1
|
Jackson EK, Gillespie DG, Mi Z, Birder LA, Tofovic SP. 8-Aminoguanine and its actions in the metabolic syndrome. Sci Rep 2024; 14:22652. [PMID: 39349636 PMCID: PMC11442972 DOI: 10.1038/s41598-024-73159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The metabolic syndrome is characterized by obesity, insulin resistance, dyslipidemia and hypertension and predisposes to cardiorenal injury. Here, we tested our hypothesis that 8-aminoguanine, an endogenous purine, exerts beneficial effects in Zucker Diabetic-Sprague Dawley (ZDSD) rats, a preclinical model of the metabolic syndrome. ZDSD rats were instrumented for blood pressure radiotelemetry and randomized to vehicle or 8-aminoguanine (10 mg/kg/day, po). The protocol was divided into four phases: Phase 1: 17 days of tap water/normal diet; Phase 2: 30 days of 1% saline/normal diet; Phase 3: 28 days of 1% saline/diabetogenic diet; Phase 4: acute/terminal measurements. 8-Aminoguanine: (1) decreased mean arterial blood pressure (P = 0.0004; 119.5 ± 1.0 (vehicle) versus 116.3 ± 1.0 (treated) mmHg) throughout all three phases of the radiotelemetry study; (2) rebalanced the purine metabolome away from hypoxanthine (pro-inflammatory) and towards inosine (anti-inflammatory); (3) reduced by 71% circulating IL-1β, a cytokine that contributes to hypertension-induced adverse cardiovascular events and type 2 diabetes; (4) attenuated renovascular responses to angiotensin II; (5) improved cardiac and renal histopathology; (6) attenuated diet-induced polydipsia/polyuria; and (7) reduced HbA1c. In the metabolic syndrome, 8-aminoguanine lowers blood pressure, improves diabetes and reduces organ damage, likely by rebalancing the purine metabolome leading to reductions in injurious cytokines such as IL-1β.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
- Department of Pharmacology and Chemical Biology, 100 Technology Drive, Room 514, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Lori A Birder
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Stevan P Tofovic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| |
Collapse
|
2
|
Liu L, Shi Z, Ji X, Zhang W, Luan J, Zahr T, Qiang L. Adipokines, adiposity, and atherosclerosis. Cell Mol Life Sci 2022; 79:272. [PMID: 35503385 PMCID: PMC11073100 DOI: 10.1007/s00018-022-04286-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/11/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022]
Abstract
Characterized by a surplus of whole-body adiposity, obesity is strongly associated with the prognosis of atherosclerosis, a hallmark of coronary artery disease (CAD) and the major contributor to cardiovascular disease (CVD) mortality. Adipose tissue serves a primary role as a lipid-storage organ, secreting cytokines known as adipokines that affect whole-body metabolism, inflammation, and endocrine functions. Emerging evidence suggests that adipokines can play important roles in atherosclerosis development, progression, as well as regression. Here, we review the versatile functions of various adipokines in atherosclerosis and divide these respective functions into three major groups: protective, deteriorative, and undefined. The protective adipokines represented here are adiponectin, fibroblast growth factor 21 (FGF-21), C1q tumor necrosis factor-related protein 9 (CTRP9), and progranulin, while the deteriorative adipokines listed include leptin, chemerin, resistin, Interleukin- 6 (IL-6), and more, with additional adipokines that have unclear roles denoted as undefined adipokines. Comprehensively categorizing adipokines in the context of atherosclerosis can help elucidate the various pathways involved and potentially pave novel therapeutic approaches to treat CVDs.
Collapse
Affiliation(s)
- Longhua Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China.
| | - Zunhan Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Xiaohui Ji
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Wenqian Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Jinwen Luan
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Tarik Zahr
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Li Qiang
- Department of Pathology and Cellular Biology and Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Wang Y, Zhao Y, Ye T, Yang L, Shen Y, Li H. Ferroptosis Signaling and Regulators in Atherosclerosis. Front Cell Dev Biol 2022; 9:809457. [PMID: 34977044 PMCID: PMC8716792 DOI: 10.3389/fcell.2021.809457] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis (AS) is a major cause of cardiovascular diseases such as coronary heart disease, heart failure and stroke. Abnormal lipid metabolism, oxidative stress and inflammation are the main features of AS. Ferroptosis is an iron-driven programmed cell death characterized by lipid peroxidation, which have been proved to participate in the development and progression of AS by different signal pathways. NRF2-Keap1 pathway decreases ferroptosis associated with AS by maintaining cellular iron homeostasis, increasing the production glutathione, GPX4 and NADPH. The p53 plays different roles in ferroptosis at different stages of AS in a transcription-dependent and transcription- independent manner. The Hippo pathway is involved in progression of AS, which has been proved the activation of ferroptosis. Other transcription factors, such as ATF3, ATF4, STAT3, also involved in the occurrence of ferroptosis and AS. Certain proteins or enzymes also have a regulatory role in AS and ferroptosis. In this paper, we review the mechanism of ferroptosis and its important role in AS in an attempt to find a new relationship between ferroptosis and AS and provide new ideas for the future treatment of AS.
Collapse
Affiliation(s)
- Yuqin Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yajie Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ting Ye
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, China
| | - Yanna Shen
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Wang T, Xie L, Bi H, Li Y, Li Y, Zhao J. Urantide alleviates the symptoms of atherosclerotic rats in vivo and in vitro models through the JAK2/STAT3 signaling pathway. Eur J Pharmacol 2021; 902:174037. [PMID: 33891969 DOI: 10.1016/j.ejphar.2021.174037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is the leading cause of human death, and its occurrence and development are related to the urotensin II (UII) and UII receptor (UT) system and the biological function of vascular smooth muscle cells (VSMCs). During atherosclerosis, impaired biological function VSMCs may promote atherosclerotic plaque formation. The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway is an important mediator of signal transduction; however, the role of this signaling pathway in atherosclerosis and VSMCs remains unknown. This study aimed to investigate the effects of urantide on the JAK2/STAT3 signaling pathway in atherosclerosis. We examined the effect of urantide on the UII/UT system and the JAK2/STAT3 signaling pathway in a high fat diet induced atherosclerosis rat model and studied the effect and mechanism of urantide on the phenotypic transformation of VSMCs. We found that the UII/UT system and JAK2/STAT3 signaling pathway were highly activated in the thoracic aorta in atherosclerotic rats and in ox-LDL- and UII-induced VSMCs. After urantide treatment, the pathological changes in atherosclerotic rats were effectively improved, and the activities of the UII/UT system and JAK2/STAT3 signaling pathway were inhibited. Moreover, urantide effectively inhibited proliferation and migration and reversed the phenotypic transformation of VSMCs. These results demonstrated that urantide may control the JAK2/STAT3 signaling pathway by antagonizing the UII/UT system, thereby maintaining the biological function of VSMCs and potentially preventing and curing atherosclerosis.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/pathology
- Atherosclerosis/chemically induced
- Atherosclerosis/drug therapy
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Janus Kinase 2/genetics
- Janus Kinase 2/metabolism
- Lipoproteins, LDL/toxicity
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Peptide Fragments/pharmacology
- Peptide Fragments/therapeutic use
- Primary Cell Culture
- Rats, Wistar
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Urotensins/antagonists & inhibitors
- Urotensins/metabolism
- Urotensins/pharmacology
- Urotensins/therapeutic use
- Urotensins/toxicity
- Rats
Collapse
Affiliation(s)
- Tu Wang
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Lide Xie
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Hongdong Bi
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Ying Li
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Ying Li
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Juan Zhao
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei, 067000, China.
| |
Collapse
|
5
|
Rapp N, Evenepoel P, Stenvinkel P, Schurgers L. Uremic Toxins and Vascular Calcification-Missing the Forest for All the Trees. Toxins (Basel) 2020; 12:E624. [PMID: 33003628 PMCID: PMC7599869 DOI: 10.3390/toxins12100624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
The cardiorenal syndrome relates to the detrimental interplay between the vascular system and the kidney. The uremic milieu induced by reduced kidney function alters the phenotype of vascular smooth muscle cells (VSMC) and promotes vascular calcification, a condition which is strongly linked to cardiovascular morbidity and mortality. Biological mechanisms involved include generation of reactive oxygen species, inflammation and accelerated senescence. A better understanding of the vasotoxic effects of uremic retention molecules may reveal novel avenues to reduce vascular calcification in CKD. The present review aims to present a state of the art on the role of uremic toxins in pathogenesis of vascular calcification. Evidence, so far, is fragmentary and limited with only a few uremic toxins being investigated, often by a single group of investigators. Experimental heterogeneity furthermore hampers comparison. There is a clear need for a concerted action harmonizing and standardizing experimental protocols and combining efforts of basic and clinical researchers to solve the complex puzzle of uremic vascular calcification.
Collapse
MESH Headings
- Animals
- Cardio-Renal Syndrome/metabolism
- Cardio-Renal Syndrome/pathology
- Cardio-Renal Syndrome/physiopathology
- Cardio-Renal Syndrome/therapy
- Humans
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Prognosis
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/therapy
- Toxins, Biological/metabolism
- Uremia/metabolism
- Uremia/pathology
- Uremia/physiopathology
- Uremia/therapy
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/physiopathology
- Vascular Calcification/therapy
Collapse
Affiliation(s)
- Nikolas Rapp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Pieter Evenepoel
- Laboratory of Nephrology, KU Leuven Department of Microbiology and Immunology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Peter Stenvinkel
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, 141 86 Stockholm, Sweden;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
6
|
Song HT, Cui Y, Zhang LL, Cao G, Li L, Li G, Jia XJ. Ruxolitinib attenuates intimal hyperplasia via inhibiting JAK2/STAT3 signaling pathway activation induced by PDGF-BB in vascular smooth muscle cells. Microvasc Res 2020; 132:104060. [PMID: 32818511 DOI: 10.1016/j.mvr.2020.104060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cardiovascular diseases are associated with proliferation and phenotypic switch. Platelet-derived growth factor-BB (PDGF-BB) is a major initiating factor for proliferative vascular diseases, such as neointimal lesion formation, restenosis after angioplasty, and atherosclerosis. Ruxolitinib, a potent Janus kinase (JAK) 1 and 2 inhibitor, has been reported to significantly block the proliferation-related signaling pathway of JAK2/signal transducers and activators of transcription 3 (STAT3) and harbor a broad spectrum of anti-cancer activities, including proliferation inhibition, apoptosis induction, and anti-inflammation. However, the role of ruxolitinib in regulating PDGF-BB-induced VSMC proliferation remains to be elucidated. Thus, this study investigates the role of ruxolitinib in regulating PDGF-BB-induced VSMC proliferation and its underlying mechanisms. METHODS In vivo, the medial thickness of the carotid artery was evaluated using a mouse carotid ligation model, ruxolitinib was administered orally to the mice every other day, and the mice were euthanized on day 28 to evaluate the therapeutic effects of ruxolitinib. Cell proliferation markers were measured using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting. In vitro, VSMCs were treated with ruxolitinib with or without PDGF-BB at an indicated time and concentration. Cell proliferation and apoptosis were measured using Cell Counting Kit-8 assay, MTS assays and flow cytometry. The JAK2/STAT3 signaling pathway involved in the effects of ruxolitinib on VSMCs was detected by western blotting with the specific pathway inhibitor AG490. RESULTS In vivo, ruxolitinib significantly decreased the ratio-of-intima ratio (I/M ratio) by inhibiting the expression of PCNA and cyclinD1 (p <0.05). In vitro, ruxolitinib inhibited PDGF-BB-induced VSMC proliferation compared with the PDGF-BB treatment group (p <0.05). In addition, ruxolitinib inhibited the PDGF-BB-induced activation of the JAK2/STAT3 signaling pathway and decreased the expression of proliferation related-proteins cyclinD1 and PCNA in VSMCs (p <0.05). CONCLUSION Our findings suggest that ruxolitinib inhibits VSMC proliferation in vivo and in vitro by suppressing the activation of the JAK2/STAT3 signaling pathway. Therefore, ruxolitinib has a therapeutic potential for proliferative vascular diseases.
Collapse
Affiliation(s)
- Hong-Tao Song
- Department of Vascular Surgery, The Second Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yuan Cui
- Department of Internal Medicine, Affiliated Hospital of Hebei Academy of Chinese Medicine, Shijiazhuang, China
| | - Li-Li Zhang
- Department of Endocrine, The Second Hospital of Shijiazhuang, Shijiazhuang, China
| | - Guang Cao
- Department of Orthopedic Surgery, The Second Hospital of Shijiazhuang, Shijiazhuang, China
| | - Lin Li
- Department of Administrative Office, District Center for Disease Control and Prevention of Jizhou, Tianjin, China
| | - Gang Li
- Department of Vascular Surgery, The Second Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xin-Ju Jia
- Department of Endocrine, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
7
|
Guan X, Yang X, Wang C, Bi R. In silico analysis of the molecular regulatory networks in peripheral arterial occlusive disease. Medicine (Baltimore) 2020; 99:e20404. [PMID: 32481342 PMCID: PMC7250035 DOI: 10.1097/md.0000000000020404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Peripheral arterial occlusive disease (PAOD) is a global public health concern that decreases the quality of life of the patients and can lead to disabilities and death. The aim of this study was to identify the genes and pathways associated with PAOD pathogenesis, and the potential therapeutic targets. METHODS Differentially expressed genes (DEGs) and miRNAs related to PAOD were extracted from the GSE57691 dataset and through text mining. Additionally, bioinformatics analysis was applied to explore gene ontology, pathways and protein-protein interaction of those DEGs. The potential miRNAs targeting the DEGs and the transcription factors (TFs) regulating miRNAs were predicted by multiple different databases. RESULTS A total of 59 DEGs were identified, which were significantly enriched in the inflammatory response, immune response, chemokine-mediated signaling pathway and JAK-STAT signaling pathway. Thirteen genes including IL6, CXCL12, IL1B, and STAT3 were hub genes in protein-protein interaction network. In addition, 513 miRNA-target gene pairs were identified, of which CXCL12 and PTPN11 were the potential targets of miRNA-143, and IL1B of miRNA-21. STAT3 was differentially expressed and regulated 27 potential target miRNAs including miRNA-143 and miRNA-21 in TF-miRNA regulatory network. CONCLUSION In summary, inflammation, immune response and STAT3-mediated miRNA-target genes axis play an important role in PAOD development and progression.
Collapse
Affiliation(s)
| | - Xiaoyan Yang
- Geriatric Department, First People's Hospital of Jingmen City, Jingmen, Hubei Province
| | - Chunming Wang
- Department of Intervention, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | | |
Collapse
|
8
|
Xu S, Ni H, Chen H, Dai Q. The interaction between STAT3 and nAChRα1 interferes with nicotine-induced atherosclerosis via Akt/mTOR signaling cascade. Aging (Albany NY) 2019; 11:8120-8138. [PMID: 31612866 PMCID: PMC6814582 DOI: 10.18632/aging.102296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/14/2019] [Indexed: 12/22/2022]
Abstract
During atherosclerosis development, nicotine and its α1 nicotinic acetylcholine receptors (nAChRα1) activate atherogenic inflammation. However, the effect of signal transducer and activator of transcription 3 (STAT3)-related inflammatory pathways in nicotine-induced atherosclerosis has been poorly studied. This study investigated the transcriptional mechanism of STAT3 in nicotine/nAChRα1-induced atherosclerosis. In vivo, ApoE-/- mice were used to establish an atherosclerotic model. Plaque area and composition were assessed by oil red O staining and immunohistochemistry. In vitro, vascular smooth muscle cells and macrophages were used to investigate cell migration, proliferation, inflammation and related signaling pathways by Transwell migration assay, EdU assay, immunofluorescence, western blotting, coimmunoprecipitation and chromatin immunoprecipitation. nAChRα1 knockdown significantly decreases the nicotine-induced upregulation of p-STAT3, p-Akt and p-mTOR in vitro, while nAChRα1 overexpression has the opposite effects. The inhibition of STAT3 attenuated nicotine-induced atherosclerosis, by reducing the proliferation and migration of vascular smooth muscle cells and inflammation in macrophages. Moreover, there is a direct interaction between STAT3 and nAChRα1 that modulates STAT3 nuclear translocation and its binding to the Akt promoter region upon nicotine exposure. Taken together, STAT3 and nAChRα1 blockade attenuates nicotine-induced atherosclerosis by reducing the migration and proliferation of vascular smooth muscle cells and inflammation in macrophages via the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Shuang Xu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Huaner Ni
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Hangwei Chen
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Qiuyan Dai
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
9
|
Soni UK, Chadchan SB, Kumar V, Ubba V, Khan MTA, Vinod BSV, Konwar R, Bora HK, Rath SK, Sharma S, Jha RK. A high level of TGF-B1 promotes endometriosis development via cell migration, adhesiveness, colonization, and invasiveness†. Biol Reprod 2018; 100:917-938. [DOI: 10.1093/biolre/ioy242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/29/2017] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Upendra Kumar Soni
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Vijay Kumar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vaibhave Ubba
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | - Rituraj Konwar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Himangsu Kousik Bora
- Animal Laboratory Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Srikanta Kumar Rath
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sharad Sharma
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajesh Kumar Jha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
10
|
Liu K, Fang C, Shen Y, Liu Z, Zhang M, Ma B, Pang X. Hypoxia-inducible factor 1a induces phenotype switch of human aortic vascular smooth muscle cell through PI3K/AKT/AEG-1 signaling. Oncotarget 2018; 8:33343-33352. [PMID: 28415624 PMCID: PMC5464872 DOI: 10.18632/oncotarget.16448] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/09/2017] [Indexed: 12/23/2022] Open
Abstract
To date, hypoxia-inducible factor 1a (HIF-1a) and astrocyte elevated gene-1 (AEG-1) have been involved in the proliferation, migration and morphological changes of vascular smooth muscle cells. However, the potential relationship of HIF-1a-AEG-1 pathway in human aortic smooth muscle cell (HASMC) has not been reported. In the present study, in-vitro assays were utilized to explore the potential impact of HIF-1a-AEG-1 signaling on HASMC phenotype. Here, we found that HIF-1a expression was up-regulated in the media of thoracic aortic dissection tissues as compared with normal aortic tissues, and was associated with increased apoptotic SMCs and decreased AEG-1 expression. Mechanically, hypoxia promoted the expression of HIF-1a by PI3K-AKT pathway in HASMCs; HIF-1a further suppressed the expressions of AEG-1, a-SMA and SM22a, and promoted osteopontin (OPN) expression. Functionally, HIF-1a inhibited the proliferation and migration of HASMCs. However, si-HIF-1a or Akt inhibitor abrogated HIF-1a-mediated related expressions and biological effects above. In conclusion, HIF-1a induces HASMC phenotype switch, and closely related to PI3K/AKT and AEG-1 signaling, which may provide new avenues for the prevention and treatment of aortic dissection diseases.
Collapse
Affiliation(s)
- Kai Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Changcun Fang
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Yuwen Shen
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Zhengqin Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Min Zhang
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Bingbing Ma
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Xinyan Pang
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
11
|
Lu D, Wang W, Xia L, Xia P, Yan Y. Gene expression profiling reveals heterogeneity of perivascular adipose tissues surrounding coronary and internal thoracic arteries. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1075-1082. [PMID: 29121163 DOI: 10.1093/abbs/gmx113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/30/2017] [Indexed: 01/04/2023] Open
Abstract
The internal thoracic artery (ITA) that differs from coronary artery (CA), rarely develops atherosclerosis. Understanding the mechanism underlying such a difference will help to pave a new way to the prevention and treatment of the disease. We hypothesize herein that the difference in susceptibility to atherosclerosis between CA and ITA is attributable to the heterogeneity of perivascular adipose tissues (PVATs) surrounding these two kinds of arteries, i.e. PVAT-CA and PVAT-ITA. We isolated PVAT from eight patients of coronary heart disease (CHD) and four non-CHD patients. Gene expression patterns were analyzed by using Agilent whole gene expression profile chips. By comparison between PVAT-CA and PVAT-ITA, we identified 2053 differentially expressed genes, of which 1042 were up-regulated and 1011 were down-regulated, respectively, in CHD group. KEGG pathway and gene ontology (GO) analysis revealed that those differentially expressed genes related to inflammation, lipid metabolism and myocardial processes were particularly noted in the CHD group, but not in non-CHD. Several selected genes, including interleukin-1β (IL-1β), interleukin-6 (IL-6), Toll-like receptor 2 (TLR2), Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP), serum amyloid A2 (SAA2), and Leptin were validated by real-time PCR analysis. The results showed that the expression levels of IL-1β, IL-6, and Leptin were significantly higher in PVAT-CA than in PVAT-ITA (P = 0.016, 0.021, and 0.018) in CHD patients. Levels of TLR2, TIRAP, and SAA2 expression were also higher in PVAT-CA, however no significant difference was observed (P = 0.054, 0.092, and 0.058). In conclusion, our findings demonstrate differential gene expression patterns between PVAT-CA and PVAT-ITA, revealing a high heterogeneity in PVAT. Particularly, those genes related to inflammation, lipid metabolism and myocardial processes are differentially expressed in PVAT-CA and PVAT-ITA in CHD patients, suggesting an important role of PVAT in the development of coronary atherosclerosis.
Collapse
Affiliation(s)
- Danbo Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Limin Xia
- Department of Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pu Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Yan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Huhtinen A, Hongisto V, Laiho A, Löyttyniemi E, Pijnenburg D, Scheinin M. Gene expression profiles and signaling mechanisms in α 2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC SYSTEMS BIOLOGY 2017; 11:65. [PMID: 28659168 PMCID: PMC5490158 DOI: 10.1186/s12918-017-0439-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND α2-adrenoceptors are important regulators of vascular tone and blood pressure. Regulation of cell proliferation is a less well investigated consequence of α2-adrenoceptor activation. We have previously shown that α2B-adrenoceptor activation stimulates proliferation of vascular smooth muscle cells (VSMCs). This may be important for blood vessel development and plasticity and for the pathology and therapeutics of cardiovascular disorders. The underlying cellular mechanisms have remained mostly unknown. This study explored pathways of regulation of gene expression and intracellular signaling related to α2B-adrenoceptor-evoked VSMC proliferation. RESULTS The cellular mechanisms and signaling pathways of α2B-adrenoceptor-evoked proliferation of VSMCs are complex and include redundancy. Functional enrichment analysis and pathway analysis identified differentially expressed genes associated with α2B-adrenoceptor-regulated VSMC proliferation. They included the upregulated genes Egr1, F3, Ptgs2 and Serpine1 and the downregulated genes Cx3cl1, Cav1, Rhoa, Nppb and Prrx1. The most highly upregulated gene, Lypd8, represents a novel finding in the VSMC context. Inhibitor library screening and kinase activity profiling were applied to identify kinases in the involved signaling pathways. Putative upstream kinases identified by two different screens included PKC, Raf-1, Src, the MAP kinases p38 and JNK and the receptor tyrosine kinases EGFR and HGF/HGFR. As a novel finding, the Src family kinase Lyn was also identified as a putative upstream kinase. CONCLUSIONS α2B-adrenoceptors may mediate their pro-proliferative effects in VSMCs by promoting the activity of bFGF and PDGF and the growth factor receptors EGFR, HGFR and VEGFR-1/2. The Src family kinase Lyn was also identified as a putative upstream kinase. Lyn is known to be expressed in VSMCs and has been identified as an important regulator of GPCR trafficking and GPCR effects on cell proliferation. Identified Ser/Thr kinases included several PKC isoforms and the β-adrenoceptor kinases 1 and 2. Cross-talk between the signaling mechanisms involved in α2B-adrenoceptor-evoked VSMC proliferation thus appears to involve PKC activation, subsequent changes in gene expression, transactivation of EGFR, and modulation of kinase activities and growth factor-mediated signaling. While many of the identified individual signals were relatively small in terms of effect size, many of them were validated by combining pathway analysis and our integrated screening approach.
Collapse
Affiliation(s)
- Anna Huhtinen
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Vesa Hongisto
- Toxicology Division, Misvik Biology Oy, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Dirk Pijnenburg
- PamGene International BV, Wolvenhoek 10, 5211HH s’Hertogenbosch, The Netherlands
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
13
|
Li Y, Zhang X, Gao J, Xiao H, Xu M. Increased telocytes involved in the proliferation of vascular smooth muscle cells in rat carotid artery balloon injury. SCIENCE CHINA-LIFE SCIENCES 2016; 59:678-85. [PMID: 27270579 DOI: 10.1007/s11427-016-5075-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/27/2016] [Indexed: 01/23/2023]
Abstract
Telocytes (TCs) are a novel type of interstitial cells that are thought to be involved in tissue regeneration and repair. However, the possible roles of TCs in vascular diseases remain unclear. In this study, we used a rat model of carotid artery balloon injury (CABI) to study the changes and potential roles of vascular TCs after vascular injury. Transmission electron microscopy (TEM) and CD34/vimentin immunolabeling were used to identify and quantify TCs in normal and injured carotid arteries. Quantitative immunofluorescence analysis revealed that, compared with the sham group, the number of TCs in the CABI group increased from 7.2±1.0 to an average of 20.4±1.8 per 1-mm(2) vascular area. The expression level of miR-24 in TCs was three times higher than in vascular smooth muscle cells (VSMCs). The percentage of VSMCs in S phase and G2/M phase increased by approximately 5% when VSMCs were incubated with the supernatant of TCs. The antagomir of miR-24 in TCs reduced the ratio of VSMCs in S phase and G2/M phase. This study illuminates the function of TCs in the proliferation of VSMCs.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health and Beijing Key Laboratory of cardiovascular Receptors Research, Beijing, 100191, China
| | - Xiuxiu Zhang
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health and Beijing Key Laboratory of cardiovascular Receptors Research, Beijing, 100191, China
| | - Juan Gao
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health and Beijing Key Laboratory of cardiovascular Receptors Research, Beijing, 100191, China
| | - Han Xiao
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health and Beijing Key Laboratory of cardiovascular Receptors Research, Beijing, 100191, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health and Beijing Key Laboratory of cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|