1
|
Rad MG, Sharifi M, Meamar R, Soltani N. Long term administration of thiamine disulfide improves FOXO1/PEPCK pathway in liver to reduce insulin resistance in type 1 diabetes rat model. Biomed Pharmacother 2024; 177:117053. [PMID: 38945083 DOI: 10.1016/j.biopha.2024.117053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
OBJECTIVE The main objective of this study was to find if thiamine disulfide (TD) lowers blood glucose level and improves insulin resistance (IR) in liver and muscle in rats with chronic type 1 diabetes (T1DM) using euglycemic-hyperinsulinemic clamp technique. METHODS A total of fifty male Wistar rats were assigned to five groups consisted of: non-diabetic control (NDC), diabetic control (DC), diabetic treated with thiamine disulfide (D-TD), diabetic treated with insulin (D-insulin), and diabetic treated with both TD and insulin (D-insulin+TD). Diabetes was induced by a 60 mg/kg dose of streptozotocin. Blood glucose levels, pyruvate tolerance test (PTT), intraperitoneal glucose tolerance test (IPGTT), levels of glycosylated hemoglobin (HbA1c), glucose infusion rate (GIR), liver and serum lipid profiles, liver glycogen stores, liver enzymes ([ALT], [AST]), and serum calcium and magnesium levels. were evaluated. Additionally, gene expression levels of phosphoenolpyruvate carboxykinase (Pepck), forkhead box O1 (Foxo1), and glucose transporter type 4 (Glut4) were assessed in liver and skeletal muscle tissues. RESULTS Blood glucose level was reduced by TD treatment. In addition, TyG index, HOMA-IR, serum and liver lipid profiles, HbA1c levels, and expressions of Foxo1 and Pepck genes were decreased significantly (P<0.05) in all the treated groups. However, TD did not influence Glut4 gene expression, but GIR as a critical index of IR were 5.0±0.26, 0.29±0.002, 1.5±0.07, 0.9±0.1 and 1.3±0.1 mg.min-1Kg-1 in NDC, DC, D-TD, D-insulin and D-insulin+TD respectively. CONCLUSIONS TD improved IR in the liver primarily by suppressing gluconeogenic pathways, implying the potential use of TD as a therapeutic agent in diabetes.
Collapse
Affiliation(s)
- Mahtab Ghanbari Rad
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rokhsareh Meamar
- Department of Clinical Toxicology, Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Park JE, Han JS. HM-chromanone isolated from Portulaca oleracea L. alleviates insulin resistance and inhibits gluconeogenesis by regulating palmitate-induced activation of ROS/JNK in HepG2 cells. Toxicol Res (Camb) 2023; 12:648-657. [PMID: 37663815 PMCID: PMC10470364 DOI: 10.1093/toxres/tfad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 09/05/2023] Open
Abstract
Oxidative stress is a major cause of hepatic insulin resistance. This study investigated whether (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HM-chromanone), a homoisoflavonoid compound isolated from Portulaca oleracea L., alleviates insulin resistance and inhibits gluconeogenesis by reducing palmitate (PA)-induced reactive oxygen species (ROS)/c-Jun NH2-terminal kinase (JNK) activation in HepG2 cells. PA treatment (0.5 mM) for 16 h resulted in the highest production of ROS and induced insulin resistance in HepG2 cells. HM-chromanone, like N-acetyl-1-cysteine, significantly decreased PA-induced ROS production in the cells. HM-chromanone also significantly inhibited PA-induced JNK activation, showing a significant reduction in tumor necrosis factor and interleukin expression levels. Thus, HM-chromanone decreased the phosphorylation of Ser307 in insulin receptor substrate 1, while increasing phosphorylation of serine-threonine kinase (AKT), thereby restoring the insulin signaling pathway impaired by PA. HM-chromanone also significantly increased the phosphorylation of forkhead box protein O, thereby inhibiting the expression of gluconeogenic enzymes and reducing glucose production in PA-treated HepG2 cells. HM-chromanone also increased glycogen synthesis by phosphorylating glycogen synthase kinase-3β. Therefore, HM-chromanone may alleviate insulin resistance and inhibit gluconeogenesis by regulating PA-induced ROS/JNK activation in HepG2 cells.
Collapse
Affiliation(s)
- Jae Eun Park
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Chen L, Gao Y, Zhao Y, Yang G, Wang C, Zhao Z, Li S. Chondroitin sulfate stimulates the secretion of H 2S by Desulfovibrio to improve insulin sensitivity in NAFLD mice. Int J Biol Macromol 2022; 213:631-638. [PMID: 35667460 DOI: 10.1016/j.ijbiomac.2022.05.195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 01/21/2023]
Abstract
Hydrogen sulfide (H2S) is a bioactive gas regulating insulin secretion and sensitivity, produced by sulfate-reducing bacteria in the gut. The present study investigated the effect of chondroitin sulfate (CS) treatment, which indirectly increased the H2S production on nonalcoholic fatty liver disease (NAFLD). A 7-week CS supplementation had beneficial effects on body weight gain, liver function, hepatic histology, and serum lipid levels. CS could ameliorate diet-induced insulin resistance and improve insulin sensitivity via the AKT pathway, and modulate gut microbiota composition, especially increased the abundance of Desulfovibrio and elevated levels of hydrogen sulfide (H2S). Collectively, these findings suggested that CS treatment was positively correlated with Desulfovibrio in the gut, and the metabolic H2S flowed into the liver via the gut-liver axis, thereby triggering the AKT signaling pathway and improving insulin resistance. Thus, CS-induced alterations in the gut microbiota seem a promising for ameliorating NAFLD.
Collapse
Affiliation(s)
- Long Chen
- Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, Changchun 130033, PR China
| | - Yansong Gao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Yujuan Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Ge Yang
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Chao Wang
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Zijian Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China.
| | - Shengyu Li
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China.
| |
Collapse
|
4
|
Duan L, Qian X, Wang Q, Huang L, Ge S. Experimental Periodontitis Deteriorates Cognitive Function and Impairs Insulin Signaling in a Streptozotocin-Induced Alzheimer’s Disease Rat Model. J Alzheimers Dis 2022; 88:57-74. [PMID: 35527550 DOI: 10.3233/jad-215720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: With advancements in periodontal medicine, the relationship between periodontitis and systemic diseases has garnered increasing attention. Recently, emerging evidence has indicated that periodontitis may be involved in the pathogenesis of Alzheimer’s disease (AD). Objective: To assess the impact of experimental periodontitis on cognitive function deficits in a rat model of streptozotocin-induced AD and determine the mechanisms underlying these effects. Methods: Rats were randomly assigned to the control (C), experimental periodontitis (P), Alzheimer’s disease (AD), and experimental periodontitis with streptozotocin-induced AD (AD-P) groups. Experimental periodontitis was induced using ligation and coating with Porphyromonas gingivalis. In the AD-P group, AD was induced by intracerebroventricular injection of streptozotocin after 6 weeks of experimental periodontitis induction. Results: Compared with the group C rats, those in group P exhibited alveolar bone resorption, learning and memory function impairment, and decreased insulin sensitivity and insulin signaling-related protein expression. Glial cell activation and cognitive impairment in streptozotocin-induced groups with significantly increased phosphorylated tau levels were more pronounced relative to the C group. The number of neurons and insulin sensitivity and insulin signaling-related protein expression in group AD-P rats were lower than those in the AD alone group, while the expressions of glial fibrillary acidic protein, tau phosphorylation, interleukin-6, and cyclooxygenase-2 were significantly increased. Conclusion: Periodontitis may be a risk factor exacerbating cognitive deficits in an AD-like neurodegenerative context, possibly by impairing the insulin signaling pathway and stimulating gliosis and neuroinflammation.
Collapse
Affiliation(s)
- Lian Duan
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xueshen Qian
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qin Wang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lan Huang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Song Ge
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
5
|
Nishimura K, Iitaka S, Nakagawa H. Effect of trivalent chromium on erythropoietin production and the prevention of insulin resistance in HepG2 cells. Arch Biochem Biophys 2021; 708:108960. [PMID: 34097902 DOI: 10.1016/j.abb.2021.108960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
In erythropoietin (EPO)-producing HepG2 cells, we investigated the effect of trivalent chromium (Cr) on the promotion of EPO production and the induction of insulin resistance. Cr increased hypoxia-inducible factor (HIF)-1α protein, EPO mRNA expression and EPO protein levels in HepG2 cells. The effect of Cr on EPO production was inhibited by inhibition of proliferator-activated receptor γ (PPARγ). Insulin resistance was induced by culturing with insulin resistance induction medium supplemented with palmitic acid for 24 h. When Cr was added to the medium, the increase in glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 mRNA expression levels and the decrease in the ratio of phosphorylated Akt to Akt protein were suppressed, and the induction of insulin resistance prevented. When a PPARγ inhibitor or siPPARγ was added together with Cr, the inhibitory effect of Cr on the induction of insulin resistance disappeared. In addition, pretreatment with siEPO suppressed the increase in EPO mRNA expression, and the inhibitory effect on the induction of insulin resistance due to the addition of Cr was significantly reduced. These results suggest that the inhibition of insulin resistance induction by Cr in HepG2 cells involves the promotion of EPO production mediated by PPARγ, in addition to other PPARγ-mediated activities.
Collapse
Affiliation(s)
- Kazuhiko Nishimura
- Laboratory of Bioenvironmental Sciences, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ohrai-Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Suzuka Iitaka
- Laboratory of Bioenvironmental Sciences, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ohrai-Kita, Izumisano, Osaka, 598-8531, Japan
| | - Hiroshi Nakagawa
- Laboratory of Bioenvironmental Sciences, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ohrai-Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
6
|
Bao S, Wang X, Cho SB, Wu YL, Wei C, Han S, Bao L, Wu Q, Ao W, Nan JX. Agriophyllum Oligosaccharides Ameliorate Diabetic Insulin Resistance Through INS-R/IRS/Glut4-Mediated Insulin Pathway in db/db Mice and MIN6 Cells. Front Pharmacol 2021; 12:656220. [PMID: 34497509 PMCID: PMC8419282 DOI: 10.3389/fphar.2021.656220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
We have previously reported that Agriophyllum oligosaccharides (AOS) significantly enhance glycemic control by increasing the activation of insulin receptor (INS-R), insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), peroxisome proliferator-activated receptor (PPAR)-γ, and glucose transporter 4 (Glut4) proteins in hepatic tissues. However, the effect of glucose control by AOS on the regulation of pancreatic tissues in db/db mice and MIN6 cells remains to be determined. An oral dose of AOS (380 or 750 mg/kg) was administered to type-2 diabetic db/db mice for 8 weeks to determine whether AOS regulates glucose by the INS-R/IRS/Glut4-mediated insulin pathway. Meanwhile, the effects of AOS on glucose uptake and its related signaling pathway in MIN6 cells were also investigated. The results showed that the random blood glucose (RBG) level in the AOS-treated group was lower than that in the control group. AOS reduced the levels of glycated hemoglobin (HbA1c) and free fatty acid (FFA) and significantly improved the pathological changes in the pancreatic tissues in db/db mice. Moreover, immunohistochemical analysis revealed that the expression of INS-R, IRS-1, IRS-2, and Glut4 was increased in the AOS-treated group than in the model group. Further, in vitro experiments using MIN6 cells showed that AOS regulated INS-R, IRS-1, IRS-2, and Glut4 protein and mRNA levels and attenuated insulin resistance and cell apoptosis. The results of both in vitro and in vivo experiments were comparable. Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometric analysis of AOS with precolumn derivatization with 3-amino-9-ethylcarbazole (AEC) tentatively identified five types of sugars: glucose, lactose, rutinose, glucuronic acid, and maltotriose. Our present study clearly showed that AOS is efficacious in preventing hyperglycemia, possibly by increasing insulin sensitivity and improving IR by regulating the INS-R/IRS/Glut4 insulin signal pathway. Therefore, AOS may be considered as a potential drug for diabetes treatment.
Collapse
Affiliation(s)
- Shuyin Bao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.,Medical College, Inner Mongolia University for Nationalities, Tongliao, China
| | - Xiuzhi Wang
- Department of Medicines and Foods, Tongliao Vocational College, Tongliao, China.,The Research Institute of Traditional Mongolian Medicine Engineering Technology, Tongliao, China
| | - Sung Bo Cho
- College of Traditional Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao, China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Chengxi Wei
- Medical College, Inner Mongolia University for Nationalities, Tongliao, China
| | - Shuying Han
- Basic Medical College, North China University of Science and Technology, Tangshan, China
| | - Liming Bao
- College of Traditional Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao, China
| | - Qiong Wu
- Department of Cardiology, Tongliao Second People's Hospital, Tongliao, China
| | - Wuliji Ao
- The Research Institute of Traditional Mongolian Medicine Engineering Technology, Tongliao, China.,College of Traditional Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.,Clinical Research Center, Yanbian University Hospital, Yanji, China
| |
Collapse
|
7
|
Li G, Tan X, Zhang B, Guan L, Zhang Y, Yin L, Gao M, Zhu S, Xu L. Hengshun Aromatic Vinegar Improves Glycolipid Metabolism in Type 2 Diabetes Mellitus via Regulating PGC-1α/PGC-1β Pathway. Front Pharmacol 2021; 12:641829. [PMID: 33981226 PMCID: PMC8109051 DOI: 10.3389/fphar.2021.641829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Hengshun aromatic vinegar (HSAV), produced by typical solid-state or liquid-state fermentation techniques, is consumed worldwide as a food condiment. HSAV shows multiple bioactivities, but its activity in type 2 diabetes mellitus (T2DM) and possible mechanisms have not been reported. In this study, the effects of HSAV against T2DM were evaluated in insulin-induced HepG2 cells and high-fat diet (HFD) and streptozotocin (STZ) induced T2DM rats. Then, the mechanisms of HSAV against T2DM were explored by Real-time PCR, Western blot, immunofluorescence assays, siRNA transfection and gene overexpression experiments. Results indicated that HSAV significantly improved glucose consumption and reduced triglycerides (TG) contents in metabolic disordered HepG2 cells. Meanwhile, HSAV obviously alleviated general status, liver and kidney functions of T2DM rats, and decreased hyperglycemia and hyperlipidemia, improved insulin resistance, and reduced lipid accumulation in liver. Mechanism studies indicated that HSAV markedly down-regulated the expression of proliferator-activated receptor γ coactivator-1α (PGC-1α), then regulated peroxisome proliferators-activated receptor α (PPAR-α)/protein kinase B (AKT) signal pathway mediated gluconeogenesis and glycogen synthesis. Meanwhile, HSAV significantly up-regulated proliferator-activated receptor γ coactivator-1β (PGC-1β), and subsequently decreased sterol regulatory element binding protein-1c (SREBP-1c) pathway mediated lipogenesis. In conclusion, HSAV showed potent anti-T2DM activity in ameliorating dysfunction of glycolipid metabolism through regulating PGC-1α/PGC-1β pathway, which has a certain application prospect as an effective diet supplement for T2DM therapy in the future.
Collapse
Affiliation(s)
- Guoquan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Xuemei Tan
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bao Zhang
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Linshu Guan
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yidan Zhang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Meng Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shenghu Zhu
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Zywno H, Bzdega W, Kolakowski A, Kurzyna P, Harasim-Symbor E, Sztolsztener K, Chabowski A, Konstantynowicz-Nowicka K. The Influence of Coumestrol on Sphingolipid Signaling Pathway and Insulin Resistance Development in Primary Rat Hepatocytes. Biomolecules 2021; 11:biom11020268. [PMID: 33673122 PMCID: PMC7918648 DOI: 10.3390/biom11020268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Coumestrol is a phytoestrogen widely known for its anti-diabetic, anti-oxidant, and anti-inflammatory properties. Thus, it gets a lot of attention as a potential agent in the nutritional therapy of diseases such as obesity and type 2 diabetes. In our study, we evaluated whether coumestrol affects insulin resistance development via the sphingolipid signaling pathway in primary rat hepatocytes. The cells were isolated from the male Wistar rat's liver with the use of collagenase perfusion. Next, we incubated the cells with the presence or absence of palmitic acid and/or coumestrol. Additionally, some groups were incubated with insulin. The sphingolipid concentrations were assessed by HPLC whereas the expression of all the proteins was evaluated by Western blot. Coumestrol markedly reduced the accumulation of sphingolipids, namely, ceramide and sphinganine through noticeable inhibition of the ceramide de novo synthesis pathway in insulin-resistant hepatocytes. Moreover, coumestrol augmented the expression of fatty acid transport proteins, especially FATP5 and FAT/CD36, which also were responsible for excessive sphingolipid accumulation. Furthermore, coumestrol altered the sphingolipid salvage pathway, which was observed as the excessive deposition of the sphingosine-1-phosphate and sphingosine. Our study clearly showed that coumestrol ameliorated hepatic insulin resistance in primary rat hepatocytes. Thus, we believe that our study may contribute to the discovery of novel preventive and therapeutic methods for metabolic disorders.
Collapse
|
9
|
Zhang MY, Hu P, Feng D, Zhu YZ, Shi Q, Wang J, Zhu WY. The role of liver metabolism in compensatory-growth piglets induced by protein restriction and subsequent protein realimentation. Domest Anim Endocrinol 2021; 74:106512. [PMID: 32653740 DOI: 10.1016/j.domaniend.2020.106512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/31/2020] [Accepted: 06/13/2020] [Indexed: 11/21/2022]
Abstract
The aim of this work was to study the role of hepatic metabolism of compensatory growth in piglets induced by protein restriction and subsequent protein realimentation. Thirty-six weaned piglets were randomly distributed in a control group and a treatment group. The control group piglets were fed with a normal protein level diet (18.83% CP) for the entire experimental period (day 1-28). The treatment group piglets were fed with a protein-restriction diet (13.05% CP) for day 1 to day 14, and the diet was restored to normal protein level diet for day 15 to day 28. RNA-seq is used to analyze samples of liver metabolism on day 14 and day 28, respectively. Hepatic RNA-sequencing analysis revealed that some KEGG signaling pathways involved in glycolipid metabolism (eg, "AMPK signaling pathway," "insulin signaling pathway," and "glycolysis or gluconeogenesis") were significantly enriched on day 14 and day 28. On day 14, protein restriction promoted hepatic lipogenesis by increasing the genes expression level of ACACA, FASN, GAPM, and SREBP1C, decreasing protein phosphorylation levels of AMPKɑ and ACC in AMPK signaling pathway. In contrast, on day 28, protein realimentation promoted hepatic gluconeogenesis by increasing the concentration of G6Pase and PEPCK, decreasing protein phosphorylation levels of IRS1, Akt, and FoXO1 in insulin signaling pathway. In addition, protein realimentation activated the GH-IGF1 axis between the liver and skeletal muscle. Overall, these findings revealed the importance of liver metabolism in achieving compensatory growth.
Collapse
Affiliation(s)
- M Y Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - P Hu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - D Feng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Y Z Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Q Shi
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - J Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - W Y Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Shu L, Hou G, Zhao H, Huang W, Song G, Ma H. Long non-coding RNA expression profiling following treatment with resveratrol to improve insulin resistance. Mol Med Rep 2020; 22:1303-1316. [PMID: 32627012 PMCID: PMC7339411 DOI: 10.3892/mmr.2020.11221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (RSV) and long non-coding RNAs (lncRNAs) play a role in the treatment of diabetes; however, the mechanism by which resveratrol regulates insulin resistance via lncRNAs is currently unknown. The present study aimed to determine the lncRNA expression level profile in mice following resveratrol treatment to improve insulin resistance using high-throughput sequencing technology. C57BL/6J mice were fed a high-fat diet for 8 weeks to develop an insulin resistance model, followed by treatment with or without RSV for 6 weeks before high-throughput sequencing. Following RSV treatment, 28 and 30 lncRNAs were up- and downregulated, respectively; eight lncRNAs were randomly selected and evaluated using reverse transcription-quantitative PCR, which showed results consistent with the sequencing analysis. Pathway analysis demonstrated that the insulin signaling pathway enrichment score was the highest, and identified two lncRNAs, NONMMUT058999.2 and NONMMUT051901.2, consistent with the protein-encoding genes SOCS3 and G6PC, respectively. Similar expression level patterns were observed for SOCS3 and G6PC, suggesting that RSV improves insulin resistance by modulating lncRNAs. RSV decreased the expression levels of SOCS3, FOXO1, G6PC and PEPCK in mice. The same results were observed following knockdown of NONMMUT058999.2 in cells. The present study provides a new biomarker or intervention target for RSV in the treatment of diabetes, and a new perspective for understanding the hypoglycemic mechanism of RSV.
Collapse
Affiliation(s)
- Linyi Shu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Guangsen Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Hang Zhao
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Wenli Huang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
11
|
Xu LN, Yin LH, Jin Y, Qi Y, Han X, Xu YW, Liu KX, Zhao YY, Peng JY. Effect and possible mechanisms of dioscin on ameliorating metabolic glycolipid metabolic disorder in type-2-diabetes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153139. [PMID: 31881477 DOI: 10.1016/j.phymed.2019.153139] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/05/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Our previous study revealed that microRNA-125a-5p plays a crucial role in regulating hepatic glycolipid metabolism by targeting STAT3 in type 2 diabetes mellitus (T2DM). Dioscin, a major active ingredient in Dioscoreae nipponicae rhizomes, displays various pharmacological activities, but its role in T2DM has not been reported. PURPOSE The aim of this study was to investigate the effect of dioscin on T2DM and elucidate its potential mechanism. METHODS The effect of dioscin on glycolipid metabolic disorder in insulin-induced HepG2 cells, palmitic acid-induced AML12 cells, high-fat diet- and streptozotocin- induced T2DM rats, and spontaneous T2DM KK-Ay mice were evaluated. Then, the possible mechanisms of dioscin were comprehensively evaluated. RESULTS Dioscin markedly alleviated the dysregulation of glycolipid metabolism in T2DM by reducing hyperglycemia and hyperlipidemia, improving insulin resistance, increasing hepatic glycogen content, and attenuating lipid accumulation. When the mechanism was investigated, dioscin was found to markedly elevate miR-125a-5p level and decrease STAT3 expression. Consequently, dioscin increased phosphorylation levels of STAT3, PI3K, AKT, GSK-3β, and FoxO1 and decreased gene levels of PEPCK, G6Pase, SREBP-1c, FAS, ACC, and SCD1, leading to an increase in glycogen synthesis and a decrease in gluconeogenesis and lipogenesis. The effects of dioscin on regulating miR-125a-5p/STAT3 pathway were verified by miR-125a-5p overexpression and STAT3 overexpression. CONCLUSIONS Dioscin showed potent anti-T2DM activity by improving the inhibitory effect of miR-125a-5p on STAT3 signaling to alleviate glycolipid metabolic disorder of T2DM.
Collapse
Affiliation(s)
- L-N Xu
- Department of Pharmaceutical Analysis of Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - L-H Yin
- Department of Pharmaceutical Analysis of Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Y Jin
- Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Y Qi
- Department of Pharmaceutical Analysis of Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - X Han
- Department of Pharmaceutical Analysis of Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Y-W Xu
- Department of Pharmaceutical Analysis of Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - K-X Liu
- Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Y-Y Zhao
- Department of Pharmaceutical Analysis of Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - J-Y Peng
- Department of Pharmaceutical Analysis of Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China; National-Local Joint Engineering Research Center for Drug Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China.
| |
Collapse
|
12
|
Shu L, Zhao H, Huang W, Hou G, Song G, Ma H. Resveratrol Upregulates mmu-miR-363-3p via the PI3K-Akt Pathway to Improve Insulin Resistance Induced by a High-Fat Diet in Mice. Diabetes Metab Syndr Obes 2020; 13:391-403. [PMID: 32104036 PMCID: PMC7027849 DOI: 10.2147/dmso.s240956] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE This study aimed to investigate how resveratrol (RSV) improves high-fat diet (HFD)-induced hepatic insulin resistance in mice via microRNA (miRNA) mmu-miR-363-3p in vitro and in vivo. MATERIALS AND METHODS C57BL/6J mice were fed a HFD for 8 weeks to establish an insulin resistance model. The model mice were treated or not with RSV for 6 weeks. Differential miRNA expression in mouse liver tissues was analyzed by high-throughput sequencing. Mouse HepG2 cells were treated with palmitic acid (PA) to establish a cell model of insulin resistance. HepG2 cells were transfected with mmu-miR-363-3p inhibitor or mimic, and the expression of PI3K-Akt signaling pathway-related proteins was analyzed. RESULTS Based on the high-throughput sequencing analysis, mmu-miR-363-3p was identified as a major miRNA involved in the action of RSV on insulin resistance. Based on KEGG pathway enrichment analysis, PI3K-Akt signaling was found to be significantly enriched among differentially expressed miRNAs, and this pathway is closely related to insulin resistance. RSV treatment reduced the expression of FOXO1 and G6PC, which are downstream of the PI3K-Akt pathway. In the cell model, mmu-miR-363-3p inhibitor significantly suppressed p-Akt and p-PI3K levels, but enhanced those of FOXO1 and G6PC. In contrast, mmu-miR-363-3p mimic significantly enhanced the p-Akt and p-PI3K levels, but suppressed FOXO1 and G6PC expression, which was similar to the effect of RSV. CONCLUSION RSV improves insulin resistance by upregulating miRNA mmu-miR-363-3p via the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Linyi Shu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei050017, People’s Republic of China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei050051, People’s Republic of China
| | - Hang Zhao
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei050051, People’s Republic of China
| | - Wenli Huang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei050017, People’s Republic of China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei050051, People’s Republic of China
| | - Guangsen Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei050017, People’s Republic of China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei050051, People’s Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei050017, People’s Republic of China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei050051, People’s Republic of China
- Correspondence: Guangyao Song Endocrinology Department, Hebei General Hospital, 348, Heping West Road, Shijiazhuang, Hebei050051, People’s Republic of ChinaTel +86 311 8598 8556 Email
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei050017, People’s Republic of China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei050051, People’s Republic of China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei050051, People’s Republic of China
| |
Collapse
|
13
|
Lu Z, Li Y, Song J. Characterization and Treatment of Inflammation and Insulin Resistance in Obese Adipose Tissue. Diabetes Metab Syndr Obes 2020; 13:3449-3460. [PMID: 33061505 PMCID: PMC7535138 DOI: 10.2147/dmso.s271509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is the largest energy storage and protection organ. It is distributed subcutaneously and around the internal organs. It regulates metabolism by storing and releasing fatty acids and secreting adipokines. Excessive nutritional intake results in adipocyte hypertrophy and proliferation, leading to local hypoxia in adipose tissue and changes in the release of adipokines. These lead to recruit of more immune cells into adipose tissue and release of inflammatory signaling factors. Excess free fatty acids and inflammatory factors interfere with intracellular insulin signaling. In this review, we summarize the characteristics of obese adipose tissue and analyze how its inflammation causes insulin resistance. We further discuss the latest clinical research progress on the control of insulin resistance and inflammation resulting from obesity through anti-inflammatory therapy and bariatric surgery. Our review shows that targeted anti-inflammatory therapy is of great significance for obese patients with insulin resistance.
Collapse
Affiliation(s)
- Zhenhua Lu
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yao Li
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Jinghai Song
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Correspondence: Jinghai Song Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing100730, People’s Republic of ChinaTel +8619800315020 Email
| |
Collapse
|
14
|
Hu LF, Feng J, Dai X, Sun Y, Xiong M, Lai L, Zhong S, Yi C, Chen G, Li H, Yang Q, Kuang Q, Long T, Zhan J, Tang T, Ge C, Tan J, Xu M. Oral flavonoid fisetin treatment protects against prolonged high-fat-diet-induced cardiac dysfunction by regulation of multicombined signaling. J Nutr Biochem 2019; 77:108253. [PMID: 31835147 DOI: 10.1016/j.jnutbio.2019.108253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 08/03/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Excess high-fat diet (HFD) intake predisposes the occurrence of obesity-associated heart injury, but the mechanism is elusive. Fisetin (FIS), as a natural flavonoid, has potential activities to alleviate obesity-induced metabolic syndrome. However, the underlying molecular mechanisms of FIS against HFD-induced cardiac injury remain unclear. The present study was to explore the protective effects of FIS on cardiac dysfunction in HFD-fed mice. We found that FIS alleviated HFD-triggered metabolic disorder by reducing body weight, fasting blood glucose and insulin levels, and insulin resistance. Moreover, FIS supplements significantly alleviated dyslipidemia in both mouse hearts and cardiomyocytes stimulated by metabolic stress. FIS treatment abolished HFD-induced inflammatory response in heart tissues through suppressing TNF receptor-1/TNF receptor-associated factor-2 (Tnfr-1/Traf-2) signaling. Furthermore, FIS induced a strong reduction in the expression of fibrosis-related genes, contributing to the inhibition of fibrosis by inactivating transforming growth factor (Tgf)-β1/Smads/Erk1/2 signaling. Collectively, these results demonstrated that FIS could be a promising therapeutic strategy for the treatment of obesity-associated cardiac injury.
Collapse
Affiliation(s)
- Lin-Feng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jing Feng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Yan Sun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Mingxin Xiong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Lili Lai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Shaoyu Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Chao Yi
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Geng Chen
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Huanhuan Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qiufeng Yang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Tingting Long
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jianxia Zhan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Tingting Tang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| |
Collapse
|
15
|
Zhao H, Zhang Y, Shu L, Song G, Ma H. Resveratrol reduces liver endoplasmic reticulum stress and improves insulin sensitivity in vivo and in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1473-1485. [PMID: 31118581 PMCID: PMC6505469 DOI: 10.2147/dddt.s203833] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
Purpose: The aim of the study was to examine the effects of resveratrol upon hepatic endoplasmic reticulum stress (ERS) and insulin sensitivity in vivo and in vitro. Material and methods: C57BL/6J mice were fed a high-fat diet (HFD) for 8 weeks, and insulin resistance was evaluated by the intraperitoneal glucose tolerance test (IPGTT). Mice were then treated with resveratrol for 12 weeks and blood and liver samples collected. Blood biochemical indicators were determined by kits, liver protein expression was determined by western blot, and morphological changes were observed by histological staining. Palmitic acid (PA)-induced insulin-resistant HepG2 cells were established. Cells were exposed to 100, 50 or 20 μM resveratrol for 24 hrs, and proliferation/cytotoxicity was determined. Cells were divided into five groups: control, PA, PA + Rev (100 μM), PA + Rev (50 μM) and PA + Rev (20 μM) groups. After 24 hrs of treatment, cellular proteins were analyzed the same way as animal tissues. Results: The IPGTT confirmed that the insulin resistance model was established successfully. After resveratrol treatment, fasting blood glucose and cholesterol levels declined and the quantitative insulin sensitivity check index increased. Western-blot results showed that resveratrol-treated HFD mice had reduced hepatic levels of p-PERK, ATF-4 and TRIB3, and increased the levels of ATF-6, p-AKT and p-GSK3β. In the cell model, resveratrol with 100 and 50 μM enhanced ERS and insulin resistance, whereas 20 μM had beneficial effects, similar to the animal model. Conclusion: Resveratrol reduced hepatic ERS, thereby improving insulin sensitivity and glucose levels. However, high doses of resveratrol had harmful effects on cells, elevating ERS and insulin resistance. The safe dose of resveratrol needs further investigation.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, People's Republic of China.,Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Yunjia Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, People's Republic of China
| | - Linyi Shu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, People's Republic of China.,Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, People's Republic of China.,Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, People's Republic of China.,Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, People's Republic of China.,Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, People's Republic of China
| |
Collapse
|
16
|
Liu JY, Zhang YC, Song LN, Zhang L, Yang FY, Zhu XR, Cheng ZQ, Cao X, Yang JK. Nifuroxazide ameliorates lipid and glucose metabolism in palmitate-induced HepG2 cells. RSC Adv 2019; 9:39394-39404. [PMID: 35540668 PMCID: PMC9076084 DOI: 10.1039/c9ra06527j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammation constitutes an important component of non-alcoholic fatty liver disease. STAT3 is a direct target of inflammatory cytokines, but also mediates glycolipid metabolism in the liver. As a potent inhibitor of STAT3, the effect of Nifuroxazide (Nifu) on glycolipid metabolism in liver has not been reported. In this study, we used palmitic acid (PA)-induced HepG2 cells to examine the expression of inflammatory factors and apoptosis-related proteins and the content of triglyceride (TG), total cholesterol (TC), and glycogen. The expression of hepatic lipogenic proteins (ACCα, SREBP-1c, FAS), gluconeogenesis enzymes (PEPCK, G6Pase, and IRS2), the IL-6/STAT3/SOCS3 inflammatory axis, and the insulin signaling pathway was determined. Our study shows that Nifu significantly improves lipid metabolism disorders in the PA-induced HepG2 cells, whereas, it remarkably reduced intracellular free fatty acid (FFA), TG, and TC content, suppressed lipid synthesis, and increased lipid decomposition. Our results also showed that Nifu significantly improved dysregulated glucose metabolism in the PA-treated HepG2 cells, increased glycogen content, and inhibited gluconeogenesis. Further research indicated that Nifu markedly inhibited activation of the IL-6/STAT3/SOCS3 signaling pathway. Finally, due to anti-inflammatory stress, Nifu enhanced insulin signaling in the PA-induced HepG2 cells. Therefore, Nifu can improve glucose and lipid metabolism in the PA-induced HepG2 cells, which provides new evidence that Nifu has a positive effect on PA-induced cellular hepatic steatosis and improves glucose metabolism in HepG2 cells, providing a new perspective for studying drug treatment of glucose and lipid metabolism disorders. Inflammation constitutes an important component of non-alcoholic fatty liver disease.![]()
Collapse
Affiliation(s)
- Jing-Yi Liu
- Beijing Diabetes Institute
- Beijing Key Laboratory of Diabetes Research and Care
- Department of Endocrinology
- Beijing Tongren Hospital
- Capital Medical University
| | - Yi-Chen Zhang
- Beijing Diabetes Institute
- Beijing Key Laboratory of Diabetes Research and Care
- Department of Endocrinology
- Beijing Tongren Hospital
- Capital Medical University
| | - Li-Ni Song
- Beijing Diabetes Institute
- Beijing Key Laboratory of Diabetes Research and Care
- Department of Endocrinology
- Beijing Tongren Hospital
- Capital Medical University
| | - Lin Zhang
- Beijing Diabetes Institute
- Beijing Key Laboratory of Diabetes Research and Care
- Department of Endocrinology
- Beijing Tongren Hospital
- Capital Medical University
| | - Fang-Yuan Yang
- Beijing Diabetes Institute
- Beijing Key Laboratory of Diabetes Research and Care
- Department of Endocrinology
- Beijing Tongren Hospital
- Capital Medical University
| | - Xiao-Rong Zhu
- Beijing Diabetes Institute
- Beijing Key Laboratory of Diabetes Research and Care
- Department of Endocrinology
- Beijing Tongren Hospital
- Capital Medical University
| | - Zhi-Qiang Cheng
- Department of Pharmacology and Molecular Sciences
- Johns Hopkins University School of Medicine
- Baltimore
- USA
| | - Xi Cao
- Beijing Diabetes Institute
- Beijing Key Laboratory of Diabetes Research and Care
- Department of Endocrinology
- Beijing Tongren Hospital
- Capital Medical University
| | - Jin-Kui Yang
- Beijing Diabetes Institute
- Beijing Key Laboratory of Diabetes Research and Care
- Department of Endocrinology
- Beijing Tongren Hospital
- Capital Medical University
| |
Collapse
|
17
|
Zhao H, Shu L, Huang W, Song G, Ma H. Resveratrol affects hepatic gluconeogenesis via histone deacetylase 4. Diabetes Metab Syndr Obes 2019; 12:401-411. [PMID: 30988636 PMCID: PMC6438140 DOI: 10.2147/dmso.s198830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The aim of this study was to determine whether resveratrol (Rev) affects the expression, phosphorylation, and nuclear and cytoplasmic distribution of histone deacetylase 4 (HDAC4), which in turn affects gluconeogenesis in hepatocytes under an insulin-resistant state. MATERIALS AND METHODS HepG2 cells were treated with 0.25 mmol/L palmitic acid (PA) to establish an insulin resistance model. The cells were divided into five groups: control, PA, PA + Rev 100 µM, PA + Rev 50 µM, and PA + Rev 20 µM. After treatment for 24 hours, mRNA and protein expression levels of gluconeogenesis pathway-related molecules and HDAC4 were examined. Next, HepG2 cells were transfected with siRNA-HDAC4. The cells were divided into control, PA, PA + Rev 20 µM, PA + Rev 20 µM +siRNA-HDAC4 negative control, and PA + Rev 20 µM +siRNA-HDAC4 knockdown groups to determine the expression of gluconeogenesis pathway proteins. RESULTS Compared with the control group, the gluconeogenesis pathway-related molecules, glucose-6-phosphatase catalytic subunit (G6PC), phosphoenolpyruvate carboxykinase 1 (PCK1) and forkhead box protein O1 (FOXO1), were increased, and the phosphorylation of FOXO1 decreased after PA treatment. The p-HDAC4 level decreased with the increase in HDAC4 in the nucleus and the decrease in HDAC4 in the cytoplasm in the PA group. Treatment with Rev 20 µM suppressed gluconeogenesis and promoted HDAC4 shuttling into the cytoplasm from the nucleus. However, 100 and Rev 50 µM exerted the opposite effects. Finally, after HDAC4 knockdown, the expression levels of the key gluconeogenesis molecules, G6PC, PCK1, and FOXO1, were increased, and p-FOXO1 was decreased, indicating that gluconeogenesis was enhanced. CONCLUSION A low concentration of Rev inhibited gluconeogenesis under insulin-resistance conditions via translocation of HDAC4 from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China,
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, China,
| | - Linyi Shu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China,
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, China,
| | - Wenli Huang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China,
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, China,
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China,
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, China,
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China,
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, China,
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
18
|
Theaflavins Improve Insulin Sensitivity through Regulating Mitochondrial Biosynthesis in Palmitic Acid-Induced HepG2 Cells. Molecules 2018; 23:molecules23123382. [PMID: 30572687 PMCID: PMC6320999 DOI: 10.3390/molecules23123382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022] Open
Abstract
Theaflavins, the characteristic and bioactive polyphenols in black tea, possess the potential improving effects on insulin resistance-associated metabolic abnormalities, including obesity and type 2 diabetes mellitus. However, the related molecular mechanisms are still unclear. In this research, we investigated the protective effects of theaflavins against insulin resistance in HepG2 cells induced by palmitic acid. Theaflavins significantly increased glucose uptake of insulin-resistant cells at noncytotoxic doses. This activity was mediated by upregulating the total and membrane bound glucose transporter 4 protein expressions, increasing the phosphor-Akt (Ser473) level, and decreasing the phosphorylation of IRS-1 at Ser307. Moreover, theaflavins were found to enhance the mitochondrial DNA copy number, down-regulate the PGC-1β mRNA level and increase the PRC mRNA expression. Mdivi-1, a selective mitochondrial division inhibitor, could attenuate TFs-induced promotion of glucose uptake in insulin-resistant HepG2 cells. Taken together, these results suggested that theaflavins could improve hepatocellular insulin resistance induced by free fatty acids, at least partly through promoting mitochondrial biogenesis. Theaflavins are promising functional food ingredients and medicines for improving insulin resistance-related disorders.
Collapse
|
19
|
Xu L, Li Y, Yin L, Qi Y, Sun H, Sun P, Xu M, Tang Z, Peng J. miR-125a-5p ameliorates hepatic glycolipid metabolism disorder in type 2 diabetes mellitus through targeting of STAT3. Am J Cancer Res 2018; 8:5593-5609. [PMID: 30555566 PMCID: PMC6276304 DOI: 10.7150/thno.27425] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Glycolipid metabolic disorder is an important cause for the development of type 2 diabetes mellitus (T2DM). Clarification of the molecular mechanism of metabolic disorder and exploration of drug targets are crucial for the treatment of T2DM. Methods: We examined miR-125a-5p levels in palmitic acid-induced AML12 cells and the livers of type 2 diabetic rats and mice, and then validated its target gene. Through gain- and loss-of-function studies, the effects of miR-125a-5p via targeting of STAT3 on regulating glycolipid metabolism were further illustrated in vitro and in vivo. Results: We found that miR-125a-5p was significantly decreased in the livers of diabetic mice and rats, and STAT3 was identified as the target gene of miR-125a-5p. Overexpression of miR-125a-5p in C57BL/6 mice decreased STAT3 level and downregulated the expression levels of p-STAT3 and SOCS3. Consequently, SREBP-1c-mediated lipogenesis pathway was inhibited, and PI3K/AKT pathway was activated. Moreover, silencing of miR-125a-5p significantly increased the expression levels of STAT3, p-STAT3 and SOCS3, thus activating SREBP-1c pathway and suppressing PI3K/AKT pathway. Therefore, hyperglycemia, hyperlipidemia and decreased liver glycogen appeared in C57BL/6 mice. In palmitic acid-induced AML12 cells, miR-125a-5p mimic markedly increased glucose consumption and uptake and decreased the accumulation of lipid droplets by regulating STAT3 signaling pathway. Consistently, miR-125a-5p overexpression obviously inhibited STAT3 expression in diabetic KK-Ay mice, thereby decreasing blood glucose and lipid levels, increasing hepatic glycogen content, and decreasing accumulation of hepatic lipid droplets in diabetic mice. Furthermore, inhibition of miR-125a-5p in KK-Ay mice aggravated glycolipid metabolism dysfunction through regulating STAT3. Conclusions: Our results confirmed that miR-125a-5p should be considered as a regulator of glycolipid metabolism in T2DM, which can inhibit hepatic lipogenesis and gluconeogenesis and elevate glycogen synthesis by targeting STAT3.
Collapse
|
20
|
Hong T, Ge Z, Meng R, Wang H, Zhang P, Tang S, Lu J, Gu T, Zhu D, Bi Y. Erythropoietin alleviates hepatic steatosis by activating SIRT1-mediated autophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2018. [PMID: 29522896 DOI: 10.1016/j.bbalip.2018.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Erythropoietin (EPO), besides its stimulatory effect on erythropoiesis, is beneficial to insulin resistance and obesity. However, its role in hepatic steatosis remains unexplored. Activating autophagy seems a promising mechanism for improving fatty liver disease. The present study investigated the role of EPO in alleviating hepatic steatosis and sought to determine whether its function is mediated by the activation of autophagy. Here, we show that EPO decreased hepatic lipid content significantly in vivo and in vitro. Furthermore, EPO/EPO receptor (EPOR) signalling induced autophagy activation in hepatocytes as indicated by western blot assay, transmission electron microscopy, and confocal microscopy. In addition, EPO increased the co-localization of autophagosomes and cellular lipids as shown by double labelling of the autophagy marker light chain microtubule-associated protein 3 (LC3) and lipids. Importantly, suppression of autophagy by an inhibitor or small interfering RNA (siRNA) abolished the EPO-mediated alleviation hepatic steatosis in vitro. Furthermore, EPO up-regulated sirtuin 1 (SIRT1) expression, and siRNA-mediated SIRT1 silencing abrogated the EPO-induced increases in LC3 protein and deacetylation levels, thereby preventing the alleviation of hepatic steatosis. Taken together, this study revealed a new mechanism wherein EPO alleviates hepatic steatosis by activating autophagy via SIRT1-dependent deacetylation of LC3. This finding might have therapeutic value in the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Ting Hong
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Zhijuan Ge
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Ran Meng
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Pengzi Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Sunyinyan Tang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Jing Lu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Tianwei Gu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China.
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China.
| |
Collapse
|