1
|
Tisoncik-Go J, Stokes C, Whitmore LS, Newhouse DJ, Voss K, Gustin A, Sung CJ, Smith E, Stencel-Baerenwald J, Parker E, Snyder JM, Shaw DW, Rajagopal L, Kapur RP, Adams Waldorf KM, Gale M. Disruption of myelin structure and oligodendrocyte maturation in a macaque model of congenital Zika infection. Nat Commun 2024; 15:5173. [PMID: 38890352 PMCID: PMC11189406 DOI: 10.1038/s41467-024-49524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in infants, of which the pathogenesis remains poorly understood. We utilize an established female pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We find prenatal ZikV exposure leads to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses reveal marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals shows multi-focal decompaction, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.
Collapse
Affiliation(s)
- Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
| | - Caleb Stokes
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Leanne S Whitmore
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Daniel J Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kathleen Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Andrew Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Cheng-Jung Sung
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Elise Smith
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Jennifer Stencel-Baerenwald
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Edward Parker
- Department of Ophthalmology, NEI Core for Vision Research, University of Washington, Seattle, WA, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Dennis W Shaw
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Lakshmi Rajagopal
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Raj P Kapur
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - Kristina M Adams Waldorf
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Li L, Wang L, Zhang L. Therapeutic Potential of Natural Compounds from Herbs and Nutraceuticals in Alleviating Neurological Disorders: Targeting the Wnt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2411-2433. [PMID: 38284360 DOI: 10.1021/acs.jafc.3c07536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
As an important signaling pathway in multicellular eukaryotes, the Wnt signaling pathway participates in a variety of physiological processes. Recent studies have confirmed that the Wnt signaling pathway plays an important role in neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. The regulation of Wnt signaling by natural compounds in herbal medicines and nutraceuticals has emerged as a potential strategy for the development of new drugs for neurological disorders. Purpose: The aim of this review is to evaluate the latest research results on the efficacy of natural compounds derived from herbs and nutraceuticals in the prevention and treatment of neurological disorders by regulating the Wnt pathway in vivo and in vitro. A manual and electronic search was performed for English articles available from PubMed, Web of Science, and ScienceDirect from the January 2010 to February 2023. Keywords used for the search engines were "natural products,″ "plant derived products,″ "Wnt+ clinical trials,″ and "Wnt+,″ and/or paired with "natural products″/″plant derived products", and "neurological disorders." A total of 22 articles were enrolled in this review, and a variety of natural compounds from herbal medicine and nutritional foods have been shown to exert therapeutic effects on neurological disorders through the Wnt pathway, including curcumin, resveratrol, and querctrin, etc. These natural products possess antioxidant, anti-inflammatory, and angiogenic properties, confer neurovascular unit and blood-brain barrier integrity protection, and affect neural stem cell differentiation, synaptic formation, and neurogenesis, to play a therapeutic role in neurological disorders. In various in vivo and in vitro studies and clinical trials, these natural compounds have been shown to be safe and tolerable with few adverse effects. Natural compounds may serve a therapeutic role in neurological disorders by regulating the Wnt pathway. This summary of the research progress of natural compounds targeting the Wnt pathway may provide new insights for the treatment of neurological disorders and potential targets for the development of new drugs.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning PR China
| |
Collapse
|
3
|
Tisoncik-Go J, Stokes C, Whitmore LS, Newhouse DJ, Voss K, Gustin A, Sung CJ, Smith E, Stencel-Baerenwald J, Parker E, Snyder JM, Shaw DW, Rajagopal L, Kapur RP, Waldorf KA, Gale M. Disruption of myelin structure and oligodendrocyte maturation in a pigtail macaque model of congenital Zika infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561759. [PMID: 37873381 PMCID: PMC10592731 DOI: 10.1101/2023.10.11.561759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in non-microcephalic infants, of which the pathogenesis remains poorly understood. We utilized an established pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We found prenatal ZikV exposure led to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses revealed marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals showed multi-focal decompaction consistent with perturbation or remodeling of previously formed myelin, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.
Collapse
Affiliation(s)
- Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Caleb Stokes
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Leanne S Whitmore
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Daniel J Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Kathleen Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Andrew Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Cheng-Jung Sung
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Elise Smith
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jennifer Stencel-Baerenwald
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Edward Parker
- Department of Ophthalmology, NEI Core for Vision Research, University of Washington, Seattle, Washington, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Dennis W Shaw
- Department of Radiology, University of Washington, Seattle Washington, USA
| | - Lakshmi Rajagopal
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Raj P Kapur
- Department of Pathology, University of Washington, Seattle, Washington, USA
- Department of Pathology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
- Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Lu Z, Zhang M, Lee J, Sziraki A, Anderson S, Zhang Z, Xu Z, Jiang W, Ge S, Nelson PT, Zhou W, Cao J. Tracking cell-type-specific temporal dynamics in human and mouse brains. Cell 2023; 186:4345-4364.e24. [PMID: 37774676 PMCID: PMC10545416 DOI: 10.1016/j.cell.2023.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/28/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Progenitor cells are critical in preserving organismal homeostasis, yet their diversity and dynamics in the aged brain remain underexplored. We introduced TrackerSci, a single-cell genomic method that combines newborn cell labeling and combinatorial indexing to characterize the transcriptome and chromatin landscape of proliferating progenitor cells in vivo. Using TrackerSci, we investigated the dynamics of newborn cells in mouse brains across various ages and in a mouse model of Alzheimer's disease. Our dataset revealed diverse progenitor cell types in the brain and their epigenetic signatures. We further quantified aging-associated shifts in cell-type-specific proliferation and differentiation and deciphered the associated molecular programs. Extending our study to the progenitor cells in the aged human brain, we identified conserved genetic signatures across species and pinpointed region-specific cellular dynamics, such as the reduced oligodendrogenesis in the cerebellum. We anticipate that TrackerSci will be broadly applicable to unveil cell-type-specific temporal dynamics in diverse systems.
Collapse
Affiliation(s)
- Ziyu Lu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Melissa Zhang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Jasper Lee
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Sonya Anderson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Zehao Zhang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Zihan Xu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Weirong Jiang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY, USA
| | - Peter T Nelson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Wei Zhou
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Yuan J, Xu N, Tao Y, Han X, Yang L, Liang J, Jin H, Zhang X, Wu H, Shi H, Huang F, Wu X. Total astragalosides promote oligodendrocyte precursor cell differentiation and enhance remyelination in cuprizone-induced mice through suppression of Wnt/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115622. [PMID: 35964820 DOI: 10.1016/j.jep.2022.115622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Astragali is a traditional Chinese medicine with various pharmacological effects. Total astragalosides (TA), the main effective ingredients in Radix Astragali, exert properties including anti-oxidative stress, anti-neuroinflammation, and neuroprotection. We previously found that TA alleviated experimental autoimmune encephalomyelitis (EAE) progression, a widely used animal model of multiple sclerosis (MS). As a chronic demyelination disease, MS generally manifests myelin loss and fails to myelin regeneration. Regulation of oligodendrocyte progenitor cells (OPCs) differentiation and remyelination is the fundamental strategy for MS treatment. However, whether TA could directly promote OPCs differentiation and remyelination is still unknown. AIMS OF THE STUDY This study was aimed to investigate pro-differentiation and myelin regeneration effects of TA on OPCs and Cuprizone (CPZ)-induced demyelination mice, an animal model of MS, and to explore mechanism underlying from regulation of OPCs differentiation and maturation. MATERIALS AND METHODS Mice were orally given CPZ (400 mg/kg) daily for 4 weeks to induce myelin loss, and then treated with TA (25 and 50 mg/kg) daily for 1 week. Cell proliferation assay, Western blot, RT-PCR, immunocytochemistry and immunohistochemistry were performed to explore the mechanisms. The role of TA in oligodendrocyte differentiation and maturation was evaluated using MO3.13, a human oligodendrocytic hybrid cell line. RESULTS TA was shown to mitigate behavioral impairment in CPZ-induced mice. It markedly ameliorated myelin loss and enhanced remyelination in the corpus callosum of mice, evidenced by increased expression of myelin basic protein (MBP) and the number of CC1+ newly generated oligodendrocytes (OLs). TA also enhanced the expression of MBP at both mRNA and protein levels in MO3.13 cells. In CPZ-induced mice and MO3.13 cells, TA remarkably promoted the activation of GSK3β, repressed the phosphorylation of β-catenin, reduced the expression of transcription factor 4 and inhibitor of DNA binding 2. The agonist of β-catenin, SKL2001, partially abolished the pro-differentiation effect of TA in MO3.13 cells. CONCLUSIONS Taken together, we clarified that TA could effectively enhance the differentiation and maturation of OPCs and accelerate remyelination in CPZ-induced mice through inhibition of Wnt/β-catenin signaling pathway. This study provides new insight into the beneficial effect of TA in the treatment of MS.
Collapse
Affiliation(s)
- Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nuo Xu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinglei Liang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haojieyin Jin
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoxia Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hailin Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Benraiss A, Mariani JN, Tate A, Madsen PM, Clark KM, Welle KA, Solly R, Capellano L, Bentley K, Chandler-Militello D, Goldman SA. A TCF7L2-responsive suppression of both homeostatic and compensatory remyelination in Huntington disease mice. Cell Rep 2022; 40:111291. [PMID: 36044851 DOI: 10.1016/j.celrep.2022.111291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/04/2022] [Accepted: 08/08/2022] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is characterized by defective oligodendroglial differentiation and white matter disease. Here, we investigate the role of oligodendrocyte progenitor cell (OPC) dysfunction in adult myelin maintenance in HD. We first note a progressive, age-related loss of myelin in both R6/2 and zQ175 HD mice compared with wild-type controls. Adult R6/2 mice then manifest a significant delay in remyelination following cuprizone demyelination. RNA-sequencing and proteomic analysis of callosal white matter and OPCs isolated from both R6/2 and zQ175 mice reveals a systematic downregulation of genes associated with oligodendrocyte differentiation and myelinogenesis. Gene co-expression and network analysis predicts repressed Tcf7l2 signaling as a major driver of this expression pattern. In vivo Tcf7l2 overexpression restores both myelin gene expression and remyelination in demyelinated R6/2 mice. These data causally link impaired TCF7L2-dependent transcription to the poor development and homeostatic retention of myelin in HD and provide a mechanism for its therapeutic restoration.
Collapse
Affiliation(s)
- Abdellatif Benraiss
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA.
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Ashley Tate
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Pernille M Madsen
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA; Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kathleen M Clark
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Kevin A Welle
- Mass Spectrometry Resource Laboratory, URMC, Rochester, NY 14642, USA
| | - Renee Solly
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Laetitia Capellano
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Karen Bentley
- Department of Pathology and Laboratory Medicine, URMC, Rochester, NY 14642, USA
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA; Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark; Sana Biotechnology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Kiaie N, Gorabi AM, Loveless R, Teng Y, Jamialahmadi T, Sahebkar A. The regenerative potential of glial progenitor cells and reactive astrocytes in CNS injuries. Neurosci Biobehav Rev 2022; 140:104794. [PMID: 35902044 DOI: 10.1016/j.neubiorev.2022.104794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Cell therapeutic approaches focusing on the regeneration of damaged tissue have been a popular topic among researchers in recent years. In particular, self-repair scarring from the central nervous system (CNS) can significantly complicate the treatment of an injured patient. In CNS regeneration schemes, either glial progenitor cells or reactive glial cells have key roles to play. In this review, the contribution and underlying mechanisms of these progenitor/reactive glial cells during CNS regeneration are discussed, as well as their role in CNS-related diseases.
Collapse
Affiliation(s)
- Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Garcia-Martin G, Alcover-Sanchez B, Wandosell F, Cubelos B. Pathways Involved in Remyelination after Cerebral Ischemia. Curr Neuropharmacol 2022; 20:751-765. [PMID: 34151767 PMCID: PMC9878953 DOI: 10.2174/1570159x19666210610093658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Brain ischemia, also known as ischemic stroke, occurs when there is a lack of blood supply into the brain. When an ischemic insult appears, both neurons and glial cells can react in several ways that will determine the severity and prognosis. This high heterogeneity of responses has been a major obstacle in developing effective treatments or preventive methods for stroke. Although white matter pathophysiology has not been deeply assessed in stroke, its remodelling can greatly influence the clinical outcome and the disability degree. Oligodendrocytes, the unique cell type implied in CNS myelination, are sensible to ischemic damage. Loss of myelin sheaths can compromise axon survival, so new Oligodendrocyte Precursor Cells are required to restore brain function. Stroke can, therefore, enhance oligodendrogenesis to regenerate those new oligodendrocytes that will ensheath the damaged axons. Given that myelination is a highly complex process that requires coordination of multiple pathways such as Sonic Hedgehog, RTKs or Wnt/β-catenin, we will analyse new research highlighting their importance after brain ischemia. In addition, oligodendrocytes are not isolated cells inside the brain, but rather form part of a dynamic environment of interactions between neurons and glial cells. For this reason, we will put some context into how microglia and astrocytes react against stroke and influence oligodendrogenesis to highlight the relevance of remyelination in the ischemic brain. This will help to guide future studies to develop treatments focused on potentiating the ability of the brain to repair the damage.
Collapse
Affiliation(s)
- Gonzalo Garcia-Martin
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Berta Alcover-Sanchez
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Francisco Wandosell
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain,Address correspondence to this author at the Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Tel: 34-91-1964561; Fax: 34-91-1964420; E-mail:
| |
Collapse
|
9
|
Quan L, Uyeda A, Muramatsu R. Central nervous system regeneration: the roles of glial cells in the potential molecular mechanism underlying remyelination. Inflamm Regen 2022; 42:7. [PMID: 35232486 PMCID: PMC8888026 DOI: 10.1186/s41232-022-00193-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/07/2022] [Indexed: 11/10/2022] Open
Abstract
Glial cells play crucial roles in brain homeostasis and pathogenesis of central nervous system (CNS) injuries and diseases. However, the roles of these cells and the molecular mechanisms toward regeneration in the CNS have not been fully understood, especially the capacity of them toward demyelinating diseases. Therefore, there are still very limited therapeutic strategies to restore the function of adult CNS in diseases such as multiple sclerosis (MS). Remyelination, a spontaneous regeneration process in the CNS, requires the involvement of multiple cellular and extracellular components. Promoting remyelination by therapeutic interventions is a promising novel approach to restore the CNS function. Herein, we review the role of glial cells in CNS diseases and injuries. Particularly, we discuss the roles of glia and their functional interactions and regulatory mechanisms in remyelination, as well as the current therapeutic strategies for MS.
Collapse
Affiliation(s)
- Lili Quan
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Akiko Uyeda
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
10
|
Dowsett GKC, Lam BYH, Tadross JA, Cimino I, Rimmington D, Coll AP, Polex-Wolf J, Knudsen LB, Pyke C, Yeo GSH. A survey of the mouse hindbrain in the fed and fasted states using single-nucleus RNA sequencing. Mol Metab 2021; 53:101240. [PMID: 33962048 PMCID: PMC8170503 DOI: 10.1016/j.molmet.2021.101240] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The area postrema (AP) and nucleus tractus solitarius (NTS) located in the hindbrain are key nuclei that sense and integrate peripheral nutritional signals and consequently regulate feeding behaviour. While single-cell transcriptomics have been used in mice to reveal the gene expression profile and heterogeneity of key hypothalamic populations, similar in-depth studies have not yet been performed in the hindbrain. METHODS Using single-nucleus RNA sequencing, we provide a detailed survey of 16,034 cells within the AP and NTS of mice in the fed and fasted states. RESULTS Of these, 8,910 were neurons that group into 30 clusters, with 4,289 from mice fed ad libitum and 4,621 from overnight fasted mice. A total of 7,124 nuclei were from non-neuronal cells, including oligodendrocytes, astrocytes, and microglia. Interestingly, we identified that the oligodendrocyte population was particularly transcriptionally sensitive to an overnight fast. The receptors GLP1R, GIPR, GFRAL, and CALCR, which bind GLP1, GIP, GDF15, and amylin, respectively, are all expressed in the hindbrain and are major targets for anti-obesity therapeutics. We characterise the transcriptomes of these four populations and show that their gene expression profiles are not dramatically altered by an overnight fast. Notably, we find that roughly half of cells that express GIPR are oligodendrocytes. Additionally, we profile POMC-expressing neurons within the hindbrain and demonstrate that 84% of POMC neurons express either PCSK1, PSCK2, or both, implying that melanocortin peptides are likely produced by these neurons. CONCLUSION We provide a detailed single-cell level characterisation of AP and NTS cells expressing receptors for key anti-obesity drugs that are either already approved for human use or in clinical trials. This resource will help delineate the mechanisms underlying the effectiveness of these compounds and also prove useful in the continued search for other novel therapeutic targets.
Collapse
Affiliation(s)
- Georgina K C Dowsett
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Brian Y H Lam
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - John A Tadross
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
| | - Irene Cimino
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Debra Rimmington
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Anthony P Coll
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | - Charles Pyke
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark.
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
11
|
Niu J, Yu G, Wang X, Xia W, Wang Y, Hoi KK, Mei F, Xiao L, Chan JR, Fancy SPJ. Oligodendroglial ring finger protein Rnf43 is an essential injury-specific regulator of oligodendrocyte maturation. Neuron 2021; 109:3104-3118.e6. [PMID: 34390652 DOI: 10.1016/j.neuron.2021.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/06/2021] [Accepted: 07/21/2021] [Indexed: 12/31/2022]
Abstract
Oligodendrocyte (OL) maturation arrest in human white matter injury contributes significantly to the failure of endogenous remyelination in multiple sclerosis (MS) and newborn brain injuries such as hypoxic ischemic encephalopathy (HIE) that cause cerebral palsy. In this study, we identify an oligodendroglial-intrinsic factor that controls OL maturation specifically in the setting of injury. We find a requirement for the ring finger protein Rnf43 not in normal development but in neonatal hypoxic injury and remyelination in the adult mammalian CNS. Rnf43, but not the related Znrf3, is potently activated by Wnt signaling in OL progenitor cells (OPCs) and marks activated OPCs in human MS and HIE. Rnf43 is required in an injury-specific context, and it promotes OPC differentiation through negative regulation of Wnt signal strength in OPCs at the level of Fzd1 receptor presentation on the cell surface. Inhibition of Fzd1 using UM206 promotes remyelination following ex vivo and in vivo demyelinating injury.
Collapse
Affiliation(s)
- Jianqin Niu
- Department of Neurology, University of California at San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California at San Francisco, San Francisco, CA 94158, USA; Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China; Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China.
| | - Guangdan Yu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Xiaorui Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Wenlong Xia
- Department of Neurology, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Yuxin Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Kimberly K Hoi
- Department of Neurology, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Feng Mei
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China; Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China; Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Jonah R Chan
- Department of Neurology, University of California at San Francisco, San Francisco, CA 94158, USA; Division of Neuroimmunology and Glial Biology, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Stephen P J Fancy
- Department of Neurology, University of California at San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California at San Francisco, San Francisco, CA 94158, USA; Division of Neuroimmunology and Glial Biology, University of California at San Francisco, San Francisco, CA 94158, USA; Newborn Brain Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
12
|
Kohnke S, Buller S, Nuzzaci D, Ridley K, Lam B, Pivonkova H, Bentsen MA, Alonge KM, Zhao C, Tadross J, Holmqvist S, Shimizu T, Hathaway H, Li H, Macklin W, Schwartz MW, Richardson WD, Yeo GSH, Franklin RJM, Karadottir RT, Rowitch DH, Blouet C. Nutritional regulation of oligodendrocyte differentiation regulates perineuronal net remodeling in the median eminence. Cell Rep 2021; 36:109362. [PMID: 34260928 PMCID: PMC8293628 DOI: 10.1016/j.celrep.2021.109362] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
The mediobasal hypothalamus (MBH; arcuate nucleus of the hypothalamus [ARH] and median eminence [ME]) is a key nutrient sensing site for the production of the complex homeostatic feedback responses required for the maintenance of energy balance. Here, we show that refeeding after an overnight fast rapidly triggers proliferation and differentiation of oligodendrocyte progenitors, leading to the production of new oligodendrocytes in the ME specifically. During this nutritional paradigm, ME perineuronal nets (PNNs), emerging regulators of ARH metabolic functions, are rapidly remodeled, and this process requires myelin regulatory factor (Myrf) in oligodendrocyte progenitors. In genetically obese ob/ob mice, nutritional regulations of ME oligodendrocyte differentiation and PNN remodeling are blunted, and enzymatic digestion of local PNN increases food intake and weight gain. We conclude that MBH PNNs are required for the maintenance of energy balance in lean mice and are remodeled in the adult ME by the nutritional control of oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Sara Kohnke
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sophie Buller
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Danae Nuzzaci
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Katherine Ridley
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Brian Lam
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Helena Pivonkova
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Marie A Bentsen
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kimberly M Alonge
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Chao Zhao
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John Tadross
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Staffan Holmqvist
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Takahiro Shimizu
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Hannah Hathaway
- Department of Cell & Developmental Biology and Program in Neuroscience, University of Colorado School of Medicine, Aurora, CO, USA
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Wendy Macklin
- Department of Cell & Developmental Biology and Program in Neuroscience, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael W Schwartz
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Robin J M Franklin
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ragnhildur T Karadottir
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David H Rowitch
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Clemence Blouet
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
13
|
The role of glycogen synthase kinase 3 beta in multiple sclerosis. Biomed Pharmacother 2020; 132:110874. [PMID: 33080467 DOI: 10.1016/j.biopha.2020.110874] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that leads to progressive neurological disability due to axonal deterioration. Although MS presents profound heterogeneity in the clinical course, its underlying central mechanism is active demyelination and neurodegeneration associated with inflammation. Multiple autoimmune and neuroinflammatory pathways are involved in the demyelination process of MS. Analysis of MS lesions has shown that inflammatory genes are upregulated. Glycogen synthase kinase-3 (GSK-3) is part of the mitogen-activated protein kinase (MAPK) family and has important roles in many signaling cascades. GSK-3 is a highly conserved serine/threonine protein kinase expressed in both the central and the peripheral nervous systems. GSK-3 modulates several biological processes through phosphorylation of protein kinases, including cell signaling, neuronal growth, apoptosis and production of pro-inflammatory cytokines and interleukins, allowing adaptive changes in events such as cellular proliferation, migration, inflammation, and immunity. GSK-3 occurs in mammals in two isoforms GSK-3α and GSK-3β, both of which are common in the brain, although GSK-3α is found particularly in the cerebral cortex, cerebellum, striated hippocampus and Purkinje cells, while GSK-3β is found in all brain regions. In patients with chronic progressive MS, expression of GSK-3β is elevated in several brain regions such as the corpus callosum and cerebral cortex. GSK-3β inhibition may play a role in glial cell activation, reducing pathological pain induced by nerve injury by formalin injection. According to the role of GSK-3β in pathological conditions, the aim of this article is review of the role of GSK-3β in multiple sclerosis and inflammation of neurons.
Collapse
|
14
|
R-Ras GTPases Signaling Role in Myelin Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21165911. [PMID: 32824627 PMCID: PMC7460555 DOI: 10.3390/ijms21165911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
Myelination is required for fast and efficient synaptic transmission in vertebrates. In the central nervous system, oligodendrocytes are responsible for creating myelin sheaths that isolate and protect axons, even throughout adulthood. However, when myelin is lost, the failure of remyelination mechanisms can cause neurodegenerative myelin-associated pathologies. From oligodendrocyte progenitor cells to mature myelinating oligodendrocytes, myelination is a highly complex process that involves many elements of cellular signaling, yet many of the mechanisms that coordinate it, remain unknown. In this review, we will focus on the three major pathways involved in myelination (PI3K/Akt/mTOR, ERK1/2-MAPK, and Wnt/β-catenin) and recent advances describing the crosstalk elements which help to regulate them. In addition, we will review the tight relation between Ras GTPases and myelination processes and discuss its potential as novel elements of crosstalk between the pathways. A better understanding of the crosstalk elements orchestrating myelination mechanisms is essential to identify new potential targets to mitigate neurodegeneration.
Collapse
|
15
|
Gnanakkumaar P, Murugesan R, Ahmed SSSJ. Gene Regulatory Networks in Peripheral Mononuclear Cells Reveals Critical Regulatory Modules and Regulators of Multiple Sclerosis. Sci Rep 2019; 9:12732. [PMID: 31484947 PMCID: PMC6726613 DOI: 10.1038/s41598-019-49124-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a complex, demyelinating disease with the involvement of autoimmunity and neurodegeneration. Increasing efforts have been made towards identifying the diagnostic markers to differentiate the classes of MS from other similar neurological conditions. Using a systems biology approach, we constructed four types of gene regulatory networks (GRNs) involved in peripheral blood mononuclear cells (PBMCs). The regulatory strength of each GRN across primary progressive MS (PPMS), relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and control were evaluated by an integrity algorithm. Among the constructed GRNs (referred as TF_gene_miRNA), POU3F2_CDK6_hsa-miR-590-3p, MEIS1_CASC3_hsa-miR-1261, STAT3_OGG1_hsa-miR-298, and TCF4_FMR1_hsa-miR-301b were top-ranked and differentially regulated in all classes of MS compared to control. These GRNs showed potential involvement in regulating various molecular pathways such as interleukin, integrin, glypican, sphingosine phosphate, androgen, and Wnt signaling pathways. For validation, the qPCR analysis of the GRN components (TFs, gene, and miRNAs) in PBMCs of healthy controls (n = 30), RRMS (n = 14), PPMS (n = 13) and SPMS (n = 12) were carried out. Real-time expression analysis of GRNs showed a similar regulatory pattern as derived from our systems biology approach. Also, our study provided several novel GRNs that regulate unique and common molecular mechanisms between MS conditions. Hence, these regulatory components of GRNs will help to understand the disease mechanism across MS classes and further insight may though light towards diagnosis.
Collapse
Affiliation(s)
- Perumal Gnanakkumaar
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Kelambakkam, 603103, India
| | - Ram Murugesan
- Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, 603103, India
| | - Shiek S S J Ahmed
- Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, 603103, India.
| |
Collapse
|
16
|
Bem J, Brożko N, Chakraborty C, Lipiec MA, Koziński K, Nagalski A, Szewczyk ŁM, Wiśniewska MB. Wnt/β-catenin signaling in brain development and mental disorders: keeping TCF7L2 in mind. FEBS Lett 2019; 593:1654-1674. [PMID: 31218672 PMCID: PMC6772062 DOI: 10.1002/1873-3468.13502] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Canonical Wnt signaling, which is transduced by β-catenin and lymphoid enhancer factor 1/T cell-specific transcription factors (LEF1/TCFs), regulates many aspects of metazoan development and tissue renewal. Although much evidence has associated canonical Wnt/β-catenin signaling with mood disorders, the mechanistic links are still unknown. Many components of the canonical Wnt pathway are involved in cellular processes that are unrelated to classical canonical Wnt signaling, thus further blurring the picture. The present review critically evaluates the involvement of classical Wnt/β-catenin signaling in developmental processes that putatively underlie the pathology of mental illnesses. Particular attention is given to the roles of LEF1/TCFs, which have been discussed surprisingly rarely in this context. Highlighting recent discoveries, we propose that alterations in the activity of LEF1/TCFs, and particularly of transcription factor 7-like 2 (TCF7L2), result in defects previously associated with neuropsychiatric disorders, including imbalances in neurogenesis and oligodendrogenesis, the functional disruption of thalamocortical circuitry and dysfunction of the habenula.
Collapse
Affiliation(s)
- Joanna Bem
- Centre of New TechnologiesUniversity of WarsawPoland
| | - Nikola Brożko
- Centre of New TechnologiesUniversity of WarsawPoland
| | | | | | | | | | | | | |
Collapse
|
17
|
Bem J, Brożko N, Chakraborty C, Lipiec MA, Koziński K, Nagalski A, Szewczyk ŁM, Wiśniewska MB. Wnt/β-catenin signaling in brain development and mental disorders: keeping TCF7L2 in mind. FEBS Lett 2019. [PMID: 31218672 DOI: 10.1002/1873−3468.13502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Canonical Wnt signaling, which is transduced by β-catenin and lymphoid enhancer factor 1/T cell-specific transcription factors (LEF1/TCFs), regulates many aspects of metazoan development and tissue renewal. Although much evidence has associated canonical Wnt/β-catenin signaling with mood disorders, the mechanistic links are still unknown. Many components of the canonical Wnt pathway are involved in cellular processes that are unrelated to classical canonical Wnt signaling, thus further blurring the picture. The present review critically evaluates the involvement of classical Wnt/β-catenin signaling in developmental processes that putatively underlie the pathology of mental illnesses. Particular attention is given to the roles of LEF1/TCFs, which have been discussed surprisingly rarely in this context. Highlighting recent discoveries, we propose that alterations in the activity of LEF1/TCFs, and particularly of transcription factor 7-like 2 (TCF7L2), result in defects previously associated with neuropsychiatric disorders, including imbalances in neurogenesis and oligodendrogenesis, the functional disruption of thalamocortical circuitry and dysfunction of the habenula.
Collapse
Affiliation(s)
- Joanna Bem
- Centre of New Technologies, University of Warsaw, Poland
| | - Nikola Brożko
- Centre of New Technologies, University of Warsaw, Poland
| | | | | | - Kamil Koziński
- Centre of New Technologies, University of Warsaw, Poland
| | | | | | | |
Collapse
|
18
|
Vallée A, Vallée JN, Guillevin R, Lecarpentier Y. Interactions Between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma on Neuroinflammation, Demyelination, and Remyelination in Multiple Sclerosis. Cell Mol Neurobiol 2018; 38:783-795. [PMID: 28905149 DOI: 10.1007/s10571-017-0550-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/09/2017] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is marked by neuroinflammation and demyelination with loss of oligodendrocytes in the central nervous system. The immune response is regulated by WNT/beta-catenin pathway in MS. Activated NF-kappaB, a major effector of neuroinflammation, and upregulated canonical WNT/beta-catenin pathway positively regulate each other. Demyelinating events present an upregulation of WNT/beta-catenin pathway, whereas proper myelinating phases show a downregulation of WNT/beta-catenin pathway essential for the promotion of oligodendrocytes precursors cells proliferation and differentiation. The activation of WNT/beta-catenin pathway results in differentiation failure and impairment in remyelination. However, PI3K/Akt pathway and TCF7L2, two downstream targets of WNT/beta-catenin pathway, are upregulated and promote proper remyelination. The interactions of these signaling pathways remain unclear. PPAR gamma activation can inhibit NF-kappaB, and can also downregulate the WNT/beta-catenin pathway. PPAR gamma and canonical WNT/beta-catenin pathway act in an opposite manner. PPAR gamma agonists appear as a promising treatment for the inhibition of demyelination and the promotion of proper remyelination through the control of both NF-kappaB activity and canonical WNT/beta-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|