1
|
Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, Berrougui H, Ramchoun M. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem 2024; 459:140264. [PMID: 39068825 DOI: 10.1016/j.foodchem.2024.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.
Collapse
Affiliation(s)
- Habiba Nechchadi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco.
| | - Youssef Nadir
- Laboratory of Biological Engineering, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Khalid Benhssaine
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| |
Collapse
|
2
|
Wang X, Liu E, Hou C, Wang Y, Zhao Y, Guo J, Li M. Effects of natural products on angiogenesis in melanoma. Fitoterapia 2024; 177:106100. [PMID: 38972550 DOI: 10.1016/j.fitote.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Melanoma is the most aggressive form of skin cancer and originates from genetic mutations in melanocytes. The disease is multifactorial, but its main cause is overexposure to UV radiation. Currently, available chemotherapy expresses little to no results, which may justify the extensive use of natural products to treat this cancer. In this study, we reviewed the inhibition of melanoma angiogenesis by natural products and its potential mechanisms using literature from PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases. According to summarizes 27 natural products including alkaloids, polyphenols, terpenoids, flavonoids, and steroids that effectively inhibit angiogenesis in melanoma. In addition to these there are 15 crude extracts that can be used as promising agents to inhibit angiogenesis, but their core components still deserve further investigation. There are current studies on melanoma angiogenesis involving oxidative stress, immune-inflammatory response, cell proliferation and migration and capillary formation. The above natural products can be involved in melanoma angiogenesis through core targets such as VE-cadherin, COX-2, iNOS, VEGF, bFGF, FGF2,MMP2,MMP9,IL-1β,IL-6 play a role in inhibiting melanoma angiogenesis. Effective excavation of natural products can not only clarify the mechanism of drug action and key targets, but also help to promote the preclinical research of natural products for melanoma treatment and further promote the development of new clinical drugs, which will bring the gospel to the vast number of patients who are deeply afflicted by melanoma.
Collapse
Affiliation(s)
- Xurui Wang
- Department of Chinese Medicine Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China,Chengdu, China; Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changcheng Hou
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yueyue Wang
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yijia Zhao
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Mingyue Li
- Special Needs Outpatient Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Zheng Z, Gao W, Zhu Z, Li S, Chen X, Cravotto G, Sui Y, Zhou L. Complexes of Soluble Dietary Fiber and Polyphenols from Lotus Root Regulate High-Fat Diet-Induced Hyperlipidemia in Mice. Antioxidants (Basel) 2024; 13:466. [PMID: 38671914 PMCID: PMC11047371 DOI: 10.3390/antiox13040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
In this paper, complexes of soluble dietary fiber (SDF) and polyphenols (PPs) isolated from lotus roots were prepared (SDF-PPs), as well as physical mixtures (SDF&PPs), which were given to high-fat-diet (HFD)-fed mice. The results demonstrated that SDF-PPs improve lipid levels and reverse liver injury in hyperlipidemic mice. Western blotting and real-time quantitative Polymerase Chain Reaction (RT-qPCR) results showed that SDF-PPs regulated liver lipids by increasing the phosphorylation of Adenine monophosphate activated protein kinase (AMPK), up-regulating the expression of Carnitine palmitoyltransferase1 (CPT1), and down-regulating the expression of Fatty acid synthase (FAS) and 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA), as well as the transcription factor sterol-regulatory element binding protein (SPEBP-1) and its downstream liposynthesis genes. Additionally, the intervention of SDF-PPs could modulate the composition of intestinal gut microbes, inducing an increase in Lachnospiraceae and a decrease in Desulfovibrionaceae and Prevotellaceae in high-fat-diet-fed mice. Thus, the research provides a theoretical basis for the application of lotus root active ingredients in functional foods and ingredients.
Collapse
Affiliation(s)
- Zhan Zheng
- National R&D Center for Se-Rich Agricultural Products Processing Technology, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Z.); (W.G.)
| | - Weilan Gao
- National R&D Center for Se-Rich Agricultural Products Processing Technology, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Z.); (W.G.)
| | - Zhenzhou Zhu
- National R&D Center for Se-Rich Agricultural Products Processing Technology, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Z.); (W.G.)
| | - Shuyi Li
- National R&D Center for Se-Rich Agricultural Products Processing Technology, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Z.); (W.G.)
| | - Xueling Chen
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (X.C.); (Y.S.); (L.Z.)
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | - Yong Sui
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (X.C.); (Y.S.); (L.Z.)
| | - Lei Zhou
- Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (X.C.); (Y.S.); (L.Z.)
| |
Collapse
|
4
|
Tian M, Nie L, Yin Y, Zhou H, Meng Z, Cao G, Zang H. Study on quality analysis of different species of Coptidis rhizome based on fingerprint-effect relationship. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:77-86. [PMID: 37621176 DOI: 10.1002/pca.3275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION The quality evaluation of Coptidis rhizome (CR) is attributed to the origin and processing method, and this strategy of ignoring the bioactive components usually leads to biased quality analysis, which is difficult to indicate the clinical efficacy. OBJECTIVES In order to evaluate the quality level of different species of CR, we collected 20 batches of CR and investigated the fingerprint-effect relationship. METHODS High-performance liquid chromatography (HPLC) fingerprints of CR were established, and the fingerprint-effect relationship was explored using cluster analysis, principal component analysis, Pearson correlation analysis, grey relation analysis, and partial least squares regression. RESULTS We have identified a total of 10 common peaks (1-10) with similarity scores above 0.96. The study on the relationship between spectra and potency further showed that the contents of peaks 8, 9, and 10 are potential key components. And based on a previous study, a method of one measurement and multiple evaluations of CR was established to achieve the goal of simplifying the analytical process and reducing costs. CONCLUSION Through a combination of fingerprint analysis, antioxidant activity evaluation, fingerprint-efficacy relationship analysis, and simultaneous quantification of multiple components, a CR quality control index and method have been selected and established, which can also provide a more comprehensive quality evaluation for traditional Chinese medicine.
Collapse
Affiliation(s)
- Mengyin Tian
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Lei Nie
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Yaqing Yin
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Haonan Zhou
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, Shandong, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, Shandong, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
- National Glycoengineering Research Centre, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
6
|
He H, Deng J, Yang M, An L, Ye X, Li X. Jatrorrhizine from Rhizoma Coptidis exerts an anti-obesity effect in db/db mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115529. [PMID: 35835345 DOI: 10.1016/j.jep.2022.115529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obesity is closely related to diabetes. Jatrorrhizine (JAT) from Rhizoma Coptidis (RC) can reduce blood glucose and lipid levels. However, the molecular mechanisms for JAT's anti-obesity effect are still not clear. AIM OF THE STUDY To explore the effect of JAT in the treatment of obesity and the underlying molecular mechanisms. MATERIALS AND METHODS db/db mice were used as a typical obese animal model in current study. The anti-obesity effects of five alkaloids from RC were compared by feeding the mice for 8 weeks with a dosage of 105 mg/kg while the dose-dependent study (35 mg/kg and 105 mg/kg) of JAT on obese mice was conducted in another 8-week-long animal experiment. Meanwhile, RNA-seq analysis, in vitro experiments, and western blotting were utilized to predict and confirm the potential pathway that JAT participated in improving obesity. RESULTS The experimental results demonstrated that five RC alkaloids caused different degrees of weight loss in db/db obese mice. Among them, JAT showed the best effect. It could significantly reduce the body weight, blood lipid levels, and epididymal fat weight of db/db mice. H&E and Oil red O staining results showed that it could also dramatically improve liver lipid metabolism. The results from RNA-seq suggested that JAT had significantly altered 207 DEGs for the treatment of obesity, among which IRS1 changed the most. Next, GO and KEGG analysis enriched four major lipid metabolism-related pathways: biosynthesis of unsaturated fatty acids, PI3K-AKT signaling pathway, metabolic pathways, and fatty acid elongation. Finally, in vitro experiments and western blotting proved that JAT regulated the expression of IRS1/PI3K/AKT pathway-related proteins in a dose-dependent manner to address obesity. CONCLUSIONS In conclusion, JAT from RC has an effect on treating obesity, and its anti-obesity effect may be exerted via the IRS1/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Huan He
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Jianling Deng
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Maochun Yang
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Linjing An
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xuegang Li
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| |
Collapse
|
7
|
Zhou Y, Wang Y, Vong CT, Zhu Y, Xu B, Ruan CC, Wang Y, Cheang WS. Jatrorrhizine Improves Endothelial Function in Diabetes and Obesity through Suppression of Endoplasmic Reticulum Stress. Int J Mol Sci 2022; 23:12064. [PMID: 36292919 PMCID: PMC9602750 DOI: 10.3390/ijms232012064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Jatrorrhizine (JAT) is one of the major bioactive protoberberine alkaloids found in rhizoma coptidis, which has hypoglycemic and hypolipidemic potential. This study aimed to evaluate the vasoprotective effects of JAT in diabetes and obesity and the underlying mechanism involved. Mouse aortas, carotid arteries and human umbilical cord vein endothelial cells (HUVECs) were treated with risk factors (high glucose or tunicamycin) with and without JAT ex vivo and in vitro. Furthermore, aortas were obtained from mice with chronic treatment: (1) control; (2) diet-induced obese (DIO) mice fed a high-fat diet (45% kcal% fat) for 15 weeks; and (3) DIO mice orally administered JAT at 50 mg/kg/day for the last 5 weeks. High glucose or endoplasmic reticulum (ER) stress inducer tunicamycin impaired acetylcholine-induced endothelium-dependent relaxations (EDRs) in mouse aortas, induced oxidative stress in carotid arteries and HUVECs, downregulated phosphorylations of Akt at Ser473 and eNOS at Ser1177 and enhanced ER stress in mouse aortas and HUVECs, and these impairments were reversed by cotreatment with JAT. JAT increased NO release in high-glucose-treated mouse aortas and HUVECs. In addition, chronic JAT treatment restored endothelial function with EDRs comparable to the control, increased Akt/eNOS phosphorylation, and attenuated ER stress and oxidative stress in aortas from DIO mice. Blood pressure, glucose sensitivity, fatty liver and its morphological change, as well as plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and plasma lipid profile, were also normalized by JAT treatment. Collectively, our data may be the first to reveal the vasoprotective effect of JAT that ameliorates endothelial dysfunction in diabetes and obesity through enhancement of the Akt/eNOS pathway and NO bioavailability, as well as suppression of ER stress and oxidative stress.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yuehan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yanyan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200437, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
8
|
Du H, Xu T, Yi H, Xu X, Zhao C, Ge Y, Zhang C, Fan G. Effect of Gut Microbiota on the Metabolism of Chemical Constituents of Berberis kansuensis Extract Based on UHPLC-Orbitrap-MS Technique. PLANTA MEDICA 2022; 88:933-949. [PMID: 34521131 DOI: 10.1055/a-1617-9489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The dried stem bark of Berberis kansuensis is a commonly used Tibetan herbal medicine for the treatment of diabetes. Its main chemical components are alkaloids, such as berberine, magnoflorine and jatrorrhizine. However, the role of gut microbiota in the in vivo metabolism of these chemical components has not been fully elucidated. In this study, an ultra-high performance liquid chromatography method coupled with Orbitrap mass spectrometry (UHPLC-Orbitrap-MS) technology was applied to detect and identify prototype components and metabolites in rat intestinal contents and serum samples after oral administration of a B. kansuensis extract. A total of 16 prototype components and 40 metabolites were identified. The primary metabolic pathways of the chemical components from B. kansuensis extract were demethylation, desaturation, deglycosylation, reduction, hydroxylation, and other conjugation reactions including sulfation, glucuronidation, glycosidation, and methylation. By comparing the differences of metabolites between diabetic and pseudo-germ-free diabetic rats, we found that the metabolic transformation of some chemical components in B. kansuensis extract such as bufotenin, ferulic acid 4-O-β-D-glucopyranoside, magnoflorine, and 8-oxyberberine, was affected by the gut microbiota. The results revealed that the gut microbiota can affect the metabolic transformation of chemical constituents in B. kansuensis extract. These findings can enhance our understanding of the active ingredients of B. kansuensis extract and the key role of the gut microbiota on them.
Collapse
Affiliation(s)
- Huan Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Tong Xu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Huan Yi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Xinmei Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Chengcheng Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Yiman Ge
- Department of Inspection, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Chuantao Zhang
- Department of Respiration, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| |
Collapse
|
9
|
Chen C, Wen M, Wang C, Yuan Z, Jin Y. Differential proteomic analysis of mouse cerebrums with high-fat diet (HFD)-induced hyperlipidemia. PeerJ 2022; 10:e13806. [PMID: 35942128 PMCID: PMC9356585 DOI: 10.7717/peerj.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023] Open
Abstract
Hyperlipidemia is a chronic disease characterized by elevated blood cholesterol and triglycerides and there is accumulated evidence that the disease might affect brain functions. Here we report on a proteomic analysis of the brain proteins in hyperlipidemic mice. Hyperlipidemia was successfully induced in mice by a 20 week high-fat diet (HFD) feeding (model group). A control group with a normal diet and a treatment group with HFD-fed mice treated with a lipid-lowering drug simvastatin (SIM) were established accordingly. The proteins were extracted from the left and right cerebrum hemispheres of the mice in the three groups and subjected to shotgun proteomic analysis. A total of 4,422 proteins were detected in at least half of the samples, among which 324 proteins showed significant difference (fold change >1.5 or <0.67, p < 0.05) in at least one of the four types of comparisons (left cerebrum hemispheres of the model group versus the control group, right cerebrums of model versus control, left cerebrums of SIM versus model, right cerebrums of SIM versus model). Biological process analysis revealed many of these proteins were enriched in the processes correlated with lipid metabolism, neurological disorders, synaptic events and nervous system development. For the first time, it has been reported that some of the proteins have been altered in the brain under the conditions of HFD feeding, obesity or hyperlipidemia. Further, 22 brain processes-related proteins showed different expression in the two cerebrum hemispheres, suggesting changes of the brain proteins caused by hyperlipidemia might also be asymmetric. We hope this work will provide useful information to understand the effects of HFD and hyperlipidemia on brain proteins.
Collapse
Affiliation(s)
- Changming Chen
- Guangdong University of Technology, School of Biomedical and Pharmaceutical Sciences, Guangzhou, Guangdong, China
| | - Meiling Wen
- Guangdong University of Technology, School of Biomedical and Pharmaceutical Sciences, Guangzhou, Guangdong, China
| | - Caixia Wang
- Guangdong University of Technology, School of Biomedical and Pharmaceutical Sciences, Guangzhou, Guangdong, China
| | - Zhongwen Yuan
- The Third Clinical School of Guangzhou Medical University, Department of Pharmacy, Guangzhou, Guangdong, China,Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, China
| | - Ya Jin
- Guangdong University of Technology, School of Biomedical and Pharmaceutical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
JIANG QX, CHEN YM, MA JJ, WANG YP, LI P, WEN XD, YANG J. Effective fraction from Simiao Wan prevents hepatic insulin resistant by inhibition of lipolysis via AMPK activation. Chin J Nat Med 2022; 20:161-176. [DOI: 10.1016/s1875-5364(21)60115-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 12/17/2022]
|
11
|
Zhong F, Chen Y, Chen J, Liao H, Li Y, Ma Y. Jatrorrhizine: A Review of Sources, Pharmacology, Pharmacokinetics and Toxicity. Front Pharmacol 2022; 12:783127. [PMID: 35095493 PMCID: PMC8793695 DOI: 10.3389/fphar.2021.783127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 02/02/2023] Open
Abstract
Jatrorrhizine, an isoquinoline alkaloid, is a bioactive metabolite in common medicinal plants, such as Berberis vernae Schneid., Tinospora sagittata (Oliv.) Gagnep. and Coptis chinensis Franch. These plants have been used for centuries in traditional medicine for their wide-ranging pharmacological properties. This review emphasizes the latest and comprehensive information on the sources, pharmacology, pharmacokinetics and toxicity of jatrorrhizine. Studies on this alkaloid were collected from scientific internet databases, including the Web of Science, PubMed, ScienceDirect, Google Scholar, Elsevier, Springer, Wiley Online Library and Europe PMC and CNKI, using a combination of keywords involving “jatrorrhizine”, “sources”, “pharmacology,” “pharmacokinetics,” and “toxicology”. Jatrorrhizine exhibits anti-diabetic, antimicrobial, antiprotozoal, anticancer, anti-obesity and hypolipidemic properties, along with central nervous system activities and other beneficial activity. Studies of jatrorrhizine have laid the foundation for its application to the treatment of various diseases, but some issues still exist. Further investigations might emphasize 1) specific curative mechanisms of jatrorrhizine and clinical utility, 2) application prospect in the treatment of metabolic disorders, 3) comprehensive investigations of the toxicity mechanisms and 4) interactions of jatrorrhizine with other pharmaceuticals and development of derivatives.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailang Liao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yirou Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuntong Ma
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Cai Y, Wen J, Ma S, Mai Z, Zhan Q, Wang Y, Zhang Y, Chen H, Li H, Wu W, Li R, Luo C. Huang-Lian-Jie-Du Decoction Attenuates Atherosclerosis and Increases Plaque Stability in High-Fat Diet-Induced ApoE -/- Mice by Inhibiting M1 Macrophage Polarization and Promoting M2 Macrophage Polarization. Front Physiol 2021; 12:666449. [PMID: 34539422 PMCID: PMC8445160 DOI: 10.3389/fphys.2021.666449] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/02/2021] [Indexed: 01/22/2023] Open
Abstract
Macrophage polarization plays a vital impact in triggering atherosclerosis (AS) progression and regression. Huang-Lian-Jie-Du Decoction (HLJDD), a famous traditional Chinese decoction, displays notable anti-inflammatory and lipid-lowering effects in different animal models. However, its effects and mechanisms on AS have not been clearly defined. We determined whether HLJDD attenuated atherosclerosis and plaques vulnerability by regulating macrophage polarization in ApoE−/− mice induced by high-fat diet (HFD). Furthermore, we investigated the effects of HLJDD on macrophage polarization in oxidized low-density lipoprotein (ox-LDL) induced RAW264.7 cells. For in vivo assay, compared with the model group, HLJDD ameliorated lipid metabolism, with significantly decreased levels of serum triglyceride, total cholesterol (CHOL), and lipid density lipoprotein. HLJDD suppressed serum tumor necrosis factor α (TNF-α) and IL-1β levels with increased serum IL-10 level, and inhibited mRNA level of NLRP3 inflammasome in carotid tissues. HLJDD enhanced carotid lesion stability by decreasing macrophage infiltration together with increased expression of collagen fibers and α-SMA. Moreover, HLJDD inhibited M1 macrophage polarization, which decreased the expression and mRNA levels of M1 markers [inducible nitric oxide synthase (iNOS) and CD86]. HLJDD enhanced alternatively activated macrophage (M2) activation, which increased the expression and mRNA levels of M2 markers (Arg-1 and CD163). For in vitro assay, HLJDD inhibited foam cell formation in RAW264.7 macrophages disturbed by ox-LDL. Besides, groups with ox-LDL plus HLJDD drug had a lower expression of CD86 and mRNA levels of iNOS, CD86, and IL-1β, but higher expression of CD163 and mRNA levels of Arg-1, CD163, and IL-10 than ox-LDL group. Collectively, our results revealed that HLJDD alleviated atherosclerosis and promoted plaque stability by suppressing M1 polarization and enhancing M2 polarization.
Collapse
Affiliation(s)
- Yinhe Cai
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junmao Wen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siwen Ma
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhexing Mai
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qunzhang Zhan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yijun Wang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueyao Zhang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - He Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiyi Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanjin Luo
- Department of Cardiovascular Medicine, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Rolle J, Asante DO, Kok-Fong LL, Boucetta H, Seidu TA, Tai LLK, Alolga RN. Jatrorrhizine: a review of its pharmacological effects. J Pharm Pharmacol 2021; 73:709-719. [PMID: 33822109 DOI: 10.1093/jpp/rgaa065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Jatrorrhizine is an isoquinoline alkaloid found in medicinal plants. It is the main bioactive compound of the Chinese herbs, Coptis chinensis, Rhizoma coptidis, and Phellodendron chinense Schneid, plants that are predominantly used in traditional Chinese medicine (TCM) for the treatment of metabolic disorders, gastritis, stomachache among a host of others. This manuscript aims to provide a comprehensive review of the pharmacological effects of jatrorrhizine, proffer suggestions on research areas that need redress and potentially serve as a reference for future studies. KEY FINDINGS Published scientific literature was therefore retrieved from all credible sources including Pubmed, Elsevier, Research Gate, Web of Science, Google Scholar, Science Direct, Europe PMC and Wiley Online library using key words such as 'jatrorrhizine', 'botanical sources', 'pharmacology', 'toxicology', 'pharmacokinetics' or their combinations. A cursory examination of relevant scientific literature using the aforementioned key words produced more than 400 publications. CONCLUSIONS Using an inclusion/exclusion criteria the subject matter of this review was adequately addressed. It is our hope that this review will provide a good platform for further research on fully harnessing the potential of this bioactive compound.
Collapse
Affiliation(s)
- Janiqua Rolle
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Dorothy O Asante
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Linsey L Kok-Fong
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hamza Boucetta
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Theodora A Seidu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lesieli L K Tai
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Raphael N Alolga
- Department of Pharmacognosy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Lu Z, Lu F, Wu L, He B, Chen Z, Yan M. Berberine attenuates non-alcoholic steatohepatitis by regulating chemerin/CMKLR1 signalling pathway and Treg/Th17 ratio. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:383-390. [PMID: 32524150 DOI: 10.1007/s00210-020-01914-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
To observe the therapeutic effect of berberine (BBR) on non-alcoholic steatohepatitis (NASH) in rats and the underlying mechanism. A rat model of NASH was established by a high-fat diet, and BBR was used as treatment. Haematoxylin-eosin staining and Oil Red O staining were used to observe the pathological changes in the liver tissue. Western blotting and real-time PCR were used to measure the mRNA and protein levels in the liver. Flow cytometry was performed to detect the number of intrahepatic lymphocyte subtypes. The expression of pro-inflammatory cytokines in the peripheral blood was measured by ELISA. An automatic biochemical method was used to examine the level of blood lipids in the blood. Compared with the rats in the model group, the rats in the BBR group showed significantly improved liver histopathology and serum pro-inflammatory cytokines and free fatty acid (FFA) levels. Moreover, the protein and mRNA expression of chemerin, CMKLR1 and CCR2 in the liver were obviously reduced by BBR treatment. In addition, the high-fat diet remarkably reduced the intrahepatic Treg/Th17 ratio, which could be recovered by BBR treatment. Berberine can ameliorate non-alcoholic steatohepatitis, and its mechanism may be related to restoring the Treg/Th17 ratio, regulating the chemerin/CMKLR1 signalling pathway to reduce liver inflammation and reducing lipid deposition.
Collapse
Affiliation(s)
- Zengsheng Lu
- Department of Infectious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Fengbin Lu
- Department of Infectious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Liyan Wu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China.
| | - Beihui He
- Key Laboratory of Diagnosis and Treatment of Circulatory Diseases in Combination with Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou, 310006, Zhejiang, China
| | - Zhiyun Chen
- Key Laboratory of Diagnosis and Treatment of Circulatory Diseases in Combination with Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou, 310006, Zhejiang, China
| | - Maoxiang Yan
- Key Laboratory of Diagnosis and Treatment of Circulatory Diseases in Combination with Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou, 310006, Zhejiang, China
| |
Collapse
|
15
|
Wu F, Yang X, Hu M, Shao Q, Fang K, Li J, Zhao Y, Xu L, Zou X, Lu F, Chen G. Wu-Mei-Wan prevents high-fat diet-induced obesity by reducing white adipose tissue and enhancing brown adipose tissue function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153258. [PMID: 32563018 DOI: 10.1016/j.phymed.2020.153258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/01/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Wu-Mei-Wan, a classic traditional Chinese herb medicine, is one of the most important formulations to treat digestive diseases from ancient times to the present. Our previous study showed that WMW treatment can prevent T2DM in db/db mice, which motivating the application of WMW on metabolic disorders. PURPOSE Obesity and its comorbid diseases have increased dramatically and are now a worldwide health problem. There is still a lack of satisfactory treatment strategies for obesity. This work was designed to assess the effect and related mechanism of WMW on high fat diet (HFD)-induced obese mice model. METHODS Obese mice were induced by HFD. Thetherapeutic effect of WMW were analyzed by examining body and adipose tissue weight, metabolic profile and energy expenditure. Adipose tissue phenotype was determined by histological staining and the mitochondrial content was examined by transmission electron microscopy (TEM). Immunohistochemical and immunofluorescence staining, RT-qPCR and Western blot analysis were used to evaluate expression of key molecules in adipose tissue. RESULTS WMW treatment significantly protects HFD-induced obesity. Here we showed that WMW limits weight gain, improves metabolic profile and increases energy expenditure. WMW inhibits the hypertrophy and hyperplasia of white adipocytes, the mechanism involving the inhibition of TLR3/IL-6/JAK1/STAT3 pathway. In brown adipose tissue (BAT), WMW promotes thermogenicprogramme without affecting cell proliferation. The activated BMP7/ Smad1/5/9 pathway is considered to be one of the explanations for the effect of WMW on BAT. CONCLUSION Our results suggested that WMW can prevent obesity and its underlying mechanisms are associated with reducing white adipose tissue and enhancing brown adipose tissue function.
Collapse
Affiliation(s)
- Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xueping Yang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jingbin Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yan Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Li S, Xu Y, Guo W, Chen F, Zhang C, Tan HY, Wang N, Feng Y. The Impacts of Herbal Medicines and Natural Products on Regulating the Hepatic Lipid Metabolism. Front Pharmacol 2020; 11:351. [PMID: 32265720 PMCID: PMC7105674 DOI: 10.3389/fphar.2020.00351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
The dysregulation of hepatic lipid metabolism is one of the hallmarks in many liver diseases including alcoholic liver diseases (ALD) and non-alcoholic fatty liver diseases (NAFLD). Hepatic inflammation, lipoperoxidative stress as well as the imbalance between lipid availability and lipid disposal, are direct causes of liver steatosis. The application of herbal medicines with anti-oxidative stress and lipid-balancing properties has been extensively attempted as pharmaceutical intervention for liver disorders in experimental and clinical studies. Although the molecular mechanisms underlying their hepatoprotective effects warrant further exploration, increasing evidence demonstrated that many herbal medicines are involved in regulating lipid accumulation processes including hepatic lipolytic and lipogenic pathways, such as mitochondrial and peroxisomal β-oxidation, the secretion of very low density lipoprotein (VLDL), the non-esterified fatty acid (NEFA) uptake, and some vital hepatic lipogenic enzymes. Therefore, in this review, the pathways or crucial mediators participated in the dysregulation of hepatic lipid metabolism are systematically summarized, followed by the current evidences and advances in the positive impacts of herbal medicines and natural products on the lipid metabolism pathways are detailed. Furthermore, several herbal formulas, herbs or herbal derivatives, such as Erchen Dection, Danshen, resveratrol, and berberine, which have been extensively studied for their promising potential in mediating lipid metabolism, are particularly highlighted in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
17
|
Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. PHARMACEUTICAL BIOLOGY 2019; 57:193-225. [PMID: 30963783 PMCID: PMC6461078 DOI: 10.1080/13880209.2019.1577466] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 05/09/2023]
Abstract
CONTEXT Coptidis rhizome (CR), also known as Huanglian in Chinese, is the rhizome of Coptis chinensis Franch., C. deltoidea C.Y. Cheng et Hsiao, or C. teeta Wall (Ranunculaceae). It has been widely used to treat bacillary dysentery, diabetes, pertussis, sore throat, aphtha, and eczema in China. OBJECTIVES The present paper reviews the latest advances of CR, focusing on the botany, phytochemistry, traditional usages, pharmacokinetics, pharmacology and toxicology of CR and its future perspectives. METHODS Studies from 1985 to 2018 were reviewed from books; PhD. and MSc. dissertations; the state and local drug standards; PubMed; CNKI; Scopus; the Web of Science; and Google Scholar using the keywords Coptis, Coptidis Rhizoma, Huanglian, and goldthread. RESULTS Currently, 128 chemical constituents have been isolated and identified from CR. Alkaloids are the characteristic components, together with organic acids, coumarins, phenylpropanoids and quinones. The extracts/compounds isolated from CR cover a wide pharmacological spectrum, including antibacterial, antivirus, antifungal, antidiabetic, anticancer and cardioprotective effects. Berberine is the most important active constituent and the primary toxic component of CR. CONCLUSIONS As an important herbal medicine in Chinese medicine, CR has the potential to treat various diseases. However, further research should be undertaken to investigate the clinical effects, toxic constituents, target organs and pharmacokinetics, and to establish criteria for quality control, for CR and its related medications. In addition, the active constituents, other than alkaloids, in both raw and processed products of CR should be investigated.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-Bo Yang
- Ya'an Xun Kang Pharmaceutical Co., Ltd, Ya'an, China
| |
Collapse
|
18
|
Salehi B, Ata A, V. Anil Kumar N, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, Abdulmajid Ayatollahi S, Valere Tsouh Fokou P, Kobarfard F, Amiruddin Zakaria Z, Iriti M, Taheri Y, Martorell M, Sureda A, N. Setzer W, Durazzo A, Lucarini M, Santini A, Capasso R, Adrian Ostrander E, -ur-Rahman A, Iqbal Choudhary M, C. Cho W, Sharifi-Rad J. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019; 9:E551. [PMID: 31575072 PMCID: PMC6843349 DOI: 10.3390/biom9100551] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is one of the major health problems in the world, the incidence and associated mortality are increasing. Inadequate regulation of the blood sugar imposes serious consequences for health. Conventional antidiabetic drugs are effective, however, also with unavoidable side effects. On the other hand, medicinal plants may act as an alternative source of antidiabetic agents. Examples of medicinal plants with antidiabetic potential are described, with focuses on preclinical and clinical studies. The beneficial potential of each plant matrix is given by the combined and concerted action of their profile of biologically active compounds.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada;
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576104, India;
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan;
| | - Karina Ramírez-Alarcón
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepción 4070386, Chile;
| | - Ana Ruiz-Ortega
- Facultad de Educación y Ciencias Sociales, Universidad Andrés Bello, Autopista Concepción—Talcahuano, Concepción 7100, Chile;
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
| | - Patrick Valere Tsouh Fokou
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon;
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
| | - Zainul Amiruddin Zakaria
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Integrative Pharmacogenomics Institute (iPROMISE), Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam Selangor 42300, Malaysia
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepción 4070386, Chile;
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN—Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, E-07122 Palma de Mallorca, Spain;
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA;
| | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49-80131 Napoli, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Elise Adrian Ostrander
- Medical Illustration, Kendall College of Art and Design, Ferris State University, Grand Rapids, MI 49503, USA;
| | - Atta -ur-Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.-u.-R.); (M.I.C.)
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.-u.-R.); (M.I.C.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Javad Sharifi-Rad
- Department of Pharmacology, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft 7861756447, Iran
| |
Collapse
|
19
|
Liang RF, Ge WJ, Song XM, Zhang JP, Cui WF, Zhang SF, Li GS. Involvement of organic anion-transporting polypeptides and organic cation transporter in the hepatic uptake of jatrorrhizine. Xenobiotica 2019; 50:479-487. [PMID: 31368836 DOI: 10.1080/00498254.2019.1651921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Jatrorrhizine possesses a wide spectrum of pharmacological activities. However, the mechanism underlying hepatic uptake of jatrorrhizine remains unclear.Rat liver slices, isolated rat hepatocytes and human embryonic kidney 293 (HEK293) cells stably expressing human organic anion-transporting polypeptide (OATP) and organic cation transporter (OCT) were used to evaluate the hepatic uptake of jatrorrhizine in this study.Uptake of jatrorrhizine in rat liver slices and isolated rat hepatocytes was significantly inhibited by glycyrrhizic acid (Oatp1b2 inhibitor) and prazosin (Oct1 inhibitor), but not by ibuprofen (Oatp1a1 inhibitor) or digoxin (Oatp1a4 inhibitor). Uptake of jatrorrhizine in OATP1B3 and OCT1-HEK293 cells indicated a saturable process with the Km of 8.20 ± 1.28 and 4.94 ± 0.55 μM, respectively. However, the transcellular transport of jatrorrhizine in OATP1B1-HEK293 cells was not observed. Rifampicin (OATP inhibitor) for OATP1B3-HEK293 cells and prazosin for OCT1-HEK293 cells could inhibit the uptake of jatrorrhizine with the IC50 of 5.49 ± 1.05 and 2.77 ± 0.72 μM, respectively.The above data indicate that hepatic uptake of jatrorrhizine is involved in both OATP and OCT, which may have important roles in jatrorrhizine liver disposition and potential drug-drug interactions.
Collapse
Affiliation(s)
- Rui-Feng Liang
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Wen-Jing Ge
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Xian-Mei Song
- Department of Immunology, Henan Medical College, Zhengzhou, China
| | - Jun-Ping Zhang
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Wei-Feng Cui
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - She-Feng Zhang
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Geng-Sheng Li
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
20
|
Ran Q, Wang J, Wang L, Zeng HR, Yang XB, Huang QW. Rhizoma coptidis as a Potential Treatment Agent for Type 2 Diabetes Mellitus and the Underlying Mechanisms: A Review. Front Pharmacol 2019; 10:805. [PMID: 31396083 PMCID: PMC6661542 DOI: 10.3389/fphar.2019.00805] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, especially type 2 diabetes mellitus (T2DM), has become a significant public health burden. Rhizoma coptidis (RC), known as Huang Lian, is widely used for treating diabetes in China. The bioactive compounds of RC, especially alkaloids, have the potential to suppress T2DM-induced lesions, including diabetic vascular dysfunction, diabetic heart disease, diabetic hyperlipidemia, diabetic nephropathy, diabetic encephalopathy, diabetic osteopathy, diabetic enteropathy, and diabetic retinopathy. This review summarizes the effects of RC and its bioactive compounds on T2DM and T2DM complications. Less research has been conducted on non-alkaloid fractions of RC, which may exert synergistic action with alkaloids. Moreover, we summarized the pharmacokinetic properties and structure-activity relationships of RC on T2DM with reference to extant literature and showed clearly that RC has potential therapeutic effect on T2DM.
Collapse
Affiliation(s)
- Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-bo Yang
- Ya’an Xun Kang Pharmaceutical Co., Ltd, Ya’an, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Wang Z, Yang Y, Liu M, Wei Y, Liu J, Pei H, Li H. Rhizoma Coptidis for Alzheimer's Disease and Vascular Dementia: A Literature Review. Curr Vasc Pharmacol 2019; 18:358-368. [PMID: 31291876 DOI: 10.2174/1570161117666190710151545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) and vascular dementia (VaD) are major types of dementia, both of which cause heavy economic burdens for families and society. However, no currently available medicines can control dementia progression. Rhizoma coptidis, a Chinese herbal medicine, has been used for >2000 years and is now gaining attention as a potential treatment for AD and VaD. METHODS We reviewed the mechanisms of the active ingredients of Rhizoma coptidis and Rhizoma coptidis-containing Chinese herbal compounds in the treatment of AD and VaD. We focused on studies on ameliorating the risk factors and the pathological changes of these diseases. RESULTS The Rhizoma coptidis active ingredients include berberine, palmatine, coptisine, epiberberine, jatrorrhizine and protopine. The most widely studied ingredient is berberine, which has extensive therapeutic effects on the risk factors and pathogenesis of dementia. It can control blood glucose and lipid levels, regulate blood pressure, ameliorate atherosclerosis, inhibit cholinesterase activity, Aβ generation, and tau hyperphosphorylation, decrease neuroinflammation and oxidative stress and alleviate cognitive impairment. Other ingredients (such as jatrorrhizine, coptisine, epiberberine and palmatine) also regulate blood lipids and blood pressure; however, there are relatively few studies on them. Rhizoma coptidis-containing Chinese herbal compounds like Huanglian-Jie-Du-Tang, Huanglian Wendan Decoction, Banxia Xiexin Decoction and Huannao Yicong Formula have anti-inflammatory and antioxidant stress activities, regulate insulin signaling, inhibit γ-secretase activity, neuronal apoptosis, tau hyperphosphorylation, and Aβ deposition, and promote neural stem cell differentiation, thereby improving cognitive function. CONCLUSION The "One-Molecule, One-Target" paradigm has suffered heavy setbacks, but a "multitarget- directed ligands" strategy may be viable. Rhizoma coptidis active ingredients and Rhizoma coptidiscontaining Chinese herbal compounds have multi-aspect therapeutic effects on AD and VaD.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yang Yang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meixia Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yun Wei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jiangang Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
22
|
Ma H, He K, Zhu J, Li X, Ye X. The anti-hyperglycemia effects of Rhizoma Coptidis alkaloids: A systematic review of modern pharmacological studies of the traditional herbal medicine. Fitoterapia 2019; 134:210-220. [PMID: 30836124 DOI: 10.1016/j.fitote.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023]
Abstract
Hyperglycemia is a common endocrine system disease, which seriously affects people's health with a increasing morbidity in recent years. Rhizoma Coptidis (RC), one of the most commonly used traditional Chinese medicines, has been applied to treat diabetes in clinic for thousands of years. Since scientists demonstrated that alkaloids from RC owned the amazing anti-hyperglycemia activities 30 years ago, these compounds have been widely used for the treatment of diabetes and hyperglycemia with unconspicuous toxicities and side effects. With the help of molecular biology, immunology and other techniques, the mechanisms about anti-hyperglycemia effect of RC alkaloids have been extensively discussed. Numerous studies showed that RC alkaloids balanced the glucose homeostasis not only by widely recognizing insulin resistance pathways, but also by promoting insulin secretion, regulating intestinal hormones, ameliorating gut microbiota structures and many other ways. In this review, we combine the latest advances and systematically summarize the mechanisms of RC alkaloids in treating hyperglycemia and diabetic nephropathy to provide a deeper understanding of these natural alkaloids. In addition, the important role of gut microbiota associated with the glucose metabolism is also reviewed.
Collapse
Affiliation(s)
- Hang Ma
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; Engineering Research Center of Cell and Therapeutic Antibody Medicine, Ministry of Education, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Kai He
- Department of Clinical Laboratory, Hunan University of Medicine, Hunan 418000, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody Medicine, Ministry of Education, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Xuegang Li
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
23
|
Jatrorrhizine Hydrochloride Suppresses RANKL-Induced Osteoclastogenesis and Protects against Wear Particle-Induced Osteolysis. Int J Mol Sci 2018; 19:ijms19113698. [PMID: 30469456 PMCID: PMC6275021 DOI: 10.3390/ijms19113698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 01/22/2023] Open
Abstract
Wear particle-induced aseptic prosthetic loosening is a major complication associated with total joint arthroplasty (TJA). A growing body of evidence suggests that receptor activator of nuclear factor κ-B ligand (RANKL)-stimulated osteoclastogenesis and bone resorption are responsible for peri-implant loosening. Thus, agents which attenuate excessive osteoclast differentiation and function have been considered to offer therapeutic potential for prolonging the life of TJA implants. Jatrorrhizine hydrochloride (JH), a major protoberberine alkaloid isolated from the traditional Chinese herb Coptis chinensis, has been reported to have antimicrobial, antitumor, and antihypercholesterolemic and neuroprotective activities. However, its effects on osteoclast biology remain unknown. Here, we found that JH inhibited RANKL-induced osteoclast formation and bone resorption in vitro and exerted protection against titanium (Ti) particle-induced osteolysis in vivo. Biochemical analysis demonstrated that JH suppressed RANKL-induced activation of MAPKs (p38 and ERK) which down-regulated the production of NFATc1 and NFATc1-regulated osteoclastic marker genes, such as TRAP, CTR and CTSK. Collectively, our findings suggest that JH may be a promising anti-osteoclastogenesis agent for treating periprosthetic osteolysis or other osteoclast-related osteolytic diseases.
Collapse
|
24
|
Wang J, Ran Q, Zeng HR, Wang L, Hu CJ, Huang QW. Cellular stress response mechanisms of Rhizoma coptidis: a systematic review. Chin Med 2018; 13:27. [PMID: 29930696 PMCID: PMC5992750 DOI: 10.1186/s13020-018-0184-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/27/2018] [Indexed: 12/29/2022] Open
Abstract
Rhizoma coptidis has been used in China for thousands of years with the functions of heating dampness and purging fire detoxification. But the underlying molecular mechanisms of Rhizoma coptidis are still far from being fully elucidated. Alkaloids, especially berberine, coptisine and palmatine, are responsible for multiple pharmacological effects of Rhizoma coptidis. In this review, we studied on the effects and molecular mechanisms of Rhizoma coptidis on NF-κB/MAPK/PI3K–Akt/AMPK/ERS and oxidative stress pathways. Then we summarized the mechanisms of these alkaloid components of Rhizoma coptidis on cardiovascular and cerebrovascular diseases, diabetes and diabetic complications. Evidence presented in this review implicated that Rhizoma coptidis exerted beneficial effects on various diseases by regulation of NF-κB/MAPK/PI3K–Akt/AMPK/ERS and oxidative stress pathways, which support the clinical application of Rhizoma coptidis and offer references for future researches.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Chang-Jiang Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| |
Collapse
|
25
|
Qiu H, Sun S, Ma X, Cui C, Chen G, Liu Z, Li H, Liu M. Jatrorrhizine Hydrochloride Suppresses Proliferation, Migration, and Secretion of Synoviocytes In Vitro and Ameliorates Rat Models of Rheumatoid Arthritis In Vivo. Int J Mol Sci 2018; 19:E1514. [PMID: 29783696 PMCID: PMC5983572 DOI: 10.3390/ijms19051514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 12/14/2022] Open
Abstract
Jatrorrhizine hydrochloride (JH), an active component isolated from the traditional Chinese herb Coptis chinensis, has been reported to have antimicrobial, antitumor, antihypercholesterolemic, and neuroprotective activities. However, its antirheumatoid arthritis (RA) property remains unknown. In this study, a collagen-induced arthritis (CIA) rat model was used to evaluate the therapeutic effects of JH on RA by using arthritis score, radiological evaluation, and histopathological assessment. The in vitro effects of JH on proliferation, migration, and production of inflammatory mediators in RA-derived fibroblast-like synoviocyte MH7A cells were determined by the EdU incorporation assay, wound healing assay, real-time PCR, and ELISA, respectively. The in vivo studies showed that JH treatment significantly prevented the progression and development of RA in CIA rats through anti-inflammation and suppressing bone destruction. The in vitro studies revealed that JH could effectively attenuate the destructive phenotypes of MH7A cells, including inhibiting proliferation, migration, and production of inflammatory mediators. Further mechanistic analysis demonstrated that JH suppressed tumor necrosis factor alpha (TNFα)-stimulated activations of nuclear factor of kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) (ERK and p38) leading to the downregulation of proinflammatory cytokines, which might be beneficial to the antiproliferative and antimigratory activities of FLS cells. Collectively, our results demonstrated that JH has a great potential to be developed into a novel therapeutic agent for treating RA.
Collapse
Affiliation(s)
- Haiwen Qiu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Shengnan Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xuemei Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Congcong Cui
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Gang Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Zhenzhou Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Hui Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
26
|
Meng FC, Wu ZF, Yin ZQ, Lin LG, Wang R, Zhang QW. Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med 2018. [PMID: 29541156 PMCID: PMC5842587 DOI: 10.1186/s13020-018-0171-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Coptidis rhizoma (CR) is the dried rhizome of Coptis chinensis Franch., C. deltoidea C. Y. Cheng et Hsiao or C. teeta Wall. (Ranunculaceae) and is commonly used in Traditional Chinese Medicine for the treatment of various diseases including bacillary dysentery, typhoid, tuberculosis, epidemic cerebrospinal meningitis, empyrosis, pertussis, and other illnesses. Methods A literature survey was conducted via SciFinder, ScieneDirect, PubMed, Springer, and Wiley databases. A total of 139 selected references were classified on the basis of their research scopes, including chemical investigation, quality evaluation and pharmacological studies. Results Many types of secondary metabolites including alkaloids, lignans, phenylpropanoids, flavonoids, phenolic compounds, saccharides, and steroids have been isolated from CR. Among them, protoberberine-type alkaloids, such as berberine, palmatine, coptisine, epiberberine, jatrorrhizine, columamine, are the main components of CR. Quantitative determination of these alkaloids is a very important aspect in the quality evaluation of CR. In recent years, with the advances in isolation and detection technologies, many new instruments and methods have been developed for the quantitative and qualitative analysis of the main alkaloids from CR. The quality control of CR has provided safety for pharmacological applications. These quality evaluation methods are also frequently employed to screen the active components from CR. Various investigations have shown that CR and its main alkaloids exhibited many powerful pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetic, neuroprotective, cardioprotective, hypoglycemic, anti-Alzheimer and hepatoprotective activities. Conclusion This review summarizes the recent phytochemical investigations, quality evaluation methods, the biological studies focusing on CR as well as its main alkaloids.
Collapse
Affiliation(s)
- Fan-Cheng Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Zheng-Feng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Zhi-Qi Yin
- 2Department of Traditional Chinese Medicines Pharmaceuticals, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| |
Collapse
|
27
|
Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol Res 2018; 130:451-465. [PMID: 29395440 DOI: 10.1016/j.phrs.2018.01.015] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have implied that diabetes mellitus (DM) will become an epidemic accompany with metabolic and endocrine disorders worldwide. Most of DM patients are affected by type 2 diabetes mellitus (T2DM) with insulin resistance and insulin secretion defect. Generally, the strategies to treat T2DM are diet control, moderate exercise, hypoglycemic and lipid-lowing agents. Despite the therapeutic benefits for the treatment of T2DM, most of the drugs can produce some undesirable side effects. Considering the pathogenesis of T2DM, natural products (NPs) have become the important resources of bioactive agents for anti-T2DM drug discovery. Recently, more and more natural components have been elucidated to possess anti-T2DM properties, and many efforts have been carried out to elucidate the possible mechanisms. The aim of this paper was to overview the activities and underlying mechanisms of NPs against T2DM. Developments of anti-T2DM agents will be greatly promoted with the increasing comprehensions of NPs for their multiple regulating effects on various targets and signal pathways.
Collapse
Affiliation(s)
- Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yue Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Dai
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
28
|
Xu Z, Feng W, Shen Q, Yu N, Yu K, Wang S, Chen Z, Shioda S, Guo Y. Rhizoma Coptidis and Berberine as a Natural Drug to Combat Aging and Aging-Related Diseases via Anti-Oxidation and AMPK Activation. Aging Dis 2017; 8:760-777. [PMID: 29344415 PMCID: PMC5758350 DOI: 10.14336/ad.2016.0620] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 06/20/2017] [Indexed: 12/25/2022] Open
Abstract
Aging is the greatest risk factor for human diseases, as it results in cellular growth arrest, impaired tissue function and metabolism, ultimately impacting life span. Two different mechanisms are thought to be primary causes of aging. One is cumulative DNA damage induced by a perpetuating cycle of oxidative stress; the other is nutrient-sensing adenosine monophosphate-activated protein kinase (AMPK) and rapamycin (mTOR)/ ribosomal protein S6 (rpS6) pathways. As the main bioactive component of natural Chinese medicine rhizoma coptidis (RC), berberine has recently been reported to expand life span in Drosophila melanogaster, and attenuate premature cellular senescence. Most components of RC including berberine, coptisine, palmatine, and jatrorrhizine have been found to have beneficial effects on hyperlipidemia, hyperglycemia and hypertension aging-related diseases. The mechanism of these effects involves multiple cellular kinase and signaling pathways, including anti-oxidation, activation of AMPK signaling and its downstream targets, including mTOR/rpS6, Sirtuin1/ forkhead box transcription factor O3 (FOXO3), nuclear factor erythroid-2 related factor-2 (Nrf2), nicotinamide adenine dinucleotide (NAD+) and nuclear factor-κB (NF-κB) pathways. Most of these mechanisms converge on AMPK regulation on mitochondrial oxidative stress. Therefore, such evidence supports the possibility that rhizoma coptidis, in particular berberine, is a promising anti-aging natural product, and has pharmaceutical potential in combating aging-related diseases via anti-oxidation and AMPK cellular kinase activation.
Collapse
Affiliation(s)
- Zhifang Xu
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wei Feng
- 3South Branch of Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing 102618, China
| | - Qian Shen
- 4Dongfang hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Nannan Yu
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Kun Yu
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shenjun Wang
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhigang Chen
- 4Dongfang hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Seiji Shioda
- 5Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo 142-8501, Japan
| | - Yi Guo
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| |
Collapse
|