1
|
Fiadeiro MB, Diogo JC, Silva AA, Kim YS, Cristóvão AC. NADPH Oxidases in Neurodegenerative Disorders: Mechanisms and Therapeutic Opportunities. Antioxid Redox Signal 2024; 41:522-541. [PMID: 38760935 DOI: 10.1089/ars.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Significance: The nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzyme family, located in the central nervous system, is recognized as a source of reactive oxygen species (ROS) in the brain. Despite its importance in cellular processes, excessive ROS generation leads to cell death and is involved in the pathogenesis of neurodegenerative disorders. Recent advances: NOX enzymes contribute to the development of neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and stroke, highlighting their potential as targets for future therapeutic development. This review will discuss NOX's contribution and therapeutic targeting potential in neurodegenerative diseases, focusing on PD, AD, ALS, and stroke. Critical issues: Homeostatic and physiological levels of ROS are crucial for regulating several processes, such as development, memory, neuronal signaling, and vascular homeostasis. However, NOX-mediated excessive ROS generation is deeply involved in the damage of DNA, proteins, and lipids, leading to cell death in the pathogenesis of a wide range of diseases, namely neurodegenerative diseases. Future directions: It is essential to understand the role of NOX homologs in neurodegenerative disorders and the pathological mechanisms undergoing neurodegeneration mediated by increased levels of ROS. This further knowledge will allow the development of new specific NOX inhibitors and their application for neurodegenerative disease therapeutics. Antioxid. Redox Signal. 41, 522-541.
Collapse
Affiliation(s)
- Mariana B Fiadeiro
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - João C Diogo
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - Ana A Silva
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - Yoon-Seong Kim
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Ana C Cristóvão
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
2
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
3
|
Abd El-Rahman SS, Fayed HM. Improved cognition impairment by activating cannabinoid receptor type 2: Modulating CREB/BDNF expression and impeding TLR-4/NFκBp65/M1 microglia signaling pathway in D-galactose-injected ovariectomized rats. PLoS One 2022; 17:e0265961. [PMID: 35349580 PMCID: PMC8963558 DOI: 10.1371/journal.pone.0265961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/10/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by an active inflammatory response induced by the brain's deposition and accumulation of amyloid-beta (Aβ). Cannabinoid receptor type 2 (CB2R) is expressed in specific brain areas, modulating functions, and pathophysiologies in CNS. Herein, we aimed to evaluate whether activation of CB2R can improve the cognitive impairment in the experimental AD-like model and determine the involved intracellular signaling pathway. Injection of D-galactose (150 mg/kg, i.p.) was performed to urge AD-like features in bilaterally ovariectomized female rats (OVC/D-gal rats) for 8-weeks. Then, AM1241, a CB2R-agonist (3 and 6 mg/kg), was injected intraperitoneally starting from the 6th week. Treatment with AM1241, significantly down-regulated; Toll-like receptor4 (TLR4), Myd88 (TLR4-adaptor protein) genes expression, and the pro-inflammatory cytokines (NFκB p65, TNF-α, IL-6, and IL-12). In contrast, it enhanced BDNF (the brain-derived neurotrophic factor) and CREB (the cyclic AMP response element-binding protein) as well as the immune-modulatory cytokines (IL-4 and IL-10) levels. Moreover, AM1241 lessened the immune-expression of GFAP, CD68, caspase-3, and NFκB p65 markers and mended the histopathological damage observed in OVC/D-gal rats by decreasing the deposition of amyloid plaques and degenerative neuronal lesions, as well as improving their recognition and learning memory in both novel object recognition and Morris water maze tests. In conclusion, activating CB2R by the selective agonist AM1241 can overrun cognitive deficits in OVC/D-gal rats through modulation of TLR4/ NFκB p65 signaling, mediated by modulating CREB/BDNF pathway, thereby can be applied as a potential therapeutic strategy in AD treatment.
Collapse
Affiliation(s)
| | - Hany M. Fayed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
4
|
Santra P, Amack JD. Loss of vacuolar-type H+-ATPase induces caspase-independent necrosis-like death of hair cells in zebrafish neuromasts. Dis Model Mech 2021; 14:dmm048997. [PMID: 34296747 PMCID: PMC8319552 DOI: 10.1242/dmm.048997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/15/2021] [Indexed: 01/24/2023] Open
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is a multi-subunit proton pump that regulates cellular pH. V-ATPase activity modulates several cellular processes, but cell-type-specific functions remain poorly understood. Patients with mutations in specific V-ATPase subunits can develop sensorineural deafness, but the underlying mechanisms are unclear. Here, we show that V-ATPase mutations disrupt the formation of zebrafish neuromasts, which serve as a model to investigate hearing loss. V-ATPase mutant neuromasts are small and contain pyknotic nuclei that denote dying cells. Molecular markers and live imaging show that loss of V-ATPase induces mechanosensory hair cells in neuromasts, but not neighboring support cells, to undergo caspase-independent necrosis-like cell death. This is the first demonstration that loss of V-ATPase can lead to necrosis-like cell death in a specific cell type in vivo. Mechanistically, loss of V-ATPase reduces mitochondrial membrane potential in hair cells. Modulating the mitochondrial permeability transition pore, which regulates mitochondrial membrane potential, improves hair cell survival. These results have implications for understanding the causes of sensorineural deafness, and more broadly, reveal functions for V-ATPase in promoting survival of a specific cell type in vivo.
Collapse
Affiliation(s)
- Peu Santra
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY 13244, USA
| |
Collapse
|
5
|
Dhukhwa A, Al Aameri RFH, Sheth S, Mukherjea D, Rybak L, Ramkumar V. Regulator of G protein signaling 17 represents a novel target for treating cisplatin induced hearing loss. Sci Rep 2021; 11:8116. [PMID: 33854102 PMCID: PMC8046767 DOI: 10.1038/s41598-021-87387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Regulators of G protein signaling (RGS) accelerate the GTPase activity of G proteins to enable rapid termination of the signals triggered by G protein-coupled receptors (GPCRs). Activation of several GPCRs, including cannabinoid receptor 2 (CB2R) and adenosine A1 receptor (A1AR), protects against noise and drug-induced ototoxicity. One such drug, cisplatin, an anticancer agent used to treat various solid tumors, produces permanent hearing loss in experimental animals and in a high percentage of cancer patients who undergo treatments. In this study we show that cisplatin induces the expression of the RGS17 gene and increases the levels of RGS17 protein which contributes to a significant proportion of the hearing loss. Knockdown of RGS17 suppressed cisplatin-induced hearing loss in male Wistar rats, while overexpression of RGS17 alone produced hearing loss in vivo. Furthermore, RGS17 and CB2R negatively regulate the expression of each other. These data suggest that RGS17 mediates cisplatin ototoxicity by uncoupling cytoprotective GPCRs from their normal G protein interactions, thereby mitigating the otoprotective contributions of endogenous ligands of these receptors. Thus, RGS17 represents a novel mediator of cisplatin ototoxicity and a potential therapeutic target for treating hearing loss.
Collapse
Affiliation(s)
- Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Raheem F H Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, 33169, USA
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Leonard Rybak
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
6
|
Chen P, Chen F, Zhou BH. Leonurine ameliorates D-galactose-induced aging in mice through activation of the Nrf2 signalling pathway. Aging (Albany NY) 2019; 11:7339-7356. [PMID: 31527304 PMCID: PMC6782004 DOI: 10.18632/aging.101733] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/17/2018] [Indexed: 04/23/2023]
Abstract
Aging is a complex physiological phenomenon associated with oxidative stress damage. The objective of this study was to investigate the potential effects of leonurine on D-galactose-induced aging in mice and its possible mechanisms. In this study, we first tested the antioxidant activity of leonurine in vitro. A subcutaneous injection of D-galactose in mice for 8 weeks was used to establish the aging model to evaluate the protective effects of leonurine. The results showed that treatment with 150 mg·kg-1 leonurine could improve the mental condition, organic index, and behavioural impairment; significantly increase the activities of antioxidative enzymes including SOD, CAT, and T-AOC; and ameliorate the advanced glycation end product (AGE) level and histopathological injury. Furthermore, the Western blotting data revealed that leonurine supplementation noticeably modulated the suppression of the Nrf2 pathway and upregulated the downstream expression of HO-1 and NOQ1 in aging mice. Additionally, leonurine treatment activated Nrf2 nuclear translocation in both aging mice and normal young mice, and the expression levels of Nrf2 in normal young mice was higher than those in naturally aging mice. In conclusion, our findings suggest that leonurine is a promising agent for attenuating the aging process, and the underlying molecular mechanisms depend on activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fuchao Chen
- Department of Pharmacy, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, P.R. China
| | - Ben-hong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
7
|
Han B, Zhou T, Tu Y, Wang T, He Z, Li Y, Yuan J, Yang X, Sun H. Correlation between mitochondrial DNA 4977 bp deletion and presbycusis: A system review and meta-analysis. Medicine (Baltimore) 2019; 98:e16302. [PMID: 31277167 PMCID: PMC6635239 DOI: 10.1097/md.0000000000016302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Researchers have evaluated the associations between mitochondrial DNA (mtDNA) 4977 bp deletion and presbycusis. This study aimed to assess the differences of mtDNA 4977 bp deletion between presbycusis patients and controls by conducting a meta-analysis of published studies. METHODS Databases, including PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), and Wanfang Data were searched to collect case-control studies on the correlation between mitochondrial DNA 4977 bp deletion and presbycusis. The research findings of related articles were collected according to the inclusion criteria. Pooled odds ratios (ORs) and corresponding confidence intervals (CIs) were calculated. Meanwhile, subgroup analysis was performed to examine the source of heterogeneity. Revman 5.3 and Stata 12.0 software were used for data synthesis. RESULTS Eight English and Chinese studies were included in the meta-analysis, the results of which showed that mitochondrial DNA 4977 bp deletion could increase the risk of presbycusis (OR = 8.16, 95% CI: 3.51-18.99), and the difference was statistically significant (P <. 01). Analysis of the polled OR showed the incidence of mtDNA 4977 bp deletion was 8.50 times higher in Asians with presbycusis than in the control group. And the OR in the studies of occidentals was 7.24. Sample source analysis was also performed with the sample source divided by temporal bone source and other sources (hair and blood). The OR was 4.18 and 22.36 for the temporal bone and other sources, respectively. CONCLUSION Mitochondrial DNA 4977 bp deletion could increase the risk of presbycusis.
Collapse
Affiliation(s)
- Baoai Han
- Departments of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Tao Zhou
- Departments of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Yaqin Tu
- Departments of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| | - Zuhong He
- Departments of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Yongqin Li
- Departments of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Jie Yuan
- Departments of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Xiuping Yang
- Departments of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Haiying Sun
- Departments of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
8
|
Li D, Ni S, Miao KS, Zhuang C. PI3K/Akt and caspase pathways mediate oxidative stress-induced chondrocyte apoptosis. Cell Stress Chaperones 2019; 24:195-202. [PMID: 30543056 PMCID: PMC6363634 DOI: 10.1007/s12192-018-0956-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022] Open
Abstract
Chondrocyte apoptosis is closely related to the development and progression of osteoarthritis (OA); however, the underlying mechanisms remain enigmatic. Previous studies have confirmed that cell apoptosis is one of the main pathological alterations during oxidative stress, and chondrocyte apoptosis induced by oxidative stress plays an important role in the development of OA. Rat chondrocytes exposed to hydrogen peroxide (H2O2) were used as the experimental oxidative stress model. We assessed cell viability, cell apoptosis, levels of intracellular reactive oxygen species (ROS), nitric oxide (NO) production, gene relative expression level of inducible nitric oxide synthase (iNOS), and expressions of iNOS, PI3K, phospho-Akt, caspase-9, and caspase-3. With the rising of intracellular ROS and increasing iNOS synthesis, producing a large amount of NO in chondrocytes, H2O2 decreased the cell viability and induced cell apoptosis of chondrocytes. Furthermore, the levels of caspase-9 and caspase-3 protein expression were significantly elevated as well as the level of p-Akt protein expression when induced by oxidative stress. These findings suggest that oxidative stress-induced chondrocyte apoptosis occurred via activating both PI3K/Akt and caspase pathways in the early stage in these processes.
Collapse
Affiliation(s)
- Dong Li
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Su Ni
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Kai-Song Miao
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Chao Zhuang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China.
| |
Collapse
|
9
|
Wang Q, Xu Y, Gao Y, Wang Q. Actinidia chinensis planch polysaccharide protects against hypoxia‑induced apoptosis of cardiomyocytes in vitro. Mol Med Rep 2018; 18:193-201. [PMID: 29750308 PMCID: PMC6059669 DOI: 10.3892/mmr.2018.8953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiac hypertrophy is frequently accompanied by ischemic heart disease. Actinidia chinensis planch polysaccharide (ACP) is the main active compound from Actinidia chinensis planch. In the present study, a cardiac hypertrophy model was produced by treating cells with Angiotensin II (Ang II), which was used to investigate whether ACP protected against cardiac hypertrophy in vitro. It was demonstrated that ACP alleviated Ang II‑induced cardiac hypertrophy. In addition, pretreatment with ACP prior to hypoxic culture reduced the disruption of the mitochondrial membrane potential as investigated by flow cytometry. Cell Counting kit‑8 analysis demonstrated that ACP maintained the cell viability of cardiomyocytes. The flow cytometric analysis revealed that ACP inhibited hypoxia‑induced apoptosis in cardiomyocytes treated with Ang II. Additionally, reverse transcription‑polymerase chain reaction and western blotting assays demonstrated that ACP decreased the expression of apoptosis‑associated genes including apoptosis‑inducing factor mitochondria associated 1, the cysteinyl aspartate specific proteinases caspases‑3/8/9, and cleaved caspases‑3/8/9. The results of the present study also demonstrated that ACP inhibited the activation of the extracellular signal‑regulated kinase 1/2 (ERK1/2) and phosphoinositide 3‑kinase/protein kinase B (PI3K/AKT) signaling pathways. Furthermore, the specific activation of ERK1/2 and PI3K/AKT reversed the apoptotic‑inhibitory effect of ACP. In conclusion, the protective effects of ACP against hypoxia‑induced apoptosis may depend on depressing the ERK1/2 and PI3K/AKT signaling pathways in cardiomyocytes treated with Ang II.
Collapse
Affiliation(s)
- Qiang Wang
- Radiology Department, The 2nd Traditional Chinese Medicine Hospital of Shenyang, Shenyang, Liaoning 110101, P.R. China
| | - Yunfa Xu
- Radiology Department, The 2nd Traditional Chinese Medicine Hospital of Shenyang, Shenyang, Liaoning 110101, P.R. China
| | - Ying Gao
- Radiology Department, The 2nd Traditional Chinese Medicine Hospital of Shenyang, Shenyang, Liaoning 110101, P.R. China
| | - Qi Wang
- Radiology Department, The 2nd Traditional Chinese Medicine Hospital of Shenyang, Shenyang, Liaoning 110101, P.R. China
| |
Collapse
|
10
|
Tavanai E, Mohammadkhani G, Farahani S, Jalaie S. Protective Effects of Silymarin Against Age-Related Hearing Loss in an Aging Rat Model. Indian J Otolaryngol Head Neck Surg 2018; 71:1248-1257. [PMID: 31750160 DOI: 10.1007/s12070-018-1294-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/07/2018] [Indexed: 01/21/2023] Open
Abstract
Age-related hearing loss (ARHL) is one of the most common chronic degenerative disorders. Several studies have indicated that supplementation with some antioxidants can slow down the progression of ARHL. Despite several lines of evidence about the potent antioxidant and anti-aging effects of silymarin, its protective effect against ARHL has not evaluated yet. The aim of the current study was to investigate the effects of silymarin in prevention of ARHL in a d-Galactose-induced aging rat model for the first time. 45 male wistar rats aged 3-month old were divided into 5 groups: group 1, 2 and 3 received 500 mg/kg/day d-Gal plus 100, 200 and 300 mg/kg/day silymarin respectively for 8 weeks, placebo group received 500 mg/kg/day d-Gal plus propylene glycol as placebo, and control group received normal saline during this period of time. Auditory brainstem responses were measured at several frequencies (4, 6, 8, 12 and 16 kHz) before and after the intervention. Placebo group and group 3 showed significant ABR threshold increase across frequencies of 4, 6, 16 kHz compared with the other groups (P < 0.05). However, rats treated with silymarin 100 and 200 mg/kg/day plus d-Gal did not show any significant ABR threshold shifts. Similarly, ABR amplitude of P2 at 4, 8 kHz and P1, P4 at 4 kHz in the placebo group and group 3 were decreased significantly compared with other groups (P < 0.05). However, no significant differences are found in ABR absolute and inter-peak latencies between groups (P > 0.05). The findings indicates that silymarin with doses of 100 and 200 mg/kg/day has protective effect against ARHL and it can be supplemented into the diet of older people to slow down the progression of age-related hearing loss.
Collapse
Affiliation(s)
- Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Saeid Farahani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Shohreh Jalaie
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| |
Collapse
|
11
|
Tong Q, Zhang M, Cao X, Xu S, Wang D, Zhao Y. Expression and activation of Daphnia pulex Caspase-3 are involved in regulation of aging. Gene 2017; 634:37-46. [DOI: 10.1016/j.gene.2017.08.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022]
|
12
|
Zhou YZ, Zhao FF, Gao L, Du GH, Zhang X, Qin XM. Licorice extract attenuates brain aging of d-galactose induced rats through inhibition of oxidative stress and attenuation of neuronal apoptosis. RSC Adv 2017. [DOI: 10.1039/c7ra07110h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A potential protective mechanism of licorice for d-galactose induced aging in rats.
Collapse
Affiliation(s)
- Yu-Zhi Zhou
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
| | - Fan-Fan Zhao
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
- College of Chemistry and Chemical Engineering
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
- Institute of Materia Medica
| | - Xiang Zhang
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
- Department of Chemistry
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|