1
|
Kulesza M, Kicman A, Motyka J, Guszczyn T, Ławicki S. Importance of Metalloproteinase Enzyme Group in Selected Skeletal System Diseases. Int J Mol Sci 2023; 24:17139. [PMID: 38138968 PMCID: PMC10743273 DOI: 10.3390/ijms242417139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Bone tissue is a dynamic structure that is involved in maintaining the homeostasis of the body due to its multidirectional functions, such as its protective, endocrine, or immunological role. Specialized cells and the extracellular matrix (ECM) are responsible for the remodeling of specific bone structures, which alters the biomechanical properties of the tissue. Imbalances in bone-forming elements lead to the formation and progression of bone diseases. The most important family of enzymes responsible for bone ECM remodeling are matrix metalloproteinases (MMPs)-enzymes physiologically present in the body's tissues and cells. The activity of MMPs is maintained in a state of balance; disruption of their activity is associated with the progression of many groups of diseases, including those of the skeletal system. This review summarizes the current understanding of the role of MMPs in bone physiology and the pathophysiology of bone tissue and describes their role in specific skeletal disorders. Additionally, this work collects data on the potential of MMPs as bio-markers for specific skeletal diseases.
Collapse
Affiliation(s)
- Monika Kulesza
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15267 Bialystok, Poland;
| | - Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| | - Tomasz Guszczyn
- Department of Pediatric Orthopaedics and Traumatology, Medical University of Bialystok, 15274 Bialystok, Poland;
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| |
Collapse
|
2
|
Panez-Toro I, Heymann D, Gouin F, Amiaud J, Heymann MF, Córdova LA. Roles of inflammatory cell infiltrate in periprosthetic osteolysis. Front Immunol 2023; 14:1310262. [PMID: 38106424 PMCID: PMC10722268 DOI: 10.3389/fimmu.2023.1310262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Classically, particle-induced periprosthetic osteolysis at the implant-bone interface has explained the aseptic loosening of joint replacement. This response is preceded by triggering both the innate and acquired immune response with subsequent activation of osteoclasts, the bone-resorbing cells. Although particle-induced periprosthetic osteolysis has been considered a foreign body chronic inflammation mediated by myelomonocytic-derived cells, current reports describe wide heterogeneous inflammatory cells infiltrating the periprosthetic tissues. This review aims to discuss the role of those non-myelomonocytic cells in periprosthetic tissues exposed to wear particles by showing original data. Specifically, we discuss the role of T cells (CD3+, CD4+, and CD8+) and B cells (CD20+) coexisting with CD68+/TRAP- multinucleated giant cells associated with both polyethylene and metallic particles infiltrating retrieved periprosthetic membranes. This review contributes valuable insight to support the complex cell and molecular mechanisms behind the aseptic loosening theories of orthopedic implants.
Collapse
Affiliation(s)
- Isidora Panez-Toro
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Independencia, Santiago, Chile
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Dominique Heymann
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
- Nantes Université, Laboratory of Histology and Embryology, Medical School, Nantes, France
- The University of Sheffield, Dept of Oncology and Metabolism, Sheffield, United Kingdom
| | - François Gouin
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France
| | - Jérôme Amiaud
- Nantes Université, Laboratory of Histology and Embryology, Medical School, Nantes, France
| | - Marie-Françoise Heymann
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Independencia, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Oral and Maxillofacial Surgery, Clínica MEDS, Santiago, Chile
| |
Collapse
|
3
|
Xie Y, Peng Y, Fu G, Jin J, Wang S, Li M, Zheng Q, Lyu FJ, Deng Z, Ma Y. Nano wear particles and the periprosthetic microenvironment in aseptic loosening induced osteolysis following joint arthroplasty. Front Cell Infect Microbiol 2023; 13:1275086. [PMID: 37854857 PMCID: PMC10579613 DOI: 10.3389/fcimb.2023.1275086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
Joint arthroplasty is an option for end-stage septic arthritis due to joint infection after effective control of infection. However, complications such as osteolysis and aseptic loosening can arise afterwards due to wear and tear caused by high joint activity after surgery, necessitating joint revision. Some studies on tissue pathology after prosthesis implantation have identified various cell populations involved in the process. However, these studies have often overlooked the complexity of the altered periprosthetic microenvironment, especially the role of nano wear particles in the etiology of osteolysis and aseptic loosening. To address this gap, we propose the concept of the "prosthetic microenvironment". In this perspective, we first summarize the histological changes in the periprosthetic tissue from prosthetic implantation to aseptic loosening, then analyze the cellular components in the periprosthetic microenvironment post prosthetic implantation. We further elucidate the interactions among cells within periprosthetic tissues, and display the impact of wear particles on the disturbed periprosthetic microenvironments. Moreover, we explore the origins of disease states arising from imbalances in the homeostasis of the periprosthetic microenvironment. The aim of this review is to summarize the role of relevant factors in the microenvironment of the periprosthetic tissues, in an attempt to contribute to the development of innovative treatments to manage this common complication of joint replacement surgery.
Collapse
Affiliation(s)
- Yu Xie
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yujie Peng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Guangtao Fu
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiewen Jin
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Mengyuan Li
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Feng-Juan Lyu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Yang Y, Sheng D, Shi J, Xiao L, Wang Z, Yin Z, Zhuang Q, Chen S, Li Y, Gu Y, Zhu J, Geng D, Wang Z. Avicularin alleviates osteoporosis-induced implant loosening by attenuating macrophage M1 polarization via its inhibitory effect on the activation of NF-κB. Biomed Pharmacother 2023; 158:114113. [PMID: 36516692 DOI: 10.1016/j.biopha.2022.114113] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Currently, the failure rate for internal fixation in patients with osteoporosis can be reduced by antiosteoporosis therapy alone. However, the administration of anti-osteoporotic drugs is not a complete solution. Therefore, it is necessary to investigate other causes of surgical failure, such as inflammation. In recent years, the inflammation caused by macrophage M1 polarization has garnered wide attention. The purpose of this research is to explore the inhibitory effect of avicularin (AL) on macrophage M1 polarization, by which it ameliorates inflammation, thus alleviating implant instability. We established an osteoporosis mouse model of implant loosening. The mouse tissues were taken out for morphological analysis, staining analysis and bone metabolic index analysis. In in vitro experiments, bone marrow derived macrophages (BMDM) and RAW264.7 cells were polarized to M1 macrophages using lipopolysaccharide (LPS), and analyzed by immunofluorescence (IF) staining, Western blot (WB) and flow cytometry. WB was also used to analyze the nuclear factor kappa-B (NF-κB) pathway. In addition, the expression levels of inflammatory cytokines were detected in cell supernatant using ELISA kits. Through observation of this experiments, we found that AL can inhibit M1 polarization of macrophages. Moreover, it can significantly inhibit the release of inflammatory factors to improve multiple mouse femur parameters. Furthermore, AL inhibited the phosphorylation of IKBα and P65 in the NF-κB pathway. The above data indicate that AL ameliorates inflammatory responses by inhibiting macrophage M1 polarization via its inhibitory effect on the NF-κB pathway, thus alleviating the instability of implants in mice with osteoporosis.
Collapse
Affiliation(s)
- Yunshang Yang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Medical School of Yangzhou University, Zhangjiagang, Jiangsu 215600, China; Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Yangzhou University Medical College, Zhangjiagang, Jiangsu 215600, China
| | - Dong Sheng
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Medical School of Yangzhou University, Zhangjiagang, Jiangsu 215600, China; Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Yangzhou University Medical College, Zhangjiagang, Jiangsu 215600, China
| | - Jiandong Shi
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Medical School of Yangzhou University, Zhangjiagang, Jiangsu 215600, China; Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Yangzhou University Medical College, Zhangjiagang, Jiangsu 215600, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Medical School of Yangzhou University, Zhangjiagang, Jiangsu 215600, China; Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Yangzhou University Medical College, Zhangjiagang, Jiangsu 215600, China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215600, China.
| | - Zhifang Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Medical School of Yangzhou University, Zhangjiagang, Jiangsu 215600, China; Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Yangzhou University Medical College, Zhangjiagang, Jiangsu 215600, China
| | - Zhengyu Yin
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Medical School of Yangzhou University, Zhangjiagang, Jiangsu 215600, China; Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Yangzhou University Medical College, Zhangjiagang, Jiangsu 215600, China
| | - Qi Zhuang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Medical School of Yangzhou University, Zhangjiagang, Jiangsu 215600, China
| | - Shuangshuang Chen
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Medical School of Yangzhou University, Zhangjiagang, Jiangsu 215600, China
| | - Yajun Li
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Medical School of Yangzhou University, Zhangjiagang, Jiangsu 215600, China; Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Yangzhou University Medical College, Zhangjiagang, Jiangsu 215600, China
| | - Yong Gu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Medical School of Yangzhou University, Zhangjiagang, Jiangsu 215600, China; Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Yangzhou University Medical College, Zhangjiagang, Jiangsu 215600, China
| | - Jie Zhu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Medical School of Yangzhou University, Zhangjiagang, Jiangsu 215600, China; Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Yangzhou University Medical College, Zhangjiagang, Jiangsu 215600, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215600, China.
| | - Zhirong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Medical School of Yangzhou University, Zhangjiagang, Jiangsu 215600, China; Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Yangzhou University Medical College, Zhangjiagang, Jiangsu 215600, China.
| |
Collapse
|
5
|
Lin J, Sofka CM, Demetracopoulos CA, Potter HG. The Utility of Isotropic 3D Magnetic Resonance Imaging in Assessing Painful Total Ankle Replacements. FOOT & ANKLE ORTHOPAEDICS 2022; 7:24730114221094840. [PMID: 35520474 PMCID: PMC9067051 DOI: 10.1177/24730114221094840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Ji Lin
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Carolyn M. Sofka
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | | | - Hollis G. Potter
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
6
|
Abstract
AbstractThe success of implant performance and arthroplasty is based on several factors, including oxidative stress-induced osteolysis. Oxidative stress is a key factor of the inflammatory response. Implant biomaterials can release wear particles which may elicit adverse reactions in patients, such as local inflammatory response leading to tissue damage, which eventually results in loosening of the implant. Wear debris undergo phagocytosis by macrophages, inducing a low-grade chronic inflammation and reactive oxygen species (ROS) production. In addition, ROS can also be directly produced by prosthetic biomaterial oxidation. Overall, ROS amplify the inflammatory response and stimulate both RANKL-induced osteoclastogenesis and osteoblast apoptosis, resulting in bone resorption, leading to periprosthetic osteolysis. Therefore, a growing understanding of the mechanism of oxidative stress-induced periprosthetic osteolysis and anti-oxidant strategies of implant design as well as the addition of anti-oxidant agents will help to improve implants’ performances and therapeutic approaches.
Collapse
|
7
|
Zhang L, Haddouti EM, Welle K, Burger C, Wirtz DC, Schildberg FA, Kabir K. The Effects of Biomaterial Implant Wear Debris on Osteoblasts. Front Cell Dev Biol 2020; 8:352. [PMID: 32582688 PMCID: PMC7283386 DOI: 10.3389/fcell.2020.00352] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Aseptic loosening subsequent to periprosthetic osteolysis is the leading cause for the revision of arthroplasty failure. The biological response of macrophages to wear debris has been well established, however, the equilibrium of bone remodeling is not only dictated by osteoclastic bone resorption but also by osteoblast-mediated bone formation. Increasing evidence shows that wear debris significantly impair osteoblastic physiology and subsequent bone formation. In the present review, we update the current state of knowledge regarding the effect of biomaterial implant wear debris on osteoblasts. The interaction of osteoblasts with osteoclasts and macrophages under wear debris challenge, and potential treatment options targeting osteoblasts are also presented.
Collapse
Affiliation(s)
- Li Zhang
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - El-Mustapha Haddouti
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kristian Welle
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Koroush Kabir
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Nanosized Alumina Particle and Proteasome Inhibitor Bortezomib Prevented inflammation and Osteolysis Induced by Titanium Particle via Autophagy and NF-κB Signaling. Sci Rep 2020; 10:5562. [PMID: 32221318 PMCID: PMC7101404 DOI: 10.1038/s41598-020-62254-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/11/2020] [Indexed: 12/17/2022] Open
Abstract
Autophagy and NF-κB signaling are involving in the process of Particle Disease, which was caused by the particles released from friction interface of artificial joint, implant materials of particle reinforced composite, scaffolds for tissue engineering, or material for drug delivery. However, the biological interaction of different material particles and the mechanism of proteasome inhibitor, Bortezomib (BTZ), against Titanium (Ti) particle-induced Particle Disease remain unclear. In this study, we evaluated effect of nanosized Alumina (Al) particles and BTZ on reducing and treating the Ti particle-induced inflammatory reaction in MG-63 cells and mouse calvarial osteolysis model. We found that Al particles and BTZ could block apoptosis and NF- κB activation in osteoblasts in vitro and in a mouse model of calvarial resorption induced by Ti particles. We found that Al particles and BTZ attenuated the expression of inflammatory cytokines (IL-1β, IL-6, TNF-α). And Al prevented the IL-1β expression induced by Ti via attenuating the NF- κB activation β-TRCP and reducing the expression of Casepase-3. Expressions of autophagy marker LC3 was activated in Ti group, and reduced by Al and/not BTZ. Furthermore, the expressions of OPG were also higher in these groups than the Ti treated group. Collectively, nanosized Al could prevent autophagy and reduce the apoptosis, inflammatory and osteolysis induced by Ti particles. Our data offered a basic data for implant design when it was inevitable to use Ti as biomaterials, considering the outstanding mechanical propertie of Ti. What's more, proteasome inhibitor BTZ could be a potential therapy for wear particle-induced inflammation and osteogenic activity via regulating the activity of NF- κB signaling pathway.
Collapse
|
9
|
Dinu M, Braic L, Padmanabhan SC, Morris MA, Titorencu I, Pruna V, Parau A, Romanchikova N, Petrik LF, Vladescu A. Characterization of electron beam deposited Nb 2O 5 coatings for biomedical applications. J Mech Behav Biomed Mater 2019; 103:103582. [PMID: 32090911 DOI: 10.1016/j.jmbbm.2019.103582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Niobium oxide coatings deposited on Ti6Al4V substrates by electron beam deposition and annealed in air at 600 °C and 800 °C were evaluated for their suitability towards dental, maxillofacial or orthopaedic implant applications. A detailed physico-chemical properties investigation was carried out in order to determine their elemental and phase composition, surface morphology and roughness, mechanical properties, wettability, and corrosion resistance in simulated body fluid solution (pH = 7.4) at room temperature. The biocompatibility of the bare Ti6Al4V substrate and coated surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human osteosarcoma cells (MG-63) after 72 h of incubation. The coatings annealed at 800 °C exhibit more phase pure nanocrystalline Nb2O5 surfaces with enhanced wettability, reduced porosity and enhanced corrosion resistance properties making them good candidate for dental, maxillofacial or orthopaedic implant applications.
Collapse
Affiliation(s)
- Mihaela Dinu
- National Institute of Research and Development for Optoelectronics INOE 2000, 409 Atomistilor St., Magurele, Romania
| | - Laurentiu Braic
- National Institute of Research and Development for Optoelectronics INOE 2000, 409 Atomistilor St., Magurele, Romania.
| | - Sibu C Padmanabhan
- University College Cork, Department of Chemistry, College Road, Cork, Ireland; Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Michael A Morris
- University College Cork, Department of Chemistry, College Road, Cork, Ireland; Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Irina Titorencu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8 B.P. Hasdeu, 050568, Bucharest, Romania
| | - Vasile Pruna
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8 B.P. Hasdeu, 050568, Bucharest, Romania
| | - Anca Parau
- National Institute of Research and Development for Optoelectronics INOE 2000, 409 Atomistilor St., Magurele, Romania
| | | | - Leslie F Petrik
- University of the Western Cape, Department of Chemistry, Robert Sobukwe Road, Bellville, Cape Town, South Africa
| | - Alina Vladescu
- National Institute of Research and Development for Optoelectronics INOE 2000, 409 Atomistilor St., Magurele, Romania; National Research Tomsk Polytechnic University, 43 Lenin Avenue, 634050, Tomsk, Russia
| |
Collapse
|
10
|
Goodman SB, Gallo J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J Clin Med 2019; 8:E2091. [PMID: 31805704 PMCID: PMC6947309 DOI: 10.3390/jcm8122091] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone-implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.
Collapse
Affiliation(s)
- Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St. M/C 6342, Redwood City, CA 94063, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic;
| |
Collapse
|
11
|
Xiong L, Liu Y, Zhu F, Lin J, Wen D, Wang Z, Bai J, Ge G, Xu C, Gu Y, Xu Y, Zhou J, Geng D. Acetyl-11-keto-β-boswellic acid attenuates titanium particle-induced osteogenic inhibition via activation of the GSK-3β/β-catenin signaling pathway. Theranostics 2019; 9:7140-7155. [PMID: 31695758 PMCID: PMC6831297 DOI: 10.7150/thno.35988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/01/2019] [Indexed: 12/14/2022] Open
Abstract
Rationale: Peri-prosthetic osteolysis (PPO) is mainly induced by wear particles and represents the leading cause of implant failure and revision surgery. Previous studies have identified mitigation of wear particle-induced inflammation and bone resorption as the main approaches to treat PPO. Recently, wear particle-induced reduction of bone formation around the prosthesis was identified as a major factor in the development of PPO. Acetyl-11-keto-β-boswellic acid (AKBA), a derivative of frankincense, has been shown to play a potential role in bone metabolism. However, whether AKBA enhances bone formation in wear particle-induced osteolysis remains unknown. In this study, we examined whether AKBA attenuates titanium particle-induced osteogenic reduction. Methods: Titanium particles were used to induce osteolysis in murine calvaria, and micro-CT and histological analyses were used to evaluate the results. Mouse osteoblast cells, MC3T3-E1 were co-cultured with titanium particles to determine their effect on osteoblast formation in vitro. Results: We demonstrated that AKBA treatment significantly inhibited titanium particle-induced osteogenic inhibition by enhancing osteogenesis both in vivo and in vitro. AKBA treatment also enhanced the phosphorylation of GSK-3β, decreased the degradation of β-catenin, and increased the translocation of β-catenin from the cytoplasm to the nucleus. Taken together, these results showed that AKBA treatment attenuated titanium-induced osteogenic inhibition by activating the GSK-3β/β-catenin signaling pathway. Conclusion: These findings suggest that AKBA is a promising new target in the prevention and treatment of PPO.
Collapse
|
12
|
Lei P, Dai Z, Zhang YS, Liu H, Niu W, Li K, Wang L, Hu Y, Xie J. Macrophage inhibits the osteogenesis of fibroblasts in ultrahigh molecular weight polyethylene (UHMWPE) wear particle-induced osteolysis. J Orthop Surg Res 2019; 14:80. [PMID: 30885228 PMCID: PMC6421644 DOI: 10.1186/s13018-019-1119-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Background In the ultrahigh molecular weight polyethylene (UHMWPE) prosthetic environment, fibroblasts affected by wear particles have the capacity of osteogenesis to reduce osteolysis. We aimed to assess the effects of macrophages on the osteogenic capability of fibroblasts treated with UHMWPE wear particles. Methods The effect of different concentrations of UHMWPE (0, 0.01, 0.1, and 1 mg/ml, respectively) on macrophage proliferation were validated by MTT assay to determine the optimum one. The fibroblasts viability was further determined in the co-culture system of UHMWPE particles and macrophage supernatants. The experiment was designed as seven groups: (A) fibroblasts only; (B) fibroblasts + 1 mg/ml UHMWPE particles; and (C1–C5) fibroblasts + 1/16, 1/8, 1/4, 1/2, and 1/1 supernatants of macrophage cultures stimulated by 1 mg/ml UHMWPE particles vs. fibroblast complete media, respectively. Alizarin red staining was used to detect calcium accumulation. The expression levels of osteogenic proteins were detected by Western blot and ELISA, including alkaline phosphatase (ALP) and osteocalcin (OCN). Results The concentration of 0.1 mg/ml was considered as the optimum concentration for macrophage proliferation due to the survival rate and was highest among the four concentrations. Fibroblast viability was better in the group of fibroblasts + 1/16 ratio of macrophage supernatants stimulated by 1 mg/ml of UHMWPE particles than the other groups (1:8, 1:4, 1:2, 1:1). ALP and OCN expressions were significantly decreased in the group of fibroblasts + 1/4, 1/2, and 1/1 supernatants stimulated by 1 mg/ml of UHMWPE particles compared with other groups (1/8, 1/16) and the group of fibroblasts + 1 mg/ml UHMWPE (p < 0.5). Conclusions Macrophages are potentially involved in the periprosthetic osteolysis by reducing the osteogenic capability of fibroblasts treated with wear particles generated from UHMWPE materials in total hip arthroplasty.
Collapse
Affiliation(s)
- Pengfei Lei
- Department of Orthopedics, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Zixun Dai
- Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yu Shrike Zhang
- Centre for Biomaterials Innovation, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Hua Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, 310058, People's Republic of China.,Harvard-MIT Division of Health Sciences and Technology, Tissue Engineering Lab, Cambridge, USA
| | - Wanting Niu
- VA Boston Healthcare System, West Roxbury, MA, 02132, USA.,Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Kun Li
- Department of Orthopedics, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Camuzard O, Breuil V, Carle GF, Pierrefite-Carle V. Autophagy Involvement in Aseptic Loosening of Arthroplasty Components. J Bone Joint Surg Am 2019; 101:466-472. [PMID: 30845042 DOI: 10.2106/jbjs.18.00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Olivier Camuzard
- UMR E4320 TIRO-MATOs BIAM CEA UNS Faculté de Médecine, Université Nice Sophia Antipolis, Nice, France.,Service de Chirurgie Réparatrice et Chirurgie de la Main (O.C.) and Service de Rhumatologie (V.B.), Hôpital Pasteur 2, CHU de Nice, France
| | - Véronique Breuil
- UMR E4320 TIRO-MATOs BIAM CEA UNS Faculté de Médecine, Université Nice Sophia Antipolis, Nice, France.,Service de Chirurgie Réparatrice et Chirurgie de la Main (O.C.) and Service de Rhumatologie (V.B.), Hôpital Pasteur 2, CHU de Nice, France
| | - Georges F Carle
- UMR E4320 TIRO-MATOs BIAM CEA UNS Faculté de Médecine, Université Nice Sophia Antipolis, Nice, France
| | - Valérie Pierrefite-Carle
- UMR E4320 TIRO-MATOs BIAM CEA UNS Faculté de Médecine, Université Nice Sophia Antipolis, Nice, France
| |
Collapse
|
14
|
Wang HT, Li J, Ma ST, Feng WY, Wang Q, Zhou HY, Zhao JM, Yao J. A study on the prevention and treatment of murine calvarial inflammatory osteolysis induced by ultra-high-molecular-weight polyethylene particles with neomangiferin. Exp Ther Med 2018; 16:3889-3896. [PMID: 30402145 PMCID: PMC6200963 DOI: 10.3892/etm.2018.6725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/09/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to examine the influence of neomangiferin on murine calvarial inflammatory osteolysis induced by ultra-high-molecular-weight polyethylene (UHMWPE) particles. Eight-week-old male C57BL/J6 mice served as an inflammatory osteolysis model, in which UHMWPE particles were implanted into the calvarial subperiosteal space. The mice were randomly distributed into four groups and treated with different interventions; namely, a sham group [phosphate-buffered saline (PBS) injection and no UHMWPE particles], model group (PBS injection and implantation of UHMWPE particles), low-dose neomangiferin group (UHMWPE particles +2.5 mg/kg neomangiferin), and high-dose neomangiferin group (UHMWPE particles +5 mg/kg neomangiferin). Following 3 weeks of feeding according to the above regimens, celiac artery blood samples were collected for an enzyme-linked immunosorbent assay (ELISA) to determine the expression of receptor activator of nuclear factor-κB ligand (RANKL), osteoclast-related receptor (OSCAR), cross-linked C-telopeptide of type I collagen (CTX-1); osteoprotegerin (OPG), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β. Subsequently, the mice were sacrificed by cervical dislocation following ether-inhalation anesthesia, and the skull was separated for osteolysis analysis by micro-computed tomography (micro-CT). Following hematoxylin and eosin staining, tartrate-resistant acid phosphatase (TRAP) staining was performed to observe the dissolution and destruction of the skull. The micro-CT results suggested that neomangiferin significantly inhibited the murine calvarial osteolysis and bone resorption induced by UHMWPE particles. In addition, the ELISA results showed that neomangiferin decreased the expression levels of osteoclast markers RANKL, OSCAR, CTX-1, TNF-α and IL-1β. By contrast, the levels of OPG increased with the neomangiferin dose. Histopathological examination revealed that the TRAP-positive cell count was significantly reduced in the neomangiferin-treated animals compared with that in the positive control group, and the degree of bone resorption was also markedly reduced. Neomangiferin was found to have significant anti-inflammatory effects and to inhibit osteoclastogenesis. Therefore, it has the potential to prevent the aseptic loosening of a prosthesis following artificial joint replacement.
Collapse
Affiliation(s)
- Hong-Tao Wang
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jia Li
- Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shi-Ting Ma
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wen-Yu Feng
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qi Wang
- Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hong-Yan Zhou
- Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jin-Min Zhao
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jun Yao
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
15
|
Label-Free Monitoring of Uptake and Toxicity of Endoprosthetic Wear Particles in Human Cell Cultures. Int J Mol Sci 2018; 19:ijms19113486. [PMID: 30404169 PMCID: PMC6274933 DOI: 10.3390/ijms19113486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022] Open
Abstract
The evaluation of the biological effects of endoprosthetic wear particles on cells in vitro relies on a variety of test assays. However, most of these methods are susceptible to particle-induced interferences; therefore, label-free testing approaches emerge as more reliable alternatives. In this study, impedance-based real-time monitoring of cellular viability and metabolic activity were performed following exposure to metallic and ceramic wear particles. Moreover, label-free imaging of particle-exposed cells was done by high-resolution darkfield microscopy (HR-ODM) and field emission scanning electron microscopy (FESEM). The isolated human fibroblasts were exposed to CoCr28Mo6 and alumina matrix composite (AMC) ceramic particles. HR-ODM and FESEM revealed ingested particles. For impedance measurements, cells were seeded on gold-plated microelectrodes. Cellular behavior was monitored over a period of 48 h. CoCr28Mo6 and AMC particle exposure affected cell viability in a concentration-dependent manner, i.e., 0.01 mg/mL particle solutions led to small changes in cell viability, while 0.05 mg/mL resulted in a significant reduction of viability. The effects were more pronounced after exposure to CoCr28Mo6 particles. The results were in line with light and darkfield microcopy observations indicating that the chosen methods are valuable tools to assess cytotoxicity and cellular behavior following exposure to endoprosthetic wear particles.
Collapse
|
16
|
Gong ZM, Tang ZY, Sun XL. LncRNA PRNCR1 regulates CXCR4 expression to affect osteogenic differentiation and contribute to osteolysis after hip replacement. Gene 2018; 673:251-261. [DOI: 10.1016/j.gene.2018.05.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/13/2018] [Indexed: 01/05/2023]
|
17
|
Klinder A, Seyfarth A, Hansmann D, Bader R, Jonitz-Heincke A. Inflammatory Response of Human Peripheral Blood Mononuclear Cells and Osteoblasts Incubated With Metallic and Ceramic Submicron Particles. Front Immunol 2018; 9:831. [PMID: 29922277 PMCID: PMC5996910 DOI: 10.3389/fimmu.2018.00831] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/05/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammatory reactions associated with osteolysis and aseptic loosening are the result of wear particles generated at the articulating surfaces of implant components. The aim of the present study was to analyze the biological response of human osteoblasts and peripheral blood mononuclear cells (PBMCs) after exposure to metallic and alumina ceramic particles regarding cellular differentiation, cytokine release, and monocyte migration. Cells were exposed to particles (0.01 and 0.05 mg/ml) from an alumina matrix composite (AMC) ceramic and a CoCr28Mo6 alloy with an average size of 0.5 µm over 48 and 96 h. The expression rates of osteogenic (Col1A1, ALP) and pro-osteoclastic (RANK, Trap5b) differentiation markers as well as pro-osteolytic mediators (MMP-1, TIMP-1, IL-6, IL-8, MCP-1) were determined and soluble protein concentrations of active MMP-1, IL-6, IL-8, and pro-collagen type 1 in cell culture supernatants were evaluated. Additionally, the capacity of particle-treated osteoblasts to attract potentially pro-inflammatory cells to the site of particle exposure was investigated by migration assays using osteoblast-conditioned media. The cellular morphology and metabolism of human osteoblasts and adherent PBMCs were influenced by particle type and concentration. In human osteoblasts, Col1A1 expression rates and protein production were significantly reduced after exposing cells to the lower concentration of cobalt-chromium (CoCr) and AMC particles. Exposure to AMC particles (0.01 mg/ml) resulted in increased mRNA levels of RANK and Trap5b in adherent PBMCs. For MMP-1 gene expression, elevated levels were more prominent after incubation with CoCr compared to AMC particles in osteoblasts, which was not reflected by the protein data. Interleukin (IL)-6 and IL-8 mRNA and protein were induced in both cell types after treatment with AMC particles, whereas exposure to CoCr particles resulted in significantly upregulated IL-6 and IL-8 protein contents in PBMCs only. Exposure of osteoblasts to CoCr particles reduced the chemoattractant potential of osteoblast-conditioned medium. Our results demonstrate distinct effects of AMC and CoCr particles in human osteoblasts and PBMCs. Complex cell and animal models are required to further evaluate the impact of cellular interactions between different cell types during particle exposure.
Collapse
Affiliation(s)
- Annett Klinder
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| | - Anika Seyfarth
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| | - Doris Hansmann
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
18
|
Li Z, Li D, Chen X. Paeoniflorin Inhibits Receptor Activator for Nuclear Factor κB (RANK) Ligand-Induced Osteoclast Differentiation In Vitro and Particle-Induced Osteolysis In Vivo. Med Sci Monit 2018; 24:1044-1053. [PMID: 29459582 PMCID: PMC5827632 DOI: 10.12659/msm.907739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Paeoniflorin (PF), a glucoside isolated from the dried root of Paeonia lactiflora Pall, has been reported to have a number of pharmacological properties, including immunity-regulation, anticancer activities, and neuroprotective effect. However, PF’s pharmacological role in bone disorder has been seldom reported. Hence, this study was designed to investigate the effects of PF on osteoclast differentiation and osteolysis diseases. Material/Methods The bone marrow macrophages were isolated from C57BL/6 mice and incubated with RANK ligand (RANKL) and various concentrations of PF. After 5 days of incubation, tartrate-resistant acid phosphatase (+) cells and bone resorption pits were counted. Effects of PF on expression of osteoclast-specific protein and gene were investigated via Western blot, q-PCR, and immunofluorescence assay. The osteoprotective effect of PF in vivo was evaluated in a calvarial osteolysis model via micro-CT scan and histological stain. Results In vitro, PF intervention inhibited osteoclast formation and resorption activity. PF also impaired RANKL-induced NF-κB phosphorylation and immigration to the nucleus. PF suppressed osteoclast-marker protein and gene expression. In vivo, PF inhibited cobalt-chromium-molybdenum alloy particle-induced osteolysis and reduced osteoclast number in tissue slice. Conclusions PF is a potential agent against osteolysis-related diseases caused by excessive osteoclast activity.
Collapse
Affiliation(s)
- Zhuokai Li
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China (mainland)
| | - De Li
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China (mainland)
| | - Xiaodong Chen
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China (mainland)
| |
Collapse
|
19
|
An F, Du J, Cao Y, Shi J, Guo Y, Jin T, Li J, Chen J, Li P, Dong M, Wang G, Wang J. MMP8 polymorphism is associated with susceptibility to osteonecrosis of the femoral head in a Chinese Han population. Oncotarget 2017; 8:21561-21566. [PMID: 28423488 PMCID: PMC5400606 DOI: 10.18632/oncotarget.15371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/09/2017] [Indexed: 01/23/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is an orthopedic refractory disease that adversely affects quality of life. Matrix metalloproteinase-8 (MMP-8) produced by the bone marrow has been implicated in the degradation of collagen during bone development. We assessed whether MMP8 polymorphisms are associated with ONFH. In a case-control study, using χ2 tests and genetic model analyses, we genotyped 5 MMP8 single-nucleotide polymorphisms (SNPs) in 585 ONFH patients and 507 healthy control subjects in a Chinese Han population. The MMP8 rs11225394 SNP was associated with an increased risk of ONFH in an allele model (OR=1.34; 95% CI, 1.003-1.786, P=0.047). In addition, rs11225394 was associated with an increased risk of ONFH in a dominant model (OR =1.39, 95% CI, 1.02-1.89, P=0.036), over-dominant model (OR=1.39, 95% CI, 1.02-1.89, P=0.038), and log-additive model (OR =1.36, 95% CI, 1.01-1.84, P=0.039). After adjusting for age and gender, rs11225394 was associated with ONFH in a dominant (OR =1.44, 95% CI, 1.05-1.96, P=0.023), over-dominant (OR =1.44, 95% CI, 1.05-1.98, P=0.022), and log-additive model (OR =1.40, 95% CI, 1.04-1.90, P=0.027). These results provide the first evidence that MMP8 SNP at the rs11225394 locus is associated with the increased risk of ONFH in Chinese Han population.
Collapse
Affiliation(s)
- Feimeng An
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.,Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jieli Du
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yuju Cao
- Zhengzhou TCM Traumatology Hospital, Zhengzhou, Henan, China
| | - Jianping Shi
- Department of TCM Diagnosis, Inner Mongolia Medical University, Hohhot, China
| | - Yongchang Guo
- Zhengzhou TCM Traumatology Hospital, Zhengzhou, Henan, China
| | - Tianbo Jin
- MOE Key Laboratory of Resource Biology and Modern Biotechnology, Northwest University, Xi'an, China
| | - Jian Li
- Zhengzhou TCM Traumatology Hospital, Zhengzhou, Henan, China
| | - Junyu Chen
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.,Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ping Li
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Mei Dong
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Guoqiang Wang
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jianzhong Wang
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
20
|
Jonitz-Heincke A, Tillmann J, Klinder A, Krueger S, Kretzer JP, Høl PJ, Paulus AC, Bader R. The Impact of Metal Ion Exposure on the Cellular Behavior of Human Osteoblasts and PBMCs: In Vitro Analyses of Osteolytic Processes. MATERIALS 2017; 10:ma10070734. [PMID: 28773099 PMCID: PMC5551777 DOI: 10.3390/ma10070734] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 01/30/2023]
Abstract
Osteolysis in the periprosthetic tissue can be caused by metallic wear particles and ions that can originate from implant surface corrosion. These products influence cellular behavior and stimulate the expression of proinflammatory cytokines. The purpose of this study was to evaluate the impact of CoCr29Mo6 ions on cell survival, differentiation, and cytokine expression in human osteoblasts and peripheral blood mononuclear cells (PBMCs). Thus, we exposed cells with a mixture of 200 µg/L ion solution and determined cell viability and apoptosis/necrosis. Gene expression analyses of osteoblastic and osteoclastic differentiation markers as well as pro-osteolytic mediators (IL-6, IL-8, TNF-α, MCP-1, MMP1, TIMP1) were performed. These markers were also investigated in mixed cultures of adherent and non-adherent PBMCs as well as in co-cultures of human osteoblasts and PBMCs. The ion solution induced necrosis in osteoblasts and PBMCs in single cultures. All examined mediators were highly expressed in the co-culture of osteoblasts and PBMCs whereas in the single cell cultures only IL-6, IL-8, and MMP1 were found to be stimulated. While the applied concentration of the CoCr29Mo6 ion solutions had only marginal effects on human osteoblasts and PBMCs alone, the co-culture may provide a comprehensive model to study osteolytic processes in response to Co and Cr ions.
Collapse
Affiliation(s)
- Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, University Medical Center Rostock, 18057 Rostock, Germany.
| | - Jenny Tillmann
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, University Medical Center Rostock, 18057 Rostock, Germany.
| | - Annett Klinder
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, University Medical Center Rostock, 18057 Rostock, Germany.
| | - Simone Krueger
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, University Medical Center Rostock, 18057 Rostock, Germany.
| | - Jan Philippe Kretzer
- Clinic for Orthopaedics and Trauma Surgery, Heidelberg University Hospital, 69118 Heidelberg, Germany.
| | - Paul Johan Høl
- Department of Orthopaedic Clinic, Biomatlab, Haukeland University Hospital, 5021 Bergen, Norway.
- Department of Clinical Medicine, Biomaterials, University of Bergen, 5021 Bergen, Norway.
| | - Alexander C Paulus
- Department of Orthopaedic Surgery, University Hospital Munich (Campus Grosshadern), 81377 Munich, Germany.
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, University Medical Center Rostock, 18057 Rostock, Germany.
| |
Collapse
|
21
|
Abstract
Aseptic loosening of implants remains the most common reason for revision surgery for hip, knee, or ankle prostheses. Although a great scientific effort has been made to explain the underlying mechanisms it remains poorly understood, complex, and multifactorial. Many factors, including age, body weight, activity lesions, implant design, fixation methods, material proprieties, immunologic responses, and biomechanical adaptations to total ankle replacement all contribute to the development of periprosthetic osteolysis.
Collapse
Affiliation(s)
- Norman Espinosa
- Institute for Foot and Ankle Reconstruction Zurich, Kappelistrasse 7, Zurich 8002, Switzerland.
| | - Georg Klammer
- Institute for Foot and Ankle Reconstruction Zurich, Kappelistrasse 7, Zurich 8002, Switzerland
| | - Stephan H Wirth
- Department of Orthopaedics, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| |
Collapse
|
22
|
Markhoff J, Weinmann M, Schulze C, Bader R. Influence of different grained powders and pellets made of Niobium and Ti-42Nb on human cell viability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:756-766. [PMID: 28183670 DOI: 10.1016/j.msec.2016.12.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 12/29/2022]
Abstract
Nowadays, biomaterials can be used to maintain or replace several functions of the human body if necessary. Titanium and its alloys, i.e. Ti6Al4V are the most common materials (70 to 80%) used for structural orthopedic implants due to their unique combination of good mechanical properties, corrosion resistance and biocompatibility. Addition of β-stabilizers, e.g. niobium, can improve the mechanical properties of such titanium alloys further, simultaneously offering excellent biocompatibility. In this in vitro study, human osteoblasts and fibroblasts were cultured on different niobium specimens (Nb Amperit, Nb Ampertec), Nb sheets and Ti-42Nb (sintered and 3D-printed by selective laser melting, SLM) and compared with forged Ti6Al4V specimens. Furthermore, human osteoblasts were incubated with particulates of the Nb and Ti-42Nb specimens in three concentrations over four and seven days to imitate influence of wear debris. Thereby, the specimens with the roughest surfaces, i.e. Ti-42Nb and Nb Ampertec, revealed excellent and similar results for both cell types concerning cell viability and collagen synthesis superior to forged Ti6Al4V. Examinations with particulate debris disclosed a dose-dependent influence of all powders with Nb Ampertec showing the highest decrease of cell viability and collagen synthesis. Furthermore, interleukin synthesis was only slightly increased for all powders. In summary, Nb Ampertec (sintered Nb) and Ti-42Nb materials seem to be promising alternatives for medical applications compared to common materials like forged or melted Ti6Al4V.
Collapse
Affiliation(s)
- Jana Markhoff
- University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Markus Weinmann
- H.C. Starck Tantalum and Niobium GmbH, Im Schleeke 78-91, 38642 Goslar, Germany
| | - Christian Schulze
- University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Doberaner Strasse 142, 18057 Rostock, Germany
| | - Rainer Bader
- University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Doberaner Strasse 142, 18057 Rostock, Germany
| |
Collapse
|