1
|
Lee YY, Han JI, Lee KE, Cho S, Suh EC. Neuroprotective effect of dexmedetomidine on autophagy in mice administered intracerebroventricular injections of Aβ 25-35. Front Pharmacol 2023; 14:1184776. [PMID: 37663257 PMCID: PMC10469611 DOI: 10.3389/fphar.2023.1184776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Alzheimer's disease (AD), one of the most prevalent neurodegenerative diseases is associated with pathological autophagy-lysosomal pathway dysfunction. Dexmedetomidine (Dex) has been suggested as an adjuvant to general anesthesia with advantages in reducing the incidence of postoperative cognitive dysfunction in Dex-treated patients with AD and older individuals. Several studies reported that Dex improved memory; however, evidence on the effects of Dex on neuronal autophagy dysfunction in the AD model is lacking. We hypothesized that Dex administration would have neuroprotective effects by improving pathological autophagy dysfunction in mice that received an intracerebroventricular (i.c.v.) injection of amyloid β-protein fragment 25-35 (Aβ25-35) and in an autophagy-deficient cellular model. In the Y-maze test, Dex reversed the decreased activity of Aβ25-35 mice. Additionally, it restored the levels of two memory-related proteins, phosphorylated Ca2+/calmodulin-dependent protein kinase II (p-CaMKII) and postsynaptic density-95 (PSD-95) in Aβ25-35 mice and organotypic hippocampal slice culture (OHSC) with Aβ25-35. Dex administration also resulted in decreased expression of the autophagy-related microtubule-associated proteins light chain 3-II (LC3-II), p62, lysosome-associated membrane protein2 (LAMP2), and cathepsin D in Aβ25-35 mice and OHSC with Aβ25-35. Increased numbers of co-localized puncta of LC3-LAMP2 or LC3-cathepsin D, along with dissociated LC3-p62 immunoreactivity following Dex treatment, were observed. These findings were consistent with the results of western blots and the transformation of double-membrane autophagosomes into single-membraned autolysosomes in ultrastructures. It was evident that Dex treatment alleviated impaired autolysosome formation in Aβ mice. Our study demonstrated the improvement of memory impairment caused by Dex and its neuroprotective mechanism by investigating the role of the autophagy-lysosomal pathway in a murine Aβ25-35 model. These findings suggest that Dex could be used as a potential neuroprotective adjuvant in general anesthesia to prevent cognitive decline.
Collapse
Affiliation(s)
- Youn Young Lee
- Department of Anesthesiology and Pain Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jong In Han
- Department of Anesthesiology and Pain Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung Eun Lee
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sooyoung Cho
- Department of Anesthesiology and Pain Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun Cheng Suh
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Sasaki H, Miyakawa H, Watanabe A, Tamura K, Shiga K, Lyu Y, Ichikawa N, Fu Y, Hayashi K, Imamura M, Shibata S. Evening rather than morning increased physical activity alters the microbiota in mice and is associated with increased body temperature and sympathetic nervous system activation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166373. [DOI: 10.1016/j.bbadis.2022.166373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
|
3
|
Wu W, Du Z, Wu L. Dexmedetomidine attenuates hypoxia-induced cardiomyocyte injury by promoting telomere/telomerase activity: Possible involvement of ERK1/2-Nrf2 signaling pathway. Cell Biol Int 2022; 46:1036-1046. [PMID: 35312207 DOI: 10.1002/cbin.11799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/26/2021] [Accepted: 01/22/2022] [Indexed: 11/06/2022]
Abstract
Dexmedetomidine (Dex), an α2-adrenergic receptor (α2-AR) agonist, possesses cardioprotection against ischaemic/hypoxic injury, but the exact mechanism is not fully elucidated. Since telomere/telomerase dysfunction is involved in myocardial ischemic damage, the present study aimed to investigate whether Dex ameliorates cobalt chloride (CoCl2; a hypoxia mimic agent in vitro)-induced the damage of H9c2 cardiomyocytes by improving telomere/telomerase dysfunction and further explored the underlying mechanism focusing on ERK1/2-Nrf2 signaling pathway. Result showed that Dex increased cell viability, decreased apoptosis, and reduced cardiomyocyte hypertrophy as illustrated by the decreases in cell surface area and the biomarker levels for cardiac hypertrophy including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and myosin heavy chain β (β-MHC) mRNA and protein in CoCl2 -exposed H9c2 cells. Intriguingly, Dex increased the telomere length and telomerase activity as well as telomere reverse transcriptase (TERT) protein and mRNA levels in H9c2 cells exposed to CoCl2 , indicating that Dex promotes telomere/telomerase function under hypoxia. In addition, Dex remarkably diminished the ROS generation, reduced MDA content, and increased antioxidative signaling as evidenced by the increases in SOD and GSH-Px activities. Furthermore, Dex increased the ratio of P-ERK1/2/T-ERK1/2 and P-Nrf2/T-Nrf2 and enhanced Nrf2 nuclear translocation in CoCl2 -subjected H9c2 cells, suggesting that Dex promotes the activation of the ERK1/2-Nrf2 signaling pathway. These novel findings indicated that Dex attenuates myocardial ischemic damage and reduces myocardial hypertrophy by promoting telomere/telomerase function, which may be associated with the activation of the ERK1/2-Nrf2 signaling pathway in vitro. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wei Wu
- Department of Anesthesiology, Hunan Children's Hospital, Changsha, China 410007, People's Republic of China
| | - Zhen Du
- Department of Anesthesiology, Hunan Children's Hospital, Changsha, China 410007, People's Republic of China
| | - Lei Wu
- Department of Anesthesiology, Hunan Children's Hospital, Changsha, China 410007, People's Republic of China
| |
Collapse
|
4
|
Rodrigues KL, Souza JR, Bazilio DS, de Oliveira M, Moraes MPS, Moraes DJA, Machado BH. Changes in the autonomic and respiratory patterns in mice submitted to short-term sustained hypoxia. Exp Physiol 2021; 106:759-770. [PMID: 33501717 DOI: 10.1113/ep089323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do mice submitted to sustained hypoxia present autonomic and respiratory changes similarly to rats? What is the main finding and its importance? Arterial pressure in the normal range, reduced baseline heart rate and tachypnoea were observed in behaving sustained hypoxia mice. Recordings in the in situ preparation of mice submitted to sustained hypoxia show an increase in cervical vagus nerve activity and a simultaneous reduction in thoracic sympathetic nerve activity correlated with changes in the respiratory cycle. Therefore, mice are an important model for studies on the modulation of sympathetic activity to the cardiovascular system and the vagus innervation of the upper airways due to changes in the respiratory network induced by sustained hypoxia. ABSTRACT Short-term sustained hypoxia (SH) in rats induces sympathetic overactivity and hypertension due to changes in sympathetic-respiratory coupling. However, there are no consistent data about the effect of SH on mice due to the different protocols of hypoxia and difficulties associated with the handling of these rodents under different experimental conditions. In situ recordings of autonomic and respiratory nerves in SH mice have not been performed yet. Herein, we evaluated the effects of SH ( F i O 2 = 0.1 for 24 h) on baseline mean arterial pressure (MAP), heart rate (HR), respiratory frequency (fR ) and responses to chemoreflex activation in behaving SH mice. A characterization of changes in cervical vagus (cVN), thoracic sympathetic (tSN), phrenic (PN) and abdominal (AbN) nerves in SH mice using the in situ working heart-brainstem preparation was also performed. SH mice presented normal MAP, significant reduction in baseline HR, increase in baseline fR , as well as increase in the magnitude of bradycardic response to chemoreflex activation. In in situ preparations, SH mice presented a reduction in PN discharge frequency, and increases in the time of expiration and incidence of late-expiratory bursts in AbN activity. Nerve recordings also indicated a significant increase in cVN activity and a significant reduction in tSN activity during expiration in SH mice. These findings make SH mice an important experimental model for better understanding how changes in the respiratory network may impact on the modulation of vagal control to the upper airways, as well as in the sympathetic activity to the cardiovascular system.
Collapse
Affiliation(s)
- Karla L Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Juliana R Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Darlan S Bazilio
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Mauro de Oliveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Melina P S Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| |
Collapse
|
5
|
Ranninger E, Bettschart‐Wolfensberger R. Polymorphic tachycardia in an anaesthetised horse with an undiagnosed pheochromocytoma undergoing emergency coeliotomy. VETERINARY RECORD CASE REPORTS 2020. [DOI: 10.1136/vetreccr-2019-001000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Elisabeth Ranninger
- Department of Clinical Diagnostics and ServicesSection of AnaesthesiologyVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Regula Bettschart‐Wolfensberger
- Department of Clinical Diagnostics and ServicesSection of AnaesthesiologyVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
6
|
Midazolam Dose Optimization in Critically Ill Pediatric Patients With Acute Respiratory Failure: A Population Pharmacokinetic-Pharmacogenomic Study. Crit Care Med 2020; 47:e301-e309. [PMID: 30672747 DOI: 10.1097/ccm.0000000000003638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To develop a pharmacokinetic-pharmacogenomic population model of midazolam in critically ill children with primary respiratory failure. DESIGN Prospective pharmacokinetic-pharmacogenomic observational study. SETTING Thirteen PICUs across the United States. PATIENTS Pediatric subjects mechanically ventilated for acute respiratory failure, weight greater than or equal to 7 kg, receiving morphine and/or midazolam continuous infusions. INTERVENTIONS Serial blood sampling for drug quantification and a single blood collection for genomic evaluation. MEASUREMENTS AND MAIN RESULTS Concentrations of midazolam, the 1' (1`-hydroxymidazolam metabolite) and 4' (4`-hydroxymidazolam metabolite) hydroxyl, and the 1' and 4' glucuronide metabolites were measured. Subjects were genotyped using the Illumina HumanOmniExpress genome-wide single nucleotide polymorphism chip. Nonlinear mixed effects modeling was performed to develop the pharmacokinetic-pharmacogenomic model. Body weight, age, hepatic and renal functions, and the UGT2B7 rs62298861 polymorphism are relevant predictors of midazolam pharmacokinetic variables. The estimated midazolam clearance was 0.61 L/min/70kg. Time to reach 50% complete mature midazolam and 1`-hydroxymidazolam metabolite/4`-hydroxymidazolam metabolite clearances was 1.0 and 0.97 years postmenstrual age. The final model suggested a decrease in midazolam clearance with increase in alanine transaminase and a lower clearance of the glucuronide metabolites with a renal dysfunction. In the pharmacogenomic analysis, rs62298861 and rs28365062 in the UGT2B7 gene were in high linkage disequilibrium. Minor alleles were associated with a higher 1`-hydroxymidazolam metabolite clearance in Caucasians. In the pharmacokinetic-pharmacogenomic model, clearance was expected to increase by 10% in heterozygous and 20% in homozygous for the minor allele with respect to homozygous for the major allele. CONCLUSIONS This work leveraged available knowledge on nonheritable and heritable factors affecting midazolam pharmacokinetic in pediatric subjects with primary respiratory failure requiring mechanical ventilation, providing the basis for a future implementation of an individual-based approach to sedation.
Collapse
|
7
|
Lv K, Yang C, Xiao R, Yang L, Liu T, Zhang R, Fan X. Dexmedetomidine attenuates ethanol-induced inhibition of hippocampal neurogenesis in neonatal mice. Toxicol Appl Pharmacol 2020; 390:114881. [PMID: 31954762 DOI: 10.1016/j.taap.2020.114881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Ethanol (EtOH) exposure during a period comparable to the third trimester in human results in obvious neurotoxicity in the developing hippocampus and persistent deficits in hippocampal neurogenesis. Dexmedetomidine (DEX), a highly selective α-2-adrenergic agonist has been demonstrated to restore the impaired neurogenesis and neuronal plasticity in the dentate gyrus (DG) that follows neurological insult. However, the protective roles of DEX in the EtOH-induced deficits of postnatal neurogenesis in the hippocampus are still unknown. METHODS Mice were pretreated with DEX prior to EtOH exposure to determine its protective effects on impaired postnatal hippocampal neurogenesis. Six-day-old neonatal mice were treated with DEX (125 μg/kg) or saline, followed by EtOH at a total of 5 g/kg or an equivalent volume of saline on P7. Immunohistochemistry and immunofluorescence were used to evaluate the neurogenesis and activated microglia in the DG. Quantitative real time PCR (qRT-PCR) was utilized to assess the expression of inflammatory factors in the hippocampus. RESULTS DEX pretreatment attenuated the inhibition of EtOH-mediated hippocampal neurogenesis and the reduction of hippocampal neural precursor cells (NPCs). We further confirmed that DEX pretreatment reversed the EtOH-induced microglia activation in the DG as well as the upregulation of the hippocampal TNFα, MCP-1, IL-6, and IL-1β mRNA levels. CONCLUSION Our findings indicate that DEX pretreatment protects against EtOH-mediated inhibition of hippocampal neurogenesis in postnatal mice and reverses EtOH-induced neuroinflammation via repressing microglia activation and the expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Keyi Lv
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China
| | - Congwen Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Rui Xiao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China
| | - Ling Yang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China
| | - Tianyao Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China
| | - Ruiyu Zhang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
8
|
Ding M, Chen Y, Luan H, Zhang X, Zhao Z, Wu Y. Dexmedetomidine reduces inflammation in traumatic brain injury by regulating the inflammatory responses of macrophages and splenocytes. Exp Ther Med 2019; 18:2323-2331. [PMID: 31410183 PMCID: PMC6676199 DOI: 10.3892/etm.2019.7790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) affects people in all demographics, since it is associated with a variety of chronic degenerative diseases, such as Alzheimer's and Parkinson's disease. In TBI, the central nervous system elicits an immune response involving various immune cells that is necessary for healing and defending the body against pathogens, but can also cause secondary damage to the brain if the response is prolonged. In our clinical practice, it has been identified that administration of dexmedetomidine was associated with reduced production of inflammatory cytokines in patients with TBI, which led to the hypothesis that dexmedetomidine may regulate certain inflammatory responses. To test this hypothesis, the roles of dexmedetomidine in the immune system of mice were investigated. Different biological assays were used to assess the influence of dexmedetomidine on the production of inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-8 and IL-1β. To understand how dexmedetomidine affects different types of immune cells, the influence of dexmedetomidine on splenocytes was also investigated. Finally, the effects of dexmedetomidine on macrophage activation and inflammatory functions were studied. In the present study, clinical observations and in vivo results using a mouse model of TBI revealed the regulatory functions of dexmedetomidine in TBI-associated immune response.
Collapse
Affiliation(s)
- Mengyao Ding
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Ying Chen
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Hengfei Luan
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Xiaobao Zhang
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Zhibin Zhao
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Yong Wu
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| |
Collapse
|
9
|
Munting LP, Derieppe MP, Suidgeest E, Denis de Senneville B, Wells JA, van der Weerd L. Influence of different isoflurane anesthesia protocols on murine cerebral hemodynamics measured with pseudo-continuous arterial spin labeling. NMR IN BIOMEDICINE 2019; 32:e4105. [PMID: 31172591 PMCID: PMC6772066 DOI: 10.1002/nbm.4105] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 05/15/2023]
Abstract
Arterial spin labeling (ASL)-MRI can noninvasively map cerebral blood flow (CBF) and cerebrovascular reactivity (CVR), potential biomarkers of cognitive impairment and dementia. Mouse models of disease are frequently used in translational MRI studies, which are commonly performed under anesthesia. Understanding the influence of the specific anesthesia protocol used on the measured parameters is important for accurate interpretation of hemodynamic studies with mice. Isoflurane is a frequently used anesthetic with vasodilative properties. Here, the influence of three distinct isoflurane protocols was studied with pseudo-continuous ASL in two different mouse strains. The first protocol was a free-breathing set-up with medium concentrations, the second a free-breathing set-up with low induction and maintenance concentrations, and the third a set-up with medium concentrations and mechanical ventilation. A protocol with the vasoconstrictive anesthetic medetomidine was used as a comparison. As expected, medium isoflurane anesthesia resulted in significantly higher CBF and lower CVR values than medetomidine (median whole-brain CBF of 157.7 vs 84.4 mL/100 g/min and CVR of 0.54 vs 51.7% in C57BL/6 J mice). The other two isoflurane protocols lowered the CBF and increased the CVR values compared with medium isoflurane anesthesia, without obvious differences between them (median whole-brain CBF of 138.9 vs 131.7 mL/100 g/min and CVR of 10.0 vs 9.6%, in C57BL/6 J mice). Furthermore, CVR was shown to be dependent on baseline CBF, regardless of the anesthesia protocol used.
Collapse
Affiliation(s)
- Leon P. Munting
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | - Marc P.P. Derieppe
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Prinses Máxima Center for Pediatric OncologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Ernst Suidgeest
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Baudouin Denis de Senneville
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtthe Netherlands
- Institut de Mathématiques de BordeauxUniversité Bordeaux/CNRS UMR 5251/INRIABordeaux‐Sud‐OuestFrance
| | - Jack A. Wells
- Division of Medicine, UCL Centre for Advanced Biomedical ImagingUniversity College LondonLondonUK
| | - Louise van der Weerd
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
10
|
Zhou XM, Liu J, Wang Y, Zhang SL, Zhao X, Xu X, Pei J, Zhang MH. Retracted: microRNA-129-5p involved in the neuroprotective effect of dexmedetomidine on hypoxic-ischemic brain injury by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats. J Cell Biochem 2019; 120:6908-6919. [PMID: 29377229 DOI: 10.1002/jcb.26704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/23/2018] [Indexed: 02/02/2023]
Abstract
Our study aims to elucidate the mechanisms how microRNA-129-5p (miR-129-5p) involved in the neuroprotective effect of dexmedetomidine (DEX) on hypoxic-ischemic brain injury (HIBI) by targeting the type III procollagen gene (COL3A1) through the Wnt/β-catenin signaling pathway in neonatal rats. A total of 120 rats were obtained, among which 15 rats were selected as sham group and rest rats as model, DEX, DEX + negative control (DEX + NC), DEX + miR-129-5p mimics, DEX + miR-129-5p inhibitors, DEX + XAV-939, and DEX + miR-129-5p inhibitors + XAV-939 groups. A dual-luciferase reporter assay was performed for the target relationship between miR-129-5p and COL3A1. Weight rate and water content of cerebral hemisphere were detected. Quantitative real-time polymerase chain reaction and Western blot analysis were conducted to detect miR-129-5p expression and expressions of COL3A1, E-cadherin, T-cell factor (TCF)- 4, and β-catenin. The DEX, DEX + miR-129-5p mimics, DEX + XAV-939 groups had increased weight rate of the cerebral hemisphere, but decreased water content of left cerebral hemisphere, levels of COL3A1, β-catenin, TCF-4, and E-cadherin in the hippocampus compared with the model and DEX + miR-129-5p inhibitors groups. COL3A1 was verified as the target gene of the miR-129-5p. Compared with the DEX + NC and DEX + miR-129-5p inhibitors + XAV-939 groups, the DEX + XAV-939 and DEX + miR-129-5p mimics groups had elevated weight rate of the cerebral hemisphere, but reduced water content of left cerebral hemisphere, levels of COL3A1, β-catenin, TCF-4, and E-cadherin in the hippocampus. Our findings demonstrate that miR-129-5p improves the neuroprotective role of DEX in HIBI by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats.
Collapse
Affiliation(s)
- Xiu-Min Zhou
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Jie Liu
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Ying Wang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Shu-Li Zhang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Xin Zhao
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Xiang Xu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Man-He Zhang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
11
|
Zhou XM, Liu J, Wang Y, Zhang MH. Silencing of long noncoding RNA MEG3 enhances cerebral protection of dexmedetomidine against hypoxic-ischemic brain damage in neonatal mice by binding to miR-129-5p. J Cell Biochem 2019; 120:7978-7988. [PMID: 30485519 DOI: 10.1002/jcb.28075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal acute mortality and chronic nervous system injury. Recently, it has been found that long noncoding RNAs (lncRNAs) play a significant role in the neurodevelopment and etiopathogenesis of HIBD. Here, the researchers aimed to determine the role of lncRNA maternally expressed gene (MEG3) in the therapeutic effect of dexmedetomidine (DEX) in neonatal mice with HIBD through the regulation of microRNA-129-5p (miR-129-5p). HIBD models were established in C57/BL6 neonatal mice. Subsequently, the target relationship between MEG3 and miR-129-5p was predicted and verified. The neonatal mice were injected with DEX, ad-shMEG3, and mimics and inhibitors of miR-129-5p to identify roles of MEG3 and miR-129-5p in therapeutic effects of DEX on neuronal apoptosis and injury, cerebral atrophy, and learning and memory ability of neonatal mice with HIBD. MEG3 directly targeted and inhibited the expression of miR-129-5p. Silencing of MEG3 or upregulation of miR-129-5p effectively promoted the therapeutic effect of DEX on neonatal mice with HIBD. Silencing of MEG3 or upregulation of miR-129-5p reduced the neuronal apoptosis rate and degree of cerebral atrophy, and also enhanced the learning and memory ability of HIBD neonatal mice. Collectively, the key findings obtained from the present study support the notion that MEG3 silencing enhances the therapeutic effect of DEX on neonatal mice with HIBD by binding to miR-129-5p.
Collapse
Affiliation(s)
- Xiu-Min Zhou
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Jie Liu
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Ying Wang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Man-He Zhang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
12
|
Yang Y, Cai H, Yuan X, Xu H, Hu Y, Rui X, Wu J, Chen J, Li J, Gao X, Yin D. Efficient Targeting Drug Delivery System for Lewis Lung Carcinoma, Leading to Histomorphological Abnormalities Restoration, Physiological and Psychological Statuses Improvement, and Metastasis Inhibition. Mol Pharm 2018; 15:2007-2016. [DOI: 10.1021/acs.molpharmaceut.8b00161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, P. R. China
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei 230012, P. R. China
| | - Hanxu Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Xiuyan Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Huihui Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Yingying Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Xue Rui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Jingjing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Jing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Jing Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, P. R. China
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei 230012, P. R. China
| |
Collapse
|