,Center for Live-Cell Imaging (CLCI), University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| | - Regina Pacitto
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| | - Catherine Sesi
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical School, Syracuse, NY 13210, USA
| | - Joel A Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA .,Center for Live-Cell Imaging (CLCI), University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| |
Collapse
|
43
|
miR-486-5p inhibits cell proliferation and invasion through repressing GAB2 in non-small cell lung cancer. Oncol Lett 2018; 16:3525-3530. [PMID: 30127957 PMCID: PMC6096229 DOI: 10.3892/ol.2018.9053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Previous studies have reported that cell metastasis is the main reason for the high mortality of non-small cell lung cancer (NSCLC). Many miRNAs have been identified to be involved in the development of NSCLC. In this study, we explored the effect of miR-486-5p and GAB2 on cell proliferation and invasion in NSCLC. First, miR-486-5p and GAB2 expression levels were detected in NSCLC through quantitative RT-qPCR, and downregulation of miR-486-5p and upregulation of GAB2 were both identified in NSCLC. Then MTT and Transwell analysis were performed to confirm the functions of miR-486-5p and GAB2 for cell proliferation and invasion in NSCLC. Moreover, miR-486-5p overexpression was found to inhibit proliferation and invasion by suppressing GAB2 in NSCLC cells. Besides, miR-486-5p overexpression lessened GAB2 expression level in NSCLC, while miR-486-5p knockout enhanced GAB2 expression level. Additionally, miR-486-5p was identified to directly target GAB2 through dual luciferase reporter assay. The silence of GAB2 was found to inhibit proliferation and invasion of NSCLC cells. Collectively, miR-486-5p contributed to inhibiting proliferation and invasion of NSCLC cells through regulating GAB2, and miR-486-5p/GAB2 axis may provide a breakthrough for diagnosing NSCLC.
Collapse
|
44
|
Park YR, Bae SH, Ji W, Seo EJ, Lee JC, Kim HR, Jang SJ, Choi CM. GAB2 Amplification in Squamous Cell Lung Cancer of Non-Smokers. J Korean Med Sci 2017; 32:1784-1791. [PMID: 28960030 PMCID: PMC5639058 DOI: 10.3346/jkms.2017.32.11.1784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 08/04/2017] [Indexed: 01/12/2023] Open
Abstract
Lung squamous cell cancer (SCC) is typically found in smokers and has a very low incidence in non-smokers, indicating differences in the tumor biology of lung SCC in smokers and non-smokers. However, the specific mutations that drive tumor growth in non-smokers have not been identified. To identify mutations in lung SCC of non-smokers, we performed a genetic analysis using arrays comparative genomic hybridization (ArrayCGH). We analyzed 19 patients with lung SCC who underwent surgical treatment between April 2005 and April 2015. Clinical characteristics were reviewed, and DNA was extracted from fresh frozen lung cancer specimens. All of copy number alterations from ArrayCGH were validated using The Cancer Genome Atlas (TCGA) copy number variation (CNV) data of lung SCC. We examined the frequency of copy number changes according to the smoking status (non-smoker [n = 8] or smoker [n = 11]). We identified 16 significantly altered regions from ArrayCGH data, three gain and four loss regions overlapped with the TCGA lung squamous cell carcinoma (LUSC) patients. Within these overlapped significant regions, we detected 15 genes that have been reported in the Cancer Gene census. We also found that the proto-oncogene GAB2 (11q14.1) was significantly amplified in non-smokers patients and vice versa in both ArrayCGH and TCGA data. Immunohistochemical analyses showed that GAB2 protein was relatively upregulated in non-smoker than smoker tissues (37.5% vs. 9.0%, P = 0.007). GAB2 amplification may have an important role in the development of lung SCC in non-smokers. GAB2 may represent a potential biomarker for lung SCC in non-smokers.
Collapse
Affiliation(s)
- Yu Rang Park
- Clinical Research Center, Asan Institute of Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Department of Biomedical Informatics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Soo Hyeon Bae
- Department of Pulmonology and Critical Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Wonjun Ji
- Department of Pulmonology and Critical Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Eul Ju Seo
- Department of Laboratory Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jae Cheol Lee
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hyeong Ryul Kim
- Department of Thoracic Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Se Jin Jang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chang Min Choi
- Department of Pulmonology and Critical Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Office of Clinical Research Information, Asan Institute of Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
45
|
Cheng J, Zhong Y, Chen S, Sun Y, Huang L, Kang Y, Chen B, Chen G, Wang F, Tian Y, Liu W, Feng GS, Lu Z. Gab2 mediates hepatocellular carcinogenesis by integrating multiple signaling pathways. FASEB J 2017; 31:5530-5542. [PMID: 28842424 PMCID: PMC5690380 DOI: 10.1096/fj.201700120rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Our previous studies have found that Growth factor receptor-bound protein 2-associated binding protein 2 (Gab2)-a docking protein-governs the development of fatty liver disease. Here, we further demonstrate that Gab2 mediates hepatocarcinogenesis. Compared with a faint expression in para-carcinoma tissue, Gab2 was highly expressed in ∼60-70% of human hepatocellular carcinoma (HCC) specimens. Deletion of Gab2 dramatically suppressed diethylnitrosamine-induced HCC in mice. The oncogenic effects of Gab2 in HepG2 cells were promoted by Gab2 overexpression but were rescued by Gab2 knockdown. Furthermore, Gab2 knockout in HepG2 cells restrained cell proliferation, migration and tumor growth in nude mice. Signaling pathway analysis with protein kinase inhibitors demonstrated that oncogenic regulation by Gab2 in hepatic cells involved multiple signaling molecules, including ERK, Akt, and Janus kinases (Jaks), especially those that mediate inflammatory signaling. IL-6 signaling was increased by Gab2 overexpression and impaired by Gab2 deletion via regulation of Jak2 and signal transducer and activator of transcription 3 phosphorylation and the expression of downstream genes, such as Bcl-2 (B-cell lymphoma 2), c-Myc, MMP7 (matrix metalloproteinase-7), and cyclin D1in vitro and in vivo These data indicate that Gab2 mediates the pathologic progression of HCC by integrating multiple signaling pathways and suggest that Gab2 might be a powerful therapeutic target for HCC.-Cheng, J., Zhong, Y., Chen, S., Sun, Y., Huang, L., Kang, Y., Chen, B., Chen, G., Wang, F., Tian, Y., Liu, W., Feng, G.-S., Lu, Z. Gab2 mediates hepatocellular carcinogenesis by integrating multiple signaling pathways.
Collapse
Affiliation(s)
- Jianghong Cheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Yanhong Zhong
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Shuai Chen
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Yan Sun
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Lantang Huang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Yujia Kang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Baozhen Chen
- Department of Pathology, Fujian Provincial Tumor Hospital, Fuzhou, China
| | - Gang Chen
- Department of Pathology, Fujian Provincial Tumor Hospital, Fuzhou, China
| | - Fengli Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Wenjie Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Gen-Sheng Feng
- Division of Biological Sciences, Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China;
| |
Collapse
|
46
|
Gu S, Sayad A, Chan G, Yang W, Lu Z, Virtanen C, Van Etten RA, Neel BG. SHP2 is required for BCR-ABL1-induced hematologic neoplasia. Leukemia 2017; 32:203-213. [PMID: 28804122 PMCID: PMC6005183 DOI: 10.1038/leu.2017.250] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022]
Abstract
BCR-ABL1-targeting tyrosine kinase inhibitors (TKIs) have revolutionized treatment of Philadelphia chromosome-positive (Ph+) hematologic neoplasms. Nevertheless, acquired TKI resistance remains a major problem in chronic myeloid leukemia (CML), and TKIs are less effective against Ph+ B-cell acute lymphoblastic leukemia (B-ALL). GAB2, a scaffolding adaptor that binds and activates SHP2, is essential for leukemogenesis by BCR-ABL1, and a GAB2 mutant lacking SHP2 binding cannot mediate leukemogenesis. Using a genetic loss-of-function approach and bone marrow transplantation (BMT) models for CML and BCR-ABL1+ B-ALL, we show that SHP2 is required for BCR-ABL1-evoked myeloid and lymphoid neoplasia. Ptpn11 deletion impairs initiation and maintenance of CML-like myeloproliferative neoplasm, and compromises induction of BCR-ABL1+ B-ALL. SHP2, and specifically, its SH2 domains, PTP activity and C-terminal tyrosines, is essential for BCR-ABL1+, but not WT, pre-B cell proliferation. The MEK/ERK pathway is regulated by SHP2 in WT and BCR-ABL1+ pre-B cells, but is only required for the proliferation of BCR-ABL1+ cells. SHP2 is required for SRC family kinase (SFK) activation only in BCR-ABL1+ pre-B cells. RNAseq reveals distinct SHP2-dependent transcriptional programs in BCR-ABL1+ and WT pre-B cells. Our results suggest that SHP2, via SFKs and ERK, represses MXD3/4 to facilitate a MYC-dependent proliferation program in BCR-ABL1-transformed pre-B cells.
Collapse
Affiliation(s)
- S Gu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - A Sayad
- Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - G Chan
- Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - W Yang
- Department of Orthopaedics, Brown University Alpert Medical School, Providence, RI, USA
| | - Z Lu
- Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - C Virtanen
- Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - R A Van Etten
- Chao Family Comprehensive Cancer Center, Division of Hematology/Oncology, University of California, Irvine, Irvine, CA, USA
| | - B G Neel
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Center, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Toto A, Bonetti D, De Simone A, Gianni S. Understanding the mechanism of binding between Gab2 and the C terminal SH3 domain from Grb2. Oncotarget 2017; 8:82344-82351. [PMID: 29137268 PMCID: PMC5669894 DOI: 10.18632/oncotarget.19323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 01/18/2023] Open
Abstract
Gab2 is a large disordered protein that regulates several cellular signalling pathways and is overexpressed in different forms of cancer. Because of its disordered nature, a detailed characterization of the mechanisms of recognition between Gab2 and its physiological partners is particularly difficult. Here we provide a detailed kinetic characterization of the binding reaction between Gab2 and the C-terminal SH3 domain of the growth factor receptor-bound protein 2 (Grb2). We demonstrate that Gab2 folds upon binding following an induced fit type mechanism, whereby recognition is characterized by the formation of an intermediate, in which Gab2 is primarily disordered. In this scenario, folding of Gab2 into the bound conformation occurs only after binding. However, an alanine scanning of the proline residues of Gab2 suggests that the intermediate contains some degree of native-like structure, which might play a role for the recognition event to take place. The results, which represent a fundamental step forward in the understanding of this functional protein-protein interaction, are discussed on the light of previous structural works on these proteins.
Collapse
Affiliation(s)
- Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Daniela Bonetti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| |
Collapse
|
48
|
Ding C, Luo J, Fan X, Li L, Li S, Wen K, Feng J, Wu G. Elevated Gab2 induces tumor growth and angiogenesis in colorectal cancer through upregulating VEGF levels. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:56. [PMID: 28420432 PMCID: PMC5395829 DOI: 10.1186/s13046-017-0524-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/04/2017] [Indexed: 01/19/2023]
Abstract
Background Grb2-associated binder 2 (Gab2) is a scaffolding protein that serves as a critical signaling amplifier downstream of tyrosine kinase receptors. Our previous study has shown that Gab2 induces epithelial-to-mesenchymal transition (EMT) and promotes metastasis in colorectal cancer (CRC). However, the role of Gab2 in CRC growth and angiogenesis remains unclear. Methods The expression of vascular endothelial growth factor (VEGF) in different colorectal tissues was detected by immunohistochemistry and qRT-PCR to evaluate its correlation with Gab2. Lentiviral vectors bearing Gab2 gene and its small interfering RNAs were constructed and transfected into CRC cell lines. The effects of Gab2 on the cell proliferation in vitro and tumorigenesis in vivo, were examined via CCK‑8 assay, colony formation assay as well as tumorigenicity assay respectively. Moreover, to assess its potential role in tumor growth and angiogenesis, the expression of Ki67, CD34 and vascular endothelial growth factor receptor-2 (VEGFR2) were detected by immunohistochemistry in CRC cells tumors. Finally, we evaluated the impact of Gab2 on the expression of c-Myc and VEGF, and the probable effect of mechanistic targeted extracellular signal-regulated kinase (ERK) pathway in suppressing tumor growth and angiogenesis. Results Up-regulation of Gab2 expression was found to be positively correlated with VEGF in CRC tissues. Exogenous expression of Gab2 obviously promoted, whereas silencing of Gab2 inhibited, proliferation and clone formation of human CRC cells in vitro. Of note, Gab2 enhanced tumorigenesis and tumor growth in mouse xenografts with high Ki67 expression, and led to an increased vessel density with strong CD34 and VEGFR2 activity. In addition, elevated Gab2 expression obviously up-regulated the expression of VEGF, and stimulated the activation of its downstream genes, ERK1/2 and c-Myc in CRC cells. Instead, down-regulated Gab2 expression significantly reduced the levels of VEGF, and inhibited the transduction of ERK/c-Myc pathway. Finally, we revealed that mechanistic target of mitogen-activated protein kinase (MEK) could attenuate Gab2-induced tumor growth and angiogenesis via altering VEGF and c-Myc levels. Conclusions The results from our study suggest that Gab2 promotes intestinal tumor growth and angiogenesis through upregulation of VEGF expression mediated by the MEK/ERK/c-Myc pathway. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0524-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, 210009, People's Republic of China
| | - Junmin Luo
- Department of Immunology, Zunyi Medical College, Zunyi, 563003, People's Republic of China.
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, 210009, People's Republic of China
| | - Longmei Li
- Department of Immunology, Zunyi Medical College, Zunyi, 563003, People's Republic of China
| | - Shanshan Li
- Department of Immunology, Zunyi Medical College, Zunyi, 563003, People's Republic of China
| | - Kunming Wen
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Zunyi Medical College, Zunyi, 563003, People's Republic of China
| | - Jihong Feng
- Department of Oncology, the Affiliated Hospital of Zunyi Medical College, Zunyi, 563003, People's Republic of China.
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, 210009, People's Republic of China. .,Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
49
|
O'Malley J, Kumar R, Kuzmin AN, Pliss A, Yadav N, Balachandar S, Wang J, Attwood K, Prasad PN, Chandra D. Lipid quantification by Raman microspectroscopy as a potential biomarker in prostate cancer. Cancer Lett 2017; 397:52-60. [PMID: 28342983 DOI: 10.1016/j.canlet.2017.03.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 01/22/2023]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) remains incurable and is one of the leading causes of cancer-related death among American men. Therefore, detection of prostate cancer (PCa) at early stages may reduce PCa-related mortality in men. We show that lipid quantification by vibrational Raman Microspectroscopy and Biomolecular Component Analysis may serve as a potential biomarker in PCa. Transcript levels of lipogenic genes including sterol regulatory element-binding protein-1 (SREBP-1) and its downstream effector fatty acid synthase (FASN), and rate-limiting enzyme acetyl CoA carboxylase (ACACA) were upregulated corresponding to both Gleason score and pathologic T stage in the PRAD TCGA cohort. Increased lipid accumulation in late-stage transgenic adenocarcinoma of mouse prostate (TRAMP) tumors compared to early-stage TRAMP and normal prostate tissues were observed. FASN along with other lipogenesis enzymes, and SREBP-1 proteins were upregulated in TRAMP tumors compared to wild-type prostatic tissues. Genetic alterations of key lipogenic genes predicted the overall patient survival using TCGA PRAD cohort. Correlation between lipid accumulation and tumor stage provides quantitative marker for PCa diagnosis. Thus, Raman spectroscopy-based lipid quantification could be a sensitive and reliable tool for PCa diagnosis and staging.
Collapse
Affiliation(s)
- Jordan O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Andrey N Kuzmin
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Srimmitha Balachandar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Bioinformatics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Kristopher Attwood
- Department of Biostatistics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Paras N Prasad
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
50
|
Ma J, Yu J, Liu J, Yang X, Lou M, Liu J, Feng F, Ji P, Wang L. MicroRNA-302a targets GAB2 to suppress cell proliferation, migration and invasion of glioma. Oncol Rep 2016; 37:1159-1167. [DOI: 10.3892/or.2016.5320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/01/2016] [Indexed: 11/06/2022] Open
|