1
|
Chioccioli M, Roy S, Newell R, Pestano L, Dickinson B, Rigby K, Herazo-Maya J, Jenkins G, Ian S, Saini G, Johnson SR, Braybrooke R, Yu G, Sauler M, Ahangari F, Ding S, DeIuliis J, Aurelien N, Montgomery RL, Kaminski N. A lung targeted miR-29 mimic as a therapy for pulmonary fibrosis. EBioMedicine 2022; 85:104304. [PMID: 36265417 PMCID: PMC9587275 DOI: 10.1016/j.ebiom.2022.104304] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND MicroRNAs are non-coding RNAs that negatively regulate gene networks. Previously, we reported that systemically delivered miR-29 mimic MRG-201 reduced fibrosis in animal models, supporting the consideration of miR-29-based therapies for idiopathic pulmonary fibrosis (IPF). METHODS We generated MRG-229, a next-generation miR-29 mimic based on MRG-201 with improved chemical stability due to additional sugar modifications and conjugation with the internalization moiety BiPPB (PDGFbetaR-specific bicyclic peptide)1. We investigated the anti-fibrotic efficacy of MRG-229 on TGF-β1 treated human lung fibroblasts (NHLFs), human precision cut lung slices (hPCLS), and in vivo bleomycin studies; toxicology was assessed in two animal models, rats, and non-human primates. Finally, we examined miR-29b levels in a cohort of 46 and 213 patients with IPF diagnosis recruited from Yale and Nottingham Universities (Profile Cohort), respectively. FINDINGS The peptide-conjugated MRG-229 mimic decreased expression of pro-fibrotic genes and reduced collagen production in each model. In bleomycin-treated mice, the peptide-conjugated MRG-229 mimic downregulated profibrotic gene programs at doses more than ten-fold lower than the original compound. In rats and non-human primates, the peptide-conjugated MRG-229 mimic was well tolerated at clinically relevant doses with no adverse findings observed. In human peripheral blood from IPF patients decreased miR-29 concentrations were associated with increased mortality in two cohorts potentially identified as a target population for treatment. INTERPRETATION Collectively, our results provide support for the development of the peptide-conjugated MRG-229 mimic as a potential therapy in humans with IPF. FUNDING This work was supported by NIH NHLBI grants UH3HL123886, R01HL127349, R01HL141852, U01HL145567.
Collapse
Affiliation(s)
- Maurizio Chioccioli
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | - Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Steward Ian
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | - Guying Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, CN, China
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Farida Ahangari
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Shuizi Ding
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Joseph DeIuliis
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Yao Y, Li Z, Gao W. Identification of Hub Genes in Idiopathic Pulmonary Fibrosis and NSCLC Progression:Evidence From Bioinformatics Analysis. Front Genet 2022; 13:855789. [PMID: 35480306 PMCID: PMC9038140 DOI: 10.3389/fgene.2022.855789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/18/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Lung cancer is the most common comorbidity of idiopathic pulmonary fibrosis. Thus there is an urgent need for the research of IPF and carcinogenesis Objective: The objective of this study was to explore hub genes which are common in pulmonary fibrosis and lung cancer progression through bioinformatic analysis. Methods: All the analysis was performed in R software. Differentially expressed genes (DEGs) were explored by comparing gene expression profiles between IPF tissues and healthy lung tissues from GSE24206, GSE53845, GSE101286 and GSE110147 datasets. Venn Diagram analysis was used to identify the overlapping genes, while GO and KEGG pathway enrichment analysis were used to explore the biological functions of the DEGs using clusterprofiler package. Hub genes were identified by analyzing protein-protein interaction networks using Cytoscape software. Nomogram was constructed using the rms package. Tumor immune dysfunction and exclusion (TIDE) and Genomics of Drug Sensitivity in Cancer (GDSC) analysis was used to quantify the immunotherapy and chemotherapy sensitivity of non-small cell lung cancer (NSCLC) patients. Results:COL1A1, COL3A1, MMP1, POSTN1 and TIMP3 were identified as the top five hub genes. The five hub genes were used to construct a diagnostic nomogram that was validated in another IPF dataset. Since the hub genes were also associated with lung cancer progression, we found that the nomogram also had diagnostic value in NSCLC patients. These five genes achieved a statistically difference of overall survival in NSCLC patients (p < 0.05). The expression of the five hub genes was mostly enriched in fibroblasts. Fibroblasts and the hub genes also showed significant ability to predict the susceptibility of NSCLC patients to chemotherapy and immunotherapy. Conclusion: We identified five hub genes as potential biomarkers of IPF and NSCLC progression. This finding may give insight into the underlying molecular mechanisms of IPF and lung cancer progression and provides potential targets for developing new therapeutic agents for IPF patients.
Collapse
|
3
|
Evaluation of microRNA expression in a sheep model for lung fibrosis. BMC Genomics 2021; 22:827. [PMID: 34789159 PMCID: PMC8596952 DOI: 10.1186/s12864-021-08073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibroproliferative disorder that has one of the poorest prognoses amongst interstitial lung diseases. Recently, the finding of aberrant expression levels of miRNAs in IPF patients has drawn significant attention to the involvement of these molecules in the pathogenesis of this disease. Clarification of the differential expression of miRNAs in health and disease may identify novel therapeutic strategies that can be employed in the future to combat IPF. This study evaluates the miRNA expression profiles in a sheep model for lung fibrosis and compares them to the miRNA profiles of both IPF patients and the mouse bleomycin model for pulmonary fibrosis. Pathway enrichment analyses were performed on differentially expressed miRNAs to illustrate which biological mechanisms were associated with lung fibrosis. RESULTS We discovered 49 differentially expressed miRNAs in the sheep fibrosis model, in which 32 miRNAs were significantly down regulated, while 17 miRNAs were significantly upregulated due to bleomycin-induced lung injury. Moreover, the miRNA families miR-29, miR-26, miR-30, let-7, miR-21, miR-19, miR-17 and miR-199 were aberrantly expressed in both sheep and mouse models, with similar differential miRNAs expression observed in IPF cases. Importantly, 18 miRNAs were aberrantly expressed in both the sheep model and IPF patients, but not in mice. CONCLUSION Together with pathway enrichment analyses, these results show that the sheep model can potentially be used to characterize previously unrecognized biological pathways associated with lung fibrosis.
Collapse
|
4
|
IPF-Fibroblast Erk1/2 Activity Is Independent from microRNA Cluster 17-92 but Can Be Inhibited by Treprostinil through DUSP1. Cells 2021; 10:cells10112836. [PMID: 34831059 PMCID: PMC8616195 DOI: 10.3390/cells10112836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/25/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive terminal lung disease, and therapies aim to block fibrosis. Fibroblast proliferation is controlled by C/EBP-β, microRNA cluster 17-92 (miR17-92), and Erk1/2 mitogen-activated protein kinase. This study assessed the role of miR17-92 in IPF-fibroblast proliferation and its modification by treprostinil. Fibroblasts were isolated from eight IPF patients, five interstitial lung fibrosis patients, and seven control lungs. Fibroblasts were stimulated with TGF-β1 over 24 h. The miR17-92 expression was analyzed by RT-qPCR, and protein expression by Western blotting. TGF-β1 upregulated C/EBP-β in all fibroblasts, which was reduced by treprostinil in control-fibroblasts, but not in IPF-fibroblasts. Compared to controls, the guide strands miR-19a-3p, miR-19b-3p, miR-20a-5p, and miR-92a-3p, as well as the passenger strands miR-17-3p, miR-18-3p, miR-19a-1-5p, and miR-92a-5p were significantly increased in IPF-fibroblasts. In controls, TGF-β1 and treprostinil significantly reduced specific miR17-92 members. IPF-fibroblast proliferation was inhibited by treprostinil through increased expression of the Erk1/2 inhibitor DUSP1. These data suggest that proliferation control via miR17-92 and C/EBP-β is disrupted in IPF-fibroblasts. Therefore, the inhibition of early stages of signaling cascades or specific mitogen receptors might be less effective. However, the increased proliferation is sensitive to Erk1/2 inhibition by treprostinil-induced DUSP1.
Collapse
|
5
|
The Role of miRNAs in Extracellular Matrix Repair and Chronic Fibrotic Lung Diseases. Cells 2021; 10:cells10071706. [PMID: 34359876 PMCID: PMC8304879 DOI: 10.3390/cells10071706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
The lung extracellular matrix (ECM) plays a key role in the normal architecture of the lung, from embryonic lung development to mechanical stability and elastic recoil of the breathing adult lung. The lung ECM can modulate the biophysical environment of cells through ECM stiffness, porosity, topography and insolubility. In a reciprocal interaction, lung ECM dynamics result from the synthesis, degradation and organization of ECM components by the surrounding structural and immune cells. Repeated lung injury and repair can trigger a vicious cycle of aberrant ECM protein deposition, accompanied by elevated ECM stiffness, which has a lasting effect on cell and tissue function. The processes governing the resolution of injury repair are regulated by several pathways; however, in chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary disease (IPF) these processes are compromised, resulting in impaired cell function and ECM remodeling. Current estimates show that more than 60% of the human coding transcripts are regulated by miRNAs. miRNAs are small non-coding RNAs that regulate gene expressions and modulate cellular functions. This review is focused on the current knowledge of miRNAs in regulating ECM synthesis, degradation and topography by cells and their dysregulation in asthma, COPD and IPF.
Collapse
|
6
|
Tu Z, He X, Zeng L, Meng D, Zhuang R, Zhao J, Dai W. Exploration of Prognostic Biomarkers for Lung Adenocarcinoma Through Bioinformatics Analysis. Front Genet 2021; 12:647521. [PMID: 33968130 PMCID: PMC8100590 DOI: 10.3389/fgene.2021.647521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/30/2021] [Indexed: 12/30/2022] Open
Abstract
With the development of computer technology, screening cancer biomarkers based on public databases has become a common research method. Here, an eight-gene prognostic model, which could be used to judge the prognosis of patients with lung adenocarcinoma (LUAD), was developed through bioinformatics methods. This study firstly used several gene datasets from GEO database to mine differentially expressed genes (DEGs) in LUAD tissue and healthy tissue via joint analysis. Later, enrichment analysis for the DEGs was performed, and it was found that the DEGs were mainly activated in pathways involved in extracellular matrix, cell adhesion, and leukocyte migration. Afterward, a TCGA cohort was used to perform univariate Cox, least absolute shrinkage and selection operator method, and multivariate Cox regression analyses for the DEGs, and a prognostic model consisting of eight genes (GPX3, TCN1, ASPM, PCP4, CAV2, S100P, COL1A1, and SPOK2) was established. Receiver operation characteristic (ROC) curve was then used to substantiate the diagnostic efficacy of the prognostic model. The survival significance of signature genes was verified through the GEPIA database, and the results exhibited that the risk coefficients of the eight genes were basically congruous with the effects of these genes on the prognosis in the GEPIA database, which suggested that the results were accurate. Finally, combined with clinical characteristics of patients, the diagnostic independence of the prognostic model was further validated through univariate and multivariate regression, and the results indicated that the model had independent prognostic value. The overall finding of the study manifested that the eight-gene prognostic model is closely related to the prognosis of LUAD patients, and can be used as an independent prognostic indicator. Additionally, the prognostic model in this study can help doctors make a better diagnosis in treatment and ultimately benefit LUAD patients.
Collapse
Affiliation(s)
- Zhengliang Tu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangfeng He
- Department of Thoracic Surgery, Zhuji People's Hospital, Zhuji, China
| | - Liping Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Meng
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Runzhou Zhuang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangang Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanrong Dai
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Le J, Le X. The clinical application value of miR-1269 as an unfavorable prognostic indicator of lung cancer. Am J Transl Res 2021; 13:3270-3277. [PMID: 34017498 PMCID: PMC8129335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Thanks to microRNAs (miR), a myriad of outstanding achievements have been made in multiple fields in recent years. miR-1269, a newly discovered miR, presents high expression profiles in lung cancer (LC), but its clinical implications in LC have not been clarified yet. METHODS The miR-1269 expressions in the peripheral blood of LC patients, benign pulmonary disease (BPD) patients, and healthy controls were measured using qRT-PCR. Receiver operating characteristic (ROC) curves were employed for the identification of the diagnostic value of miR-1269 in LC, as were Kaplan-Meier (K-M) analyses and a Cox regression model to determine miR-1269's prognostic value in LC. RESULTS qRT-PCR revealed higher miR-1269 expressions in the LC patients than in the BPD patients and the controls (P < 0.001). The LC patients with high miR-1269 expressions had advanced tumor stages (III-IV) and an increased probability of lymph node metastasis (LNM) (P < 0.01). Also, evidently elevated miR-1269 levels were observed in the peripheral blood of patients with the advanced tumor stages (III-IV) and LNM. Via ROC curves, we found that miR-1269 is of high clinical significance in the diagnosis of LC and advanced tumor stages. Our K-M survival analysis revealed a lowered 5-year survival rate in patients with high miR-1269 expressions, and our Cox regression analysis found that miR-1269 is an independent prognostic factor for LC. CONCLUSIONS miR-1269, with high expression profiles in LC, indicates unfavorable patient prognoses, so it may be a viable diagnostic and prognostic indicator of LC.
Collapse
Affiliation(s)
- Jinghong Le
- The First Department of General Thoracic Surgery, Guangrao County People's Hospital Guangrao 257300, Shandong Province, China
| | - Xiang Le
- The First Department of General Thoracic Surgery, Guangrao County People's Hospital Guangrao 257300, Shandong Province, China
| |
Collapse
|
8
|
Zhang H, Song M, Guo J, Ma J, Qiu M, Yang Z. The function of non-coding RNAs in idiopathic pulmonary fibrosis. Open Med (Wars) 2021; 16:481-490. [PMID: 33817326 PMCID: PMC8005778 DOI: 10.1515/med-2021-0231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Non-coding ribonucleic acids (ncRNAs) are a diverse group of RNA molecules that are mostly not translated into proteins after transcription, including long non-coding RNAs (lncRNAs) with longer than 200 nucleotides non-coding transcripts and microRNAs (miRNAs) which are only 18–22 nucleotides. As families of evolutionarily conserved ncRNAs, lncRNAs activate and repress genes via a variety of mechanisms at both transcriptional and translational levels, whereas miRNAs regulate protein-coding gene expression mainly through mRNA silencing. ncRNAs are widely involved in biological functions, such as proliferation, differentiation, migration, angiogenesis, and apoptosis. Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a poor prognosis. The etiology of IPF is still unclear. Increasing evidence shows the close correlations between the development of IPF and aberrant expressions of ncRNAs than thought previously. In this study, we provide an overview of ncRNAs participated in pathobiology of IPF, seeking the early diagnosis biomarker and aiming for potential therapeutic applications for IPF.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Miao Song
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China.,Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Jianing Guo
- Comfort Medical Center, Central hospital of Ulanqab, Ulanqab, Inner Mongolia, China
| | - Junbing Ma
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Min Qiu
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China.,Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zheng Yang
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| |
Collapse
|
9
|
Wang A, Xu Q, Sha R, Bao T, Xi X, Guo G. MicroRNA-29a inhibits cell proliferation and arrests cell cycle by modulating p16 methylation in cervical cancer. Oncol Lett 2021; 21:272. [PMID: 33717269 PMCID: PMC7885157 DOI: 10.3892/ol.2021.12533] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer is the second most common gynecological malignancy. Accumulating evidence has suggested that microRNAs (miRNAs) are involved in the occurrence and development of cervical cancer. The present study aimed to investigate the function and underlying molecular mechanism of microRNA (miRNA/miR)-29a in cervical cancer. Reverse transcription-quantitative PCR and methylation-specific PCR were used to examine the expression of miR-29a and methylated status of p16 promoter, respectively. Cell Counting Kit-8 analysis and flow cytometry were performed to evaluate cell viability and cycle, respectively. Dual-luciferase reporter assay was performed to verify the interaction between miR-29a and its targets. Western blot analysis was performed to detect the protein levels of DNA methyltransferases (DNMT)3A and DNMT3B. The results demonstrated that miR-29a expression was downregulated in cervical cancer tissues and cells, and negatively correlated with p16 promoter hypermethylation. Furthermore, cell experiments confirmed that miR-29a suppressed cell proliferation and induced cell cycle arrest in HeLa and C-33A cells. Mechanically, miR-29a restored normal methylation pattern of the p16 gene by sponging DNMT3A and DNMT3B. Taken together, the results of the present study demonstrated the epigenetic regulation of tumor suppressor p16 by miR-29a as a unique mechanism, thus providing a rationale for the development of miRNA-based strategies in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Anjin Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Qiying Xu
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810100, P.R. China
| | - Rengaowa Sha
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810100, P.R. China
| | - Tonghui Bao
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810100, P.R. China
| | - Xiaoli Xi
- Department of Medicine, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Guilan Guo
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810100, P.R. China
| |
Collapse
|
10
|
Yang X, Liang Y, Bamunuarachchi G, Xu Y, Vaddadi K, Pushparaj S, Xu D, Zhu Z, Blaha R, Huang C, Liu L. miR-29a is a negative regulator of influenza virus infection through targeting of the frizzled 5 receptor. Arch Virol 2020; 166:363-373. [PMID: 33206218 DOI: 10.1007/s00705-020-04877-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Influenza A virus (IAV) infections result in a large number of deaths and substantial economic losses each year. MicroRNAs repress gene expression and are involved in virus-host interactions. miR-29a is known to have anti-tumor and anti-fibrotic effects. However, the role of miR-29a in IAV infection is unclear. In the present study, we investigated the effect of miR-29a on IAV infection and the mechanisms by which it functions. IAV infection was found to cause decreased miR-29a expression in lung epithelial A549 cells and mouse lungs. Overexpression of miR-29a reduced IAV mRNA and protein levels and progeny virus production in HEK293 and A549 cells. Inhibition of IAV infection by miR-29a was observed with different strains of IAV, including A/PR/8/34, A/WSN/1933, and clinical isolates A/OK/3052/09 and A/OK/309/06 H3N2. Knockout of miR-29a using CRISPR/Cas9 resulted in an increase in viral mRNA and protein levels, confirming that miR-29a suppresses IAV infection. A 3' untranslated region (3'-UTR) reporter assay showed that miR-29a had binding sites in the 3'-UTR of the Wnt-Ca2+ signaling receptor frizzled 5 gene, and overexpression of miR-29a reduced the level of the endogenous frizzled 5 protein. Wnt5a treatment of HEK293 and A549 cells enhanced IAV infection. Our results suggest that miR-29a inhibits IAV infection, probably via the frizzled 5 receptor.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Yanzhao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Kishore Vaddadi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Zhengyu Zhu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Rachel Blaha
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA.
| |
Collapse
|
11
|
Bronchoalveolar Lavage-microRNAs Are Potential Novel Biomarkers of Outcome After Lung Transplantation. Transplant Direct 2020; 6:e547. [PMID: 32548241 PMCID: PMC7213607 DOI: 10.1097/txd.0000000000000994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/23/2022] Open
Abstract
Supplemental Digital Content is available in the text. Primary graft dysfunction, infections, and acute rejection (AR) worsen lung transplantation (LTx) outcome and patient survival. Despite significant efforts, reliable biomarkers of acute lung allograft dysfunction are lacking. To address this issue, we profiled the bronchoalveolar lavage (BAL) miRNome in LTx patients.
Collapse
|
12
|
Analysis and Identification of Tumorigenic Targets of MicroRNA in Cancer Cells by Photoreactive Chemical Probes. Int J Mol Sci 2020; 21:ijms21041545. [PMID: 32102467 PMCID: PMC7073161 DOI: 10.3390/ijms21041545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
Photoactive RNA probes have unique advantages in the identification of microRNA (miR) targets due to their ability for efficient conjugation to the target sequences by covalent crosslinking, providing stable miR-mRNA complexes for further analysis. Here, we report a highly efficient and straightforward method for miR target identification that is based on photo-reactive chemical probes and RNA-seq technology (denotes PCP-Seq). UV reactive probes were prepared by incorporating psoralen in the specific position of the seed sequence of miR. Cancer cells that were transfected with the miR probes were treated with UV, following the isolation of poly(A) RNA and sequencing of the transcriptome. Quantitative analysis of RNA-seq reads and subsequent validation by qPCR, dual luciferase assay as well as western blotting confirmed that PCP-Seq could highly efficiently identify multiple targets of different miRs in the lung cancer cell line, such as targets PTTG1 and PTGR1 of miR-29a and ILF2 of miR-34a. Collectively, our data showed that PCP-Seq is a robust strategy for miR targets identification, and unique in the identification of the targets that escape degradation by miRISC and maintain normal cellular level, although their translation is repressed.
Collapse
|
13
|
Hu Y, Xie L, Yu J, Fu H, Zhou D, Liu H. Inhibition of microRNA-29a alleviates hyperoxia-induced bronchopulmonary dysplasia in neonatal mice via upregulation of GAB1. Mol Med 2019; 26:3. [PMID: 31892308 PMCID: PMC6938623 DOI: 10.1186/s10020-019-0127-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Background The main features of bronchopulmonary dysplasia (BPD) are alveolar simplification, pulmonary growth arrest, and abnormal lung function. Multiple studies have highlighted microRNA-29 (miR-29) as a potential biomarker for lung diseases and cancers. Upregulation of miR-29a has been known to downregulate GRB2-associated-binding protein 1 (GAB1), which is often highly expressed in the lung. The current study was designed to investigate the potential role of miR-29a in hyperoxia-induced BPD by targeting GAB1 in a neonatal mouse model. Methods The expression of miR-29a and GAB1 in lung tissues of neonatal mice with hyperoxia-induced BPD and mouse alveolar epithelial cells (MLE-12) was determined using RT-qPCR and western blot analysis. Subsequently, the relationship between miR-29a and GAB1 was verified using in silico analysis. In order to assess the effects of miR-29a or GAB1 on BPD, the pathological characteristics of alveoli, as well as proliferation and apoptosis of cells were measured through gain- and loss-of-function studies. Results Upregulation of miR-29a and downregulation of GAB1 were evident in both lung tissues and MLE-12 cells following BPD modeling. GAB1 was a direct target gene of miR-29a. Inhibition of miR-29a and overexpression of GAB1 were shown to alleviate lung injury, promote cell proliferation and inhibit apoptosis but reduce chord length in lung tissues of neonatal mice following hyperoxia-induced BPD modeling. Conclusion Altogether, down-regulation of miR-29a can potentially elevate GAB1 expression, reducing cell apoptosis and stimulating proliferation, ultimately retarding the development of BPD in mice. This study highlights the potential of a promising new target for preventing BPD.
Collapse
Affiliation(s)
- Yu Hu
- West China School of Medicine, Sichuan University, Chengdu, 610041, People's Republic of China.,Mianyang Central Hospital, Department of Pediatrics, Mianyang, People's Republic of China
| | - Liang Xie
- , Mianyang, 621000, People's Republic of China
| | - Jing Yu
- Mianyang Central Hospital, Department of Pediatrics, Mianyang, People's Republic of China
| | - Hongling Fu
- West China School of Medicine, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Dan Zhou
- West China School of Medicine, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hanmin Liu
- , Mianyang, 621000, People's Republic of China. .,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
14
|
Akt1 and Akt2 Isoforms Play Distinct Roles in Regulating the Development of Inflammation and Fibrosis Associated with Alcoholic Liver Disease. Cells 2019; 8:cells8111337. [PMID: 31671832 PMCID: PMC6912497 DOI: 10.3390/cells8111337] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Akt kinase isoforms (Akt1, Akt2, and Akt3) have generally been thought to play overlapping roles in phosphoinositide 3-kinase (PI3K)-mediated-signaling. However, recent studies have suggested that they display isoform-specific roles in muscle and fat. To determine whether such isoform-specificity is observed with respect to alcoholic liver disease (ALD) progression, we examined the role of Akt1, Akt2, and Akt3 in hepatic inflammation, and pro-fibrogenic proliferation and migration using Kupffer cells, hepatic stellate cells (HSC), and hepatocytes in an ethanol and lipopolysaccharide (LPS)-induced two-hit model in vitro and in vivo. We determined that siRNA-directed silencing of Akt2, but not Akt1, significantly suppressed cell inflammatory markers in HSC and Kupffer cells. Although both Akt1 and Akt2 inhibited cell proliferation in HSC, only Akt2 inhibited cell migration. Both Akt1 and Akt2, but not Akt3, inhibited fibrogenesis in hepatocytes and HSC. In addition, our in vivo results show that administration of chronic ethanol, binge ethanol and LPS (EBL) in wild-type C57BL/6 mice activated all three Akt isoforms with concomitant increases in activated forms of phosphoinositide dependent kinase-1 (PDK1), mammalian target-of-rapamycin complex 2 (mTORC2), and PI3K, resulting in upregulation in expression of inflammatory, proliferative, and fibrogenic genes. Moreover, pharmacological blocking of Akt2, but not Akt1, inhibited EBL-induced inflammation while blocking of both Akt1 and Akt2 inhibited pro-fibrogenic marker expression and progression of fibrosis. Our findings indicate that Akt isoforms play unique roles in inflammation, cell proliferation, migration, and fibrogenesis during EBL-induced liver injury. Thus, close attention must be paid when targeting all Akt isoforms as a therapeutic intervention.
Collapse
|
15
|
Sapalidis K, Sardeli C, Pavlidis E, Koimtzis G, Koulouris C, Michalopoulos N, Mantalovas S, Tsiouda T, Passos I, Kosmidis C, Giannakidis D, Surlin V, Katsaounis A, Alexandrou V, Amaniti A, Zarogoulidis P, Huang H, Li Q, Mogoanta S, Kesisoglou I. Scar tissue to lung cancer; pathways and treatment. J Cancer 2019; 10:810-818. [PMID: 30854086 PMCID: PMC6400809 DOI: 10.7150/jca.30300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/15/2018] [Indexed: 12/12/2022] Open
Abstract
Lung cancer still remains diagnosed at a late stage although we have novel diagnostic techniques at our disposal. However; for metastatic disease we have novel therapies based on pharmacogenomics. Tumor heterogenity provides us different treatments. There are several reasons for carcinogenesis; fibrosis and scar tissue provides an environment that induces malignancy. In the current review we will try and elucidate the pathways involved from scar tissue to carcinogenesis.
Collapse
Affiliation(s)
- Konstantinos Sapalidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Chrysanthi Sardeli
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efstathios Pavlidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Georgios Koimtzis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Charilaos Koulouris
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Nikolaos Michalopoulos
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Stylianos Mantalovas
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Theodora Tsiouda
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Ioannis Passos
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Christoforos Kosmidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Dimitrios Giannakidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Valeriu Surlin
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Athanasios Katsaounis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Vyron Alexandrou
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Aikaterini Amaniti
- Anaisthisiology Department, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece.,Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Haidong Huang
- The Diagnostic and Therapeutic Center of Respiratory Diseases, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Qiang Li
- The Diagnostic and Therapeutic Center of Respiratory Diseases, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Stelian Mogoanta
- Department of Surgery, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Isaac Kesisoglou
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| |
Collapse
|
16
|
Maria ATJ, Partouche L, Goulabchand R, Rivière S, Rozier P, Bourgier C, Le Quellec A, Morel J, Noël D, Guilpain P. Intriguing Relationships Between Cancer and Systemic Sclerosis: Role of the Immune System and Other Contributors. Front Immunol 2019; 9:3112. [PMID: 30687318 PMCID: PMC6335319 DOI: 10.3389/fimmu.2018.03112] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disorder, characterized by multisystem involvement, vasculopathy, and fibrosis. An increased risk of malignancy is observed in SSc (including breast and lung cancers), and in a subgroup of patients with specific autoantibodies (i.e., anti-RNA polymerase III and related autoantibodies), SSc could be a paraneoplastic syndrome and might be directly related to an immune response against cancer. Herein, we reviewed the literature, focusing on the most recent articles, and shed light onto the potential relationship between cancer and scleroderma regarding temporal and immunological dimensions.
Collapse
Affiliation(s)
- Alexandre Thibault Jacques Maria
- Medical School, Montpellier University, Montpellier, France.,Department of Internal Medicine-Multiorganic Diseases, Local Referral Center for Auto-immune Diseases, Saint-Eloi Hospital, Montpellier University, Montpellier, France.,IRMB, INSERM, CHU Montpellier, Montpellier University, Montpellier, France
| | - Léo Partouche
- Medical School, Montpellier University, Montpellier, France.,Department of Internal Medicine-Multiorganic Diseases, Local Referral Center for Auto-immune Diseases, Saint-Eloi Hospital, Montpellier University, Montpellier, France
| | - Radjiv Goulabchand
- Medical School, Montpellier University, Montpellier, France.,Department of Internal Medicine-Multiorganic Diseases, Local Referral Center for Auto-immune Diseases, Saint-Eloi Hospital, Montpellier University, Montpellier, France
| | - Sophie Rivière
- Department of Internal Medicine-Multiorganic Diseases, Local Referral Center for Auto-immune Diseases, Saint-Eloi Hospital, Montpellier University, Montpellier, France
| | - Pauline Rozier
- Medical School, Montpellier University, Montpellier, France.,Department of Internal Medicine-Multiorganic Diseases, Local Referral Center for Auto-immune Diseases, Saint-Eloi Hospital, Montpellier University, Montpellier, France.,IRMB, INSERM, CHU Montpellier, Montpellier University, Montpellier, France
| | - Céline Bourgier
- Medical School, Montpellier University, Montpellier, France.,Department of Radiation Oncology, INSERM U1194/IRCM, ICM-Val d'Aurelle, Montpellier, France
| | - Alain Le Quellec
- Medical School, Montpellier University, Montpellier, France.,Department of Internal Medicine-Multiorganic Diseases, Local Referral Center for Auto-immune Diseases, Saint-Eloi Hospital, Montpellier University, Montpellier, France
| | - Jacques Morel
- Medical School, Montpellier University, Montpellier, France.,Department of Rheumatology, Lapeyronie Hospital, Montpellier, France
| | - Danièle Noël
- IRMB, INSERM, CHU Montpellier, Montpellier University, Montpellier, France
| | - Philippe Guilpain
- Medical School, Montpellier University, Montpellier, France.,Department of Internal Medicine-Multiorganic Diseases, Local Referral Center for Auto-immune Diseases, Saint-Eloi Hospital, Montpellier University, Montpellier, France.,IRMB, INSERM, CHU Montpellier, Montpellier University, Montpellier, France
| |
Collapse
|