1
|
Wu K, Du J. Knockdown of circSlc8a1 inhibited the ferroptosis in the angiotensin II treated H9c2 cells via miR-673-5p/TFRC axis. J Bioenerg Biomembr 2024; 56:159-170. [PMID: 38158500 DOI: 10.1007/s10863-023-10000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND This study aimed to investigate the role of circSlc8a1 in cardiac hypertrophy (CH), a pathological change in various cardiovascular diseases. METHODS An in vitro CH model was established using angiotensin II (AngII) treated H9c2 cells, followed by western blotting and RT-qPCR for detecting relative expressions. Cell viability and proliferation were analyzed using CCK-8 and EdU assays, while lactate dehydrogenase (LDH), reactive oxygen species (ROS), glutathione (GSH), and iron levels were determined using corresponding kits. Moreover, dual-luciferase reporter and RNA pull-down assays were performed to demonstrate whether miR-673-5p is bound to circSlc8a1 or transferrin receptor (TFRC). RESULTS The results indicated that the expressions of circSlc8a1 and TFRC were increased, while miR-673-5p was decreased in the AngII treated H9c2 cells. The ferroptosis inhibitor treatment decreased the atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-major histocompatibility complex (β-MHC) protein expressions, and circSlc8a1 expressions. Knocking down of circSlc8a1 inhibited promoted the cell viability and proliferation, increased the GSH content, glutathione peroxidase 4, and solute carrier family 7 member 11 protein expressions, and decreased the LDH, ROS, iron levels, and RAS protein expressions. The MiR-673-5p inhibitor antagonized the role of si-circSlc8a1, and the over-expressed TFRC reversed the miR-673-5p mimicking effects in AngII treated H9c2 cells. CONCLUSION CircSlc8a1 promoted the ferroptosis in CH via regulating the miR-673-5p/TFRC axis.
Collapse
Affiliation(s)
- Kaidi Wu
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou City, Liaoning Province, 121001, China
| | - Jiawei Du
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou City, Liaoning Province, 121001, China.
| |
Collapse
|
2
|
Liu G, Tan L, Zhao X, Wang M, Zhang Z, Zhang J, Gao H, Liu M, Qin W. Anti-atherosclerosis mechanisms associated with regulation of non-coding RNAs by active monomers of traditional Chinese medicine. Front Pharmacol 2023; 14:1283494. [PMID: 38026969 PMCID: PMC10657887 DOI: 10.3389/fphar.2023.1283494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the leading cause of numerous cardiovascular diseases with a high mortality rate. Non-coding RNAs (ncRNAs), RNA molecules that do not encode proteins in human genome transcripts, are known to play crucial roles in various physiological and pathological processes. Recently, researches on the regulation of atherosclerosis by ncRNAs, mainly including microRNAs, long non-coding RNAs, and circular RNAs, have gradually become a hot topic. Traditional Chinese medicine has been proved to be effective in treating cardiovascular diseases in China for a long time, and its active monomers have been found to target a variety of atherosclerosis-related ncRNAs. These active monomers of traditional Chinese medicine hold great potential as drugs for the treatment of atherosclerosis. Here, we summarized current advancement of the molecular pathways by which ncRNAs regulate atherosclerosis and mainly highlighted the mechanisms of traditional Chinese medicine monomers in regulating atherosclerosis through targeting ncRNAs.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Meifang Liu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
3
|
Liu Q, Wang Y, Zhang T, Fang J, Meng S. Circular RNAs in vascular diseases. Front Cardiovasc Med 2023; 10:1247434. [PMID: 37840954 PMCID: PMC10570532 DOI: 10.3389/fcvm.2023.1247434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Vascular diseases are the leading cause of morbidity and mortality worldwide and are urgently in need of diagnostic biomarkers and therapeutic strategies. Circular RNAs (circRNAs) represent a unique class of RNAs characterized by a circular loop configuration and have recently been identified to possess a wide variety of biological functions. CircRNAs exhibit exceptional stability, tissue specificity, and are detectable in body fluids, thus holding promise as potential biomarkers. Their encoding function and stable gene expression also position circRNAs as an excellent alternative to gene therapy. Here, we briefly review the biogenesis, degradation, and functions of circRNAs. We summarize circRNAs discovered in major vascular diseases such as atherosclerosis and aneurysms, with a particular focus on molecular mechanisms of circRNAs identified in vascular endothelial cells and smooth muscle cells, in the hope to reveal new directions for mechanism, prognosis and therapeutic targets of vascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shu Meng
- Department of Basic Science Research, Guangzhou Laboratory, Guangzhou, China
| |
Collapse
|
4
|
Yang M, Luo J, Zhang S, Huang Q, Cao Q. Knockdown of circ_0113656 assuages oxidized low-density lipoprotein-induced vascular smooth muscle cell injury through the miR-188-3p/IGF2 pathway. Open Med (Wars) 2023; 18:20230687. [PMID: 37415611 PMCID: PMC10320571 DOI: 10.1515/med-2023-0687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 07/08/2023] Open
Abstract
Circular RNA (circRNA) is involved in the pathogenesis of atherosclerosis (AS). The present work analyzed the RNA expression of circ_0113656, microRNA-188-3p (miR-188-3p), and insulin-like growth factor 2 (IGF2) by quantitative real-time polymerase chain reaction. The protein expression of proliferating cell nuclear antigen (PCNA), matrix metalloprotein 2 (MMP2), and IGF2 was detected by Western blotting. Cell viability, proliferation, invasion, and migration were analyzed using the cell counting kit-8, 5-ethynyl-2'-deoxyuridine, transwell invasion, and wound-healing assays, respectively. The interactions among circ_0113656, miR-188-3p, and IGF2 were identified by dual-luciferase reporter assay and RNA immunoprecipitation assay. The results showed that circ_0113656 and IGF2 expression were significantly upregulated, while miR-188-3p was downregulated in the blood of AS patients and oxidized low-density lipoprotein (ox-LDL)-treated HVSMCs in comparison with controls. The ox-LDL treatment induced HVSMC proliferation, migration, and invasion accompanied by increases in PCNA and MMP2 expression; however, these effects were attenuated after circ_0113656 knockdown. Circ_0113656 acted as a miR-188-3p sponge and it regulated ox-LDL-induced HVSMC disorders by binding to miR-188-3p. Besides, the regulation of miR-188-3p in ox-LDL-induced HVSMC injury involved IGF2. Further, the depletion of circ_0113656 inhibited IGF2 expression by interacting with miR-188-3p. Thus, the circ_0113656/miR-188-3p/IGF2 axis may mediate ox-LDL-induced HVSMC disorders in AS, providing a new therapeutic strategy for AS.
Collapse
Affiliation(s)
- Ming Yang
- Department of Vasculocardiology, People’s Hospital of Jiangxi Provincial, Nanchang, China
| | - Jun Luo
- Department of Vasculocardioloy, People’s Hospital of Ganzhou City, Ganzhou, China
| | - Shuhua Zhang
- Department of Vasculocardiology, People’s Hospital of Jiangxi Provincial, Nanchang, China
| | - Qing Huang
- Department of Vasculocardiology, People’s Hospital of Jiangxi Provincial, Nanchang, China
| | - Qianqiang Cao
- Department of Vasculocardiology, People’s Hospital of Jiangxi Provincial, No. 266,
Fenhe North Road, Nanchang, China
| |
Collapse
|
5
|
HAN ZY, HUANG SJ, WANG R, GUAN HQ. Screening of differential circRNAs in the placenta of patients with preeclampsia and their regulatory mechanism. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.22.02913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
CircRNA-PTPRA Knockdown Inhibits Atherosclerosis Progression by Repressing ox-LDL-Induced Endothelial Cell Injury via Sponging of miR-671-5p. Biochem Genet 2023; 61:187-201. [PMID: 35817886 DOI: 10.1007/s10528-022-10256-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/22/2022] [Indexed: 01/24/2023]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease with high morbidity and mortality rates worldwide. This study aimed to investigate the role of circular RNA protein tyrosine phosphatase receptor type A (circRNA_PTPRA) in oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cell (HUVECs) injury and its underlying molecular mechanism. The expression of circRNA-PTPRA and microRNA (miR)-671-5p was assessed by quantitative reverse transcription PCR (qRT-PCR). The interaction between circRNA-PTPRA and miR-671-5p was predicted using bioinformatic analysis. Cell viability and apoptosis were determined using the Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Inflammation in HUVECs was analyzed by measuring the secretion of tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), and IL-6 using enzyme-linked immunosorbent assay (ELISA). Cleaved-caspase-3 expression was assessed using western blotting. The results indicated that circRNA-PTPRA expression was significantly increased and miR-671-5p expression was decreased in the serum of patients with AS and in ox-LDL-treated HUVECs. The interaction between circRNA-PTPRA and miR-671-5p was verified by dual luciferase reporter and RNA pull-down assays. In HUVECs, downregulation of circRNA-PTPRA reversed ox-LDL-induced reduction in cell viability, increase in apoptosis, and enhanced inflammation, whereas all these effects mediated by circRNA-PTPRA downregulation in ox-LDL-treated HUVECs were abolished by miR-671-5p downregulation. In conclusion, circRNA-PTPRA downregulation protects against ox-LDL-induced HUVECs injury by upregulating miR-671-5p, thereby providing potential therapeutic targets for AS.
Collapse
|
7
|
Wang K, Gao XQ, Wang T, Zhou LY. The Function and Therapeutic Potential of Circular RNA in Cardiovascular Diseases. Cardiovasc Drugs Ther 2023; 37:181-198. [PMID: 34269929 DOI: 10.1007/s10557-021-07228-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 01/14/2023]
Abstract
Circular RNA (circRNA) has a closed-loop structure, and its 3' and 5' ends are directly covalently connected by reverse splicing, which is more stable than linear RNA. CircRNAs usually possess microRNA (miRNA) binding sites, which can bind miRNAs and inhibit miRNA function. Many studies have shown that circRNAs are involved in the processes of cell senescence, proliferation and apoptosis and a series of signalling pathways, playing an important role in the prevention and treatment of diseases. CircRNAs are potential biological diagnostic markers and therapeutic targets for cardiovascular diseases (CVDs). To identify biomarkers and potential effective therapeutic targets without toxicity for heart disease, we summarize the biogenesis, biology, characterization and functions of circRNAs in CVDs, hoping that this information will shed new light on the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Xiang-Qian Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Tao Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Lu-Yu Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China.
| |
Collapse
|
8
|
Wang Q, Wang T, Liang S, Zhou L. Ox-LDL-Induced Vascular Smooth Muscle Cell Dysfunction Partly Depends on the Circ_0044073/miR-377-3p/AURKA Axis in Atherosclerosis. Int Heart J 2023; 64:252-262. [PMID: 37005319 DOI: 10.1536/ihj.22-148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Atherosclerosis (AS) is the main reason for most cardiovascular diseases. Circular RNA hsa_circ_0044073 (circ_0044073) has been found to promote AS progression. However, the specific regulatory mechanism of circ_0044073 in AS progression remains unclear.In this study, oxidized low-density lipoprotein (Ox-LDL) -stimulated human vascular smooth muscle cells (VSMCs) were used as AS cell models. The expression changes of circ_0044073 in serum samples and Ox-LDL-stimulated human VSMCs were assessed via real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, proliferation, colony formation, migration, and invasion were assessed using 3- (4,5-Dimethylthiazol-2-yl) -2,5-Diphenyltetrazolium Bromide (MTT), 5-ethynyl-2'-deoxyuridine (EDU), colony formation, and transwell assays. Some protein levels were detected via Western blotting. The regulatory mechanism of circ_0044073 was predicted using bioinformatics analysis and validated by dual-luciferase reporter and RNA pull-down assays.We observed an overt increase in circ_0044073 expression in serum samples derived from AS patients and Ox-LDL-stimulated human VSMCs. Circ_0044073 was identified as a miR-377-3p sponge. Either circ_0044073 knockdown or miR-377-3p overexpression could impair Ox-LDL-induced human VSMC proliferation, migration, invasion, and inflammation. AURKA served as a miR-377-3p target, and circ_0044073 regulated AURKA expression by adsorbing miR-377-3p. Furthermore, AURKA overexpression partly reversed the effects of circ_0044073 inhibition on Ox-LDL-induced human VSMC proliferation, migration, invasion, and inflammation.Circ_0044073 promoted AS progression by elevating AURKA expression by functioning as a miR-377-3p sponge. Providing a proof-of-concept demonstration to support circ_0044073 might be a target for AS treatment.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| | - Tao Wang
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| | - Siyuan Liang
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| | - Long Zhou
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| |
Collapse
|
9
|
Zhang WB, Qi YF, Xiao ZX, Chen H, Liu SH, Li ZZ, Zeng ZF, Wu HF. CircHIPK3 Regulates Vascular Smooth Muscle Cell Calcification Via the miR-106a-5p/MFN2 Axis. J Cardiovasc Transl Res 2022; 15:1315-1326. [PMID: 35467292 DOI: 10.1007/s12265-022-10247-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/24/2022] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the most common arterial disease and is closely related to vascular calcification. CircHIPK3 has been implicated in atherosclerosis development, but the possible downstream regulatory mechanisms remain unclear. The levels of circHIPK3, miR-106a and MFN2 in tissues and blood samples of patients with atherosclerosis were detected by RT-qPCR. The levels of circHIPK3, miR-106a and MFN2 were detected by RT-qPCR and the expression levels of MFN2, osteogenic and cartilage differentiation marker proteins were detected by western blot in vitro. ALP staining, Alizarin Red staining, and calcium content detection evaluated the degree of osteogenic differentiation of cells. Alcian blue staining detected the level of cell cartilage differentiation. Luciferase detected the targeting relationship between circHIPK3 and miR-106a-5p, as well as miR-106a-5p and MFN2. CircHIPK3 and MFN2 were low expressed and miR-106a-5p was highly expressed in tissues and blood samples of patients with atherosclerosis, as well as vascular smooth muscle cell (VSMC) with osteogenic and cartilage differentiation. Overexpression of circHIPK3 reduced the cell mineralization and calcium content. Overexpression of circHIPK3 inhibited osteogenic differentiation by decreasing ALP activity, RUNX2, and OPG expression, and increasing SM22α and SMA level. What's more, overexpression of circHIPK3 decreased the chondrogenic differentiation by inhibiting the protein level of SOX9, aggrecan, and collagen II. CircHIPK3 targeted miR-106a-5p and miR-106a-5p targeted MFN2. MiR-106a-5p overexpression or MFN2 depletion repressed the effect of circHIPK3 overexpression on VSMC calcification. CircHIPK3 regulated osteogenic and cartilage differentiation of VSMC via miR-106a-5p/MFN2 axis, indicating a target for treating vascular calcification.
Collapse
Affiliation(s)
- Wen-Bo Zhang
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, People's Republic of China.
| | - You-Fei Qi
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, People's Republic of China
| | - Zhan-Xiang Xiao
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, People's Republic of China
| | - Hao Chen
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, People's Republic of China
| | - Sa-Hua Liu
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, People's Republic of China
| | - Zhen-Zhen Li
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, People's Republic of China
| | - Zhao-Fan Zeng
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, People's Republic of China
| | - Hong-Fei Wu
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, People's Republic of China
| |
Collapse
|
10
|
Gao X, Fang D, Liang Y, Deng X, Chen N, Zeng M, Luo M. Circular RNAs as emerging regulators in COVID-19 pathogenesis and progression. Front Immunol 2022; 13:980231. [PMID: 36439162 PMCID: PMC9681929 DOI: 10.3389/fimmu.2022.980231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious acute respiratory disease caused by a newly emerging RNA virus, is a still-growing pandemic that has caused more than 6 million deaths globally and has seriously threatened the lives and health of people across the world. Currently, several drugs have been used in the clinical treatment of COVID-19, such as small molecules, neutralizing antibodies, and monoclonal antibodies. In addition, several vaccines have been used to prevent the spread of the pandemic, such as adenovirus vector vaccines, inactivated vaccines, recombinant subunit vaccines, and nucleic acid vaccines. However, the efficacy of vaccines and the onset of adverse reactions vary among individuals. Accumulating evidence has demonstrated that circular RNAs (circRNAs) are crucial regulators of viral infections and antiviral immune responses and are heavily involved in COVID-19 pathologies. During novel coronavirus infection, circRNAs not only directly affect the transcription process and interfere with viral replication but also indirectly regulate biological processes, including virus-host receptor binding and the immune response. Consequently, understanding the expression and function of circRNAs during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection will provide novel insights into the development of circRNA-based methods. In this review, we summarize recent progress on the roles and underlying mechanisms of circRNAs that regulate the inflammatory response, viral replication, immune evasion, and cytokines induced by SARS-CoV-2 infection, and thus highlighting the diagnostic and therapeutic challenges in the treatment of COVID-19 and future research directions.
Collapse
Affiliation(s)
- Xiaojun Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- College of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Singh D, Rai V, Agrawal DK. Non-Coding RNAs in Regulating Plaque Progression and Remodeling of Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2022; 23:13731. [PMID: 36430208 PMCID: PMC9692922 DOI: 10.3390/ijms232213731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs (ncRNAs) regulate cell proliferation, migration, differentiation, inflammation, metabolism of clinically important biomolecules, and other cellular processes. They do not encode proteins but are involved in the regulatory network of various proteins that are directly related to the pathogenesis of diseases. Little is known about the ncRNA-associated mechanisms of atherosclerosis and related cardiovascular disorders. Remodeling of the extracellular matrix (ECM) is critical in the pathogenesis of atherosclerosis and related disorders; however, its regulatory proteins are the potential subjects to explore with special emphasis on epigenetic regulatory components. The activity of regulatory proteins involved in ECM remodeling is regulated by various ncRNA molecules, as evident from recent research. Thus, it is important to critically evaluate the existing literature to enhance the understanding of nc-RNAs-regulated molecular mechanisms regulating ECM components, remodeling, and progression of atherosclerosis. This is crucial since deregulated ECM remodeling contributes to atherosclerosis. Thus, an in-depth understanding of ncRNA-associated ECM remodeling may identify novel targets for the treatment of atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
12
|
Xi X, Zheng X, Zhang R, Zeng L. Upregulation of circFOXP1 attenuates inflammation and apoptosis induced by ox-LDL in human umbilical vein endothelial cells by regulating the miR-185-5p/BCL-2 axis. Can J Physiol Pharmacol 2022; 100:1045-1054. [PMID: 36286345 DOI: 10.1139/cjpp-2020-0764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The pathogenesis of coronary artery disease (CAD) is closely related to an abnormal function of the coronary arteries due to myocardial ischemia, hypoxia, or necrosis, which poses a threat to human health. Therefore, this study was conducted to evaluate the role of circFOXP1 in controlling endothelial cell function during atherosclerosis (AS), and further investigate its potential molecular mechanism of regulation. Through Starbase database analysis, we predicted that circFOXP1 can sponge miR-185-5p that targets BCL-2. We found that interleukin (IL)-6, tumor necrois factor (TNF)-α, and IL-1β were significantly upregulated in high-fat diet (HFD)-induced apolipoprotein E-deficient (ApoE-/-) mice compared with those in the control mice. CircFOXP1 was also significantly upregulated in the AS-mice model and AS-cell model. Moreover, miR-185-5p overexpression was found to inhibit BCL-2 protein expression, which consequently reduced the proliferation, and increased the oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) apoptotic rate. Taken together, our data show that circFOXP1 can further aggravate endothelial cell injury by regulating the miR-185-5p/BCL-2 signal axis.
Collapse
Affiliation(s)
- Xuemei Xi
- Department of Cardiovascular, Chengfei Hospital, Jing 1st Rd, Chengdu 610091, Sichuan Province, P. R. China
| | - Xiaofei Zheng
- Department of Cardiovascular, Chengfei Hospital, Jing 1st Rd, Chengdu 610091, Sichuan Province, P. R. China
| | - Rongxian Zhang
- Department of Cardiovascular, Chengfei Hospital, Jing 1st Rd, Chengdu 610091, Sichuan Province, P. R. China
| | - Liangbang Zeng
- Department of Cardiovascular, Chengfei Hospital, Jing 1st Rd, Chengdu 610091, Sichuan Province, P. R. China
| |
Collapse
|
13
|
Chen Z, Xu J, Zha B, Li J, Li Y, Ouyang H. A construction and comprehensive analysis of the immune-related core ceRNA network and infiltrating immune cells in peripheral arterial occlusive disease. Front Genet 2022; 13:951537. [PMID: 36186432 PMCID: PMC9521039 DOI: 10.3389/fgene.2022.951537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Peripheral arterial occlusive disease (PAOD) is a peripheral artery disorder that increases with age and often leads to an elevated risk of cardiovascular events. The purposes of this study were to explore the underlying competing endogenous RNA (ceRNA)-related mechanism of PAOD and identify the corresponding immune cell infiltration patterns.Methods: An available gene expression profile (GSE57691 datasets) was downloaded from the GEO database. Differentially expressed (DE) mRNAs and lncRNAs were screened between 9 PAOD and 10 control samples. Then, the lncRNA-miRNA-mRNA ceRNA network was constructed on the basis of the interactions generated from the miRcode, TargetScan, miRDB, and miRTarBase databases. The functional enrichment and protein–protein interaction analyses of mRNAs in the ceRNA network were performed. Immune-related core mRNAs were screened out through the Venn method. The compositional patterns of the 22 types of immune cell fraction in PAOD were estimated through the CIBERSORT algorithm. The final ceRNA network and immune infiltration were validated using clinical tissue samples. Finally, the correlation between immune cells and mRNAs in the final ceRNA network was analyzed.Results: Totally, 67 DE_lncRNAs and 1197 DE_mRNAs were identified, of which 130 DE_mRNAs (91 downregulated and 39 upregulated) were lncRNA-related. The gene ontology enrichment analysis showed that those down- and upregulated genes were involved in dephosphorylation and regulation of translation, respectively. The final immune-related core ceRNA network included one lncRNA (LINC00221), two miRNAs (miR-17-5p and miR-20b-5p), and one mRNA (CREB1). Meanwhile, we found that monocytes and M1 macrophages were the main immune cell subpopulations in PAOD. After verification, these predictions were consistent with experimental results. Moreover, CREB1 was positively correlated with naive B cells (R = 0.55, p = 0.035) and monocytes (R = 0.52, p = 0.049) and negatively correlated with M1 macrophages (R = −0.72, p = 0.004), resting mast cells (R = −0.66, p = 0.009), memory B cells (R = −0.55, p = 0.035), and plasma cells (R = −0.52, p = 0.047).Conclusion: In general, we proposed that the immune-related core ceRNA network (LINC00221, miR-17-5p, miR-20b-5p, and CREB1) and infiltrating immune cells (monocytes and M1 macrophages) could help further explore the molecular mechanisms of PAOD.
Collapse
Affiliation(s)
- Zhiyong Chen
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiahui Xu
- Department of General Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Binshan Zha
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongxiang Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Huan Ouyang, ; Yongxiang Li,
| | - Huan Ouyang
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Huan Ouyang, ; Yongxiang Li,
| |
Collapse
|
14
|
Yu L, Ma W, Song B, Wang S, Li X, Wang Z. Hsa_circ_0030042 Ameliorates Oxidized Low-Density Lipoprotein-Induced Endothelial Cell Injury via the MiR-616-3p/RFX7 Axis. Int Heart J 2022; 63:763-772. [PMID: 35831154 DOI: 10.1536/ihj.22-065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atherosclerosis (AS) is a common etiology of cardiovascular disease. As an emerging functional biomarker, circular RNAs (circRNAs) are involved in various diseases, including cardiovascular disease. However, the mechanism of action of circ_0030042 in AS has not been reported.Human umbilical vein endothelial cells (HUVECs) stimulated by ox-LDL served as a cellular model of AS. Gene expression was detected using quantitative real-time polymerase chain reaction. The influence of circ_0030042 on cell viability, proliferation, and apoptosis was verified using Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, and flow cytometry assays. An enzyme-linked immunosorbent assay was performed to measure the contents of tumor necrosis factor-α, interleukin (IL) -6, and IL-1β. Western blot assay was utilized to determine the protein levels of Bax, Bcl-2, PCNA, and regulatory factor X 7 (RFX7). The interrelationship between miR-616-3p and circ_0030042 or RFX7 was validated using dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays.The expression of circ_0030042 was downregulated in ox-LDL-induced HUVECs. It was found that overexpression of circ_0030042 facilitated cell proliferation, repressed apoptosis, and reduced the level of inflammatory factors in HUVECs. Circ_0030042 and miR-616-3p had a targeting relationship, and the miR-616-3p mimic eliminated the effects of overexpressed circ_0030042 on ox-LDL-induced HUVECs. RFX7 was a downstream gene of miR-616-3p and was lowly expressed in ox-LDL-induced HUVECs. The miR-616-3p inhibitor stimulated cell proliferation, arrested apoptosis, and caused a decline in the levels of inflammatory factors, whereas knockdown of RFX7 abolished the effects.Circ_0030042 weakened ox-LDL-induced HUVEC injury by regulating the miR-616-3p/RFX7 pathway, thereby influencing AS progression. Circ_0030042 is likely to be a potential biomarker for the future treatment of patients with AS.
Collapse
Affiliation(s)
- Lei Yu
- Department of Cardiology, The Second Affiliated Hospital of Qiqihar Medical University
| | - Wenbin Ma
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University
| | - Binghui Song
- Department of Internal Medicine-Cardiovascular, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University
| | - Shuqing Wang
- Department of Internal Medicine-Cardiovascular, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University
| | - Xinying Li
- Department of Internal Medicine-Digestive, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University
| | - Zhao Wang
- Department of Internal Medicine-Cardiovascular, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University
| |
Collapse
|
15
|
Wang S, Wu J, Wang Z, Gong Z, Liu Y, Wang Z. Emerging Roles of Circ-ZNF609 in Multiple Human Diseases. Front Genet 2022; 13:837343. [PMID: 35938040 PMCID: PMC9353708 DOI: 10.3389/fgene.2022.837343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/03/2022] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a special type of endogenous RNAs with extensive roles in multiple human diseases. They are formed by back-splicing of partial sequences of the parental precursor mRNAs. Unlike linear RNAs, their covalently closed loop structure without a 5′ cap and a 3′ polyadenylated tail confers on them high stability and they are difficult to be digested by RNase R. Increasing evidence has proved that aberrant expressions of many circRNAs are detected and that circRNAs exert essential biological functions in disease development and progression via acting as a molecular sponge of microRNA, interacting with proteins as decoys or scaffolds, or self-encoding small peptides. Circular RNA zinc finger protein 609 (circ-ZNF609) originates from exon2 of ZNF609, which is located at chromosome 15q22.31, and it has recently been proved that it can translate into a protein. Being aberrantly upregulated in various diseases, it could promote malignant progression of human tumors, as well as tumor cell proliferation, migration, and invasion. Here in this review, we concluded the biological functions and potential mechanisms of circ-ZNF609 in multiple diseases, which could be further explored as a targetable molecule in future accurate diagnosis and prognosis.
Collapse
Affiliation(s)
| | | | | | | | - Yiyang Liu
- *Correspondence: Yiyang Liu, ; Zengjun Wang,
| | | |
Collapse
|
16
|
The Role of Non-Coding RNAs in the Pathogenesis of Parkinson’s Disease: Recent Advancement. Pharmaceuticals (Basel) 2022; 15:ph15070811. [PMID: 35890110 PMCID: PMC9315906 DOI: 10.3390/ph15070811] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson’s disease (PD) is a prevalent neurodegenerative aging disorder that manifests as motor and non-motor symptoms, and its etiopathogenesis is influenced by non-coding RNAs (ncRNAs). Signal pathway and gene sequence studies have proposed that alteration of ncRNAs is relevant to the occurrence and development of PD. Furthermore, many studies on brain tissues and body fluids from patients with PD indicate that variations in ncRNAs and their target genes could trigger or exacerbate neurodegenerative pathogenesis and serve as potential non-invasive biomarkers of PD. Numerous ncRNAs have been considered regulators of apoptosis, α-syn misfolding and aggregation, mitochondrial dysfunction, autophagy, and neuroinflammation in PD etiology, and evidence is mounting for the determination of the role of competing endogenous RNA (ceRNA) mechanisms in disease development. In this review, we discuss the current knowledge regarding the regulation and function of ncRNAs as well as ceRNA networks in PD pathogenesis, focusing on microRNAs, long ncRNAs, and circular RNAs to increase the understanding of the disease and propose potential target identification and treatment in the early stages of PD.
Collapse
|
17
|
Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2022; 7:200. [PMID: 35752619 PMCID: PMC9233709 DOI: 10.1038/s41392-022-01055-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetics is closely related to cardiovascular diseases. Genome-wide linkage and association analyses and candidate gene approaches illustrate the multigenic complexity of cardiovascular disease. Several epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding RNA, which are of importance for cardiovascular disease development and regression. Targeting epigenetic key enzymes, especially the DNA methyltransferases, histone methyltransferases, histone acetylases, histone deacetylases and their regulated target genes, could represent an attractive new route for the diagnosis and treatment of cardiovascular diseases. Herein, we summarize the knowledge on epigenetic history and essential regulatory mechanisms in cardiovascular diseases. Furthermore, we discuss the preclinical studies and drugs that are targeted these epigenetic key enzymes for cardiovascular diseases therapy. Finally, we conclude the clinical trials that are going to target some of these processes.
Collapse
|
18
|
Du N, Li M, Yang D. Hsa_circRNA_102541 regulates the development of atherosclerosis by targeting miR-296-5p/PLK1 pathway. Ir J Med Sci 2022; 191:1153-1159. [PMID: 34251586 DOI: 10.1007/s11845-021-02708-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cardiovascular disorders pose great threat to public health. As a common type of cardiovascular disease, atherosclerosis is characterized by high morbidity and mortality/recurrence rate. However, the pathogenesis of atherosclerosis is complex and not fully understood. The aim of this study was to investigate the influences of hsa_circRNA_102541 (circ_102541) on proliferation and apoptosis of HUVEC cells and to identify the underlying mechanisms. METHODS RT-PCR was used to determine the expression levels of circ_102541, miR-296-5p, and PLK1 in atherosclerosis and healthy blood samples. Following the transfection with sh-circ_102541, LV-circ_102541, miR-296-5p mimics, miR-296-5p inhibitors, and si-PLK1, cell proliferation was evaluated using CCK8 assay; cell apoptosis was determined by flow cytometry; dual luciferase assay was performed to examine the interaction between abovementioned molecules. The levels of associated markers including PCNA and caspase-3 were assessed by western blotting and RT-qPCR. RESULTS The expression of circRNA_102541 and PLK1 were significantly elevated in atherosclerosis specimens, where the level of miR-296-5p was reduced. Furthermore, circRNA_102541 could bind miR-296-5p and subsequently target PLK1. Following treatment with sh-circRNA_102541 or miR-296-5p mimics, proliferative ability and levels of PCNA were remarkably reduced in HUVEC cells, while apoptosis was significantly enhanced. Co-transfection with miR-296-5p mimics abrogated the effects induced by the overexpressed circ_102541. Additionally, treatment with si-PLK1 attenuated the biological behavior changes caused by miR-296-5p inhibitors in HUVEC cells. Moreover, transfection with LV-PLK1 reversed the effects triggered by miR-296-5p mimics. CONCLUSION Taken together, circRNA_102541 was upregulated in atherosclerosis, and knockdown of circRNA_102541 suppressed cell proliferation while promoted apoptosis of HUVEC cells via miR-296-5p/PLK1. This novel pathway may serve essential roles on the development of atherosclerosis, and circRNA_102541 could be a promising therapeutic candidate for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Na Du
- Department of Cardiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Mingjin Li
- Liaoning Jinqiu Hospital, Shenyang, Liaoning, 110015, People's Republic of China
| | - Dan Yang
- Department of Dermatology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| |
Collapse
|
19
|
Tong KL, Tan KE, Lim YY, Tien XY, Wong PF. CircRNA-miRNA interactions in atherogenesis. Mol Cell Biochem 2022; 477:2703-2733. [PMID: 35604519 DOI: 10.1007/s11010-022-04455-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is the major cause of coronary artery disease (CAD) which includes unstable angina, myocardial infarction, and heart failure. The onset of atherogenesis, a process of atherosclerotic lesion formation in the intima of arteries, is driven by lipid accumulation, a vicious cycle of reactive oxygen species (ROS)-induced oxidative stress and inflammatory reactions leading to endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) activation, and foam cell formation which further fuel plaque formation and destabilization. In recent years, there is a surge in the number of publications reporting the involvement of circular RNAs (circRNAs) in the pathogenesis of cardiovascular diseases, cancers, and metabolic syndromes. These studies have advanced our understanding on the biological functions of circRNAs. One of the most common mechanism of action of circRNAs reported is the sponging of microRNAs (miRNAs) by binding to the miRNAs response element (MRE), thereby indirectly increases the transcription of their target messenger RNAs (mRNAs). Individual networks of circRNA-miRNA-mRNA associated with atherogenesis have been extensively reported, however, there is a need to connect these findings for a complete overview. This review aims to provide an update on atherogenesis-related circRNAs and analyze the circRNA-miRNA-mRNA interactions in atherogenesis. The atherogenic mechanisms and clinical relevance of each atherogenesis-related circRNA were systematically discussed for better understanding of the knowledge gap in this area.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ke-En Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Xin-Yi Tien
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
Carballo-Perich L, Puigoriol-Illamola D, Bashir S, Terceño M, Silva Y, Gubern-Mérida C, Serena J. Clinical Parameters and Epigenetic Biomarkers of Plaque Vulnerability in Patients with Carotid Stenosis. Int J Mol Sci 2022; 23:5149. [PMID: 35563540 PMCID: PMC9101730 DOI: 10.3390/ijms23095149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022] Open
Abstract
Atheromatous disease is the first cause of death and dependency in developed countries and carotid artery atherosclerosis is one of the main causes of severe ischaemic strokes. Current management strategies are mainly based on the degree of stenosis and patient selection has limited accuracy. This information could be complemented by the identification of biomarkers of plaque vulnerability, which would permit patients at greater and lesser risk of stroke to be distinguished, thus enabling a better selection of patients for surgical or intensive medical treatment. Although several circulating protein-based biomarkers with significance for both the diagnosis of carotid artery disease and its prognosis have been identified, at present, none have been clinically implemented. This review focuses especially on the most relevant clinical parameters to take into account in routine clinical practice and summarises the most up-to-date data on epigenetic biomarkers of carotid atherosclerosis and plaque vulnerability.
Collapse
Affiliation(s)
- Laia Carballo-Perich
- Cerebrovascular Pathology Research Group, Girona Biomedical Research Institute (IDIBGI), RICORS-ICTUS, Parc Hospitalari Martí I Julià, Edifici M2, 17190 Salt, Spain; (L.C.-P.); (D.P.-I.)
| | - Dolors Puigoriol-Illamola
- Cerebrovascular Pathology Research Group, Girona Biomedical Research Institute (IDIBGI), RICORS-ICTUS, Parc Hospitalari Martí I Julià, Edifici M2, 17190 Salt, Spain; (L.C.-P.); (D.P.-I.)
| | - Saima Bashir
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, RICORS-ICTUS, Av. França s/n (7a Planta), 17007 Girona, Spain; (S.B.); (M.T.); (J.S.)
| | - Mikel Terceño
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, RICORS-ICTUS, Av. França s/n (7a Planta), 17007 Girona, Spain; (S.B.); (M.T.); (J.S.)
| | - Yolanda Silva
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, RICORS-ICTUS, Av. França s/n (7a Planta), 17007 Girona, Spain; (S.B.); (M.T.); (J.S.)
| | - Carme Gubern-Mérida
- Cerebrovascular Pathology Research Group, Girona Biomedical Research Institute (IDIBGI), RICORS-ICTUS, Parc Hospitalari Martí I Julià, Edifici M2, 17190 Salt, Spain; (L.C.-P.); (D.P.-I.)
| | - Joaquín Serena
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, RICORS-ICTUS, Av. França s/n (7a Planta), 17007 Girona, Spain; (S.B.); (M.T.); (J.S.)
| |
Collapse
|
21
|
Qiu J, Chen R, Zhao L, Lian C, Liu Z, Zhu X, Cui J, Wang S, Wang M, Huang Y, Wang S, Wang J. Circular RNA circGSE1 promotes angiogenesis in ageing mice by targeting the miR-323-5p/NRP1 axis. Aging (Albany NY) 2022; 14:3049-3069. [PMID: 35366240 PMCID: PMC9037273 DOI: 10.18632/aging.203988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Age is an important factor in many cardiovascular diseases, in which endothelial cells (ECs) play an important role. Circular RNAs (circRNAs) have been reported in many cardiovascular diseases, but their role in ageing EC-related angiogenesis is unclear. We aimed to identify a functional circRNA that regulates angiogenesis during ageing and explore its specific mechanism. In this study, we searched for differentially expressed circRNAs in old endothelial cells (OECs) and young endothelial cells (YECs) by circRNA sequencing and found that circGSE1 was significantly downregulated in OECs. Our study showed that circGSE1 could promote the proliferation, migration and tube formation of OECs in vitro. In a mouse model of femoral artery ligation and ischemia, circGSE1 promoted blood flow recovery and angiogenesis in the ischemic limbs of ageing mice. Mechanistically, we found that overexpressing circGSE1 reduced miR-323-5p expression, increased neuropilin-1 (NRP1) expression, and promoted proliferation, migration, and tube formation in OECs, while knocking down circGSE1 increased miR-323-5p expression, reduced NRP1 expression, and inhibited proliferation, migration, and tube formation in YECs. During EC ageing, circGSE1 may act through the miR-323-5p/NRP1 axis and promote endothelial angiogenesis in mice. Finally, the circGSE1/miR-323-5p/NRP1 axis could serve as a potential and promising therapeutic target for angiogenesis during ageing.
Collapse
Affiliation(s)
- Jiacong Qiu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Rencong Chen
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Lei Zhao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Chong Lian
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Zhen Liu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Xiaonan Zhu
- Department of Pharmacology Laboratory, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Jin Cui
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Siwen Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Mingshan Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Yingxiong Huang
- Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| | - Jinsong Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, Guangdong, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, Guangdong, China
| |
Collapse
|
22
|
Circular RNAs: regulators of vascular smooth muscle cells in cardiovascular diseases. J Mol Med (Berl) 2022; 100:519-535. [DOI: 10.1007/s00109-022-02186-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022]
|
23
|
Ju J, Song YN, Chen XZ, Wang T, Liu CY, Wang K. circRNA is a potential target for cardiovascular diseases treatment. Mol Cell Biochem 2022; 477:417-430. [PMID: 34780000 DOI: 10.1007/s11010-021-04286-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Circular RNAs (circRNAs), a novel class of endogenous noncoding RNA, are characterized by their covalently closed-loop structures without a 5' cap or a 3' poly(A) tail. With the evolution of high-throughput sequencing technology and bioinformatics, an increasing number of circRNAs have been discovered, and their functions were highlighted. Cardiovascular diseases (CVDs) have become the world's leading killers, with serious impacts on human health. Although significant progress has been made in clarifying the development of CVDs from the molecular to the cellular level, CVDs remain one of the leading causes of death in humans. circRNAs mainly function as a "sponge" to absorb microRNAs, which results in the positive control of downstream proteins. They play important regulatory roles in the development of CVDs. This paper reviews current knowledge on the biogenesis, detection and validation, translation, translocation and degradation, and general functions of circRNAs, with a focus on their roles in CVDs.
Collapse
Affiliation(s)
- Jie Ju
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, No. 38 Dengzhou Road, Qingdao, 266071, Shandong, China
| | - Ya-Nan Song
- Medical College of Qingdao University, Qingdao, 266021, China
| | - Xin-Zhe Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, No. 38 Dengzhou Road, Qingdao, 266071, Shandong, China
| | - Tao Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, No. 38 Dengzhou Road, Qingdao, 266071, Shandong, China
| | - Cui-Yun Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, No. 38 Dengzhou Road, Qingdao, 266071, Shandong, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, No. 38 Dengzhou Road, Qingdao, 266071, Shandong, China.
| |
Collapse
|
24
|
Gong X, Tian M, Cao N, Yang P, Xu Z, Zheng S, Liao Q, Chen C, Zeng C, Jose PA, Wang DZ, Jian Z, Xiao Y, Jiang DS, Wei X, Zhang B, Wang Y, Chen K, Wu G, Zeng C. Circular RNA circEsyt2 regulates vascular smooth muscle cell remodeling via splicing regulation. J Clin Invest 2021; 131:147031. [PMID: 34907911 DOI: 10.1172/jci147031] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/19/2021] [Indexed: 12/27/2022] Open
Abstract
Circular RNAs (circRNAs) have been recently recognized as playing a role in the pathogenesis of vascular remodeling-related diseases by modulating the functions of miRNAs. However, the interplay between circRNAs and proteins during vascular remodeling remains poorly understood. Here, we investigated a previously identified circRNA, circEsyt2, whose expression is known to be upregulated during vascular remodeling. Loss- and gain-of‑function mutation analyses in vascular smooth muscle cells (VSMCs) revealed that circEsyt2 enhanced cell proliferation and migration and inhibited apoptosis and differentiation. Furthermore, the silencing of circEsyt2 in vivo reduced neointima formation, while circEsyt2 overexpression enhanced neointimal hyperplasia in the injured carotid artery, confirming its role in vascular remodeling. Using unbiased protein-RNA screening and molecular validation, circEsyt2 was found to directly interact with polyC-binding protein 1 (PCBP1), an RNA splicing factor, and regulate PCBP1 intracellular localization. Additionally, circEsyt2 silencing substantially enhanced p53β splicing via the PCBP1-U2AF65 interaction, leading to the altered expression of p53 target genes (cyclin D1, p21, PUMA, and NOXA) and the decreased proliferation of VSMCs. Thus, we identified a potentially novel circRNA that regulated vascular remodeling, via altered RNA splicing, in atherosclerotic mouse models.
Collapse
Affiliation(s)
- Xue Gong
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Miao Tian
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Nian Cao
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Peili Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China.,Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Cindy Zeng
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhao Jian
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yingbin Xiao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ding-Sheng Jiang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Wei
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Zhang
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yibin Wang
- Division of Molecular Medicine, Departments of Anesthesiology, Physiology and Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| | - Ken Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China.,Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China.,Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
25
|
Bao MH, Zhang RQ, Huang XS, Zhou J, Guo Z, Xu BF, Liu R. Transcriptomic and Proteomic Profiling of Human Stable and Unstable Carotid Atherosclerotic Plaques. Front Genet 2021; 12:755507. [PMID: 34804124 PMCID: PMC8599967 DOI: 10.3389/fgene.2021.755507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/12/2021] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease with high prevalence and mortality. The rupture of atherosclerotic plaque is the main reason for the clinical events caused by atherosclerosis. Making clear the transcriptomic and proteomic profiles between the stabe and unstable atherosclerotic plaques is crucial to prevent the clinical manifestations. In the present study, 5 stable and 5 unstable human carotid atherosclerotic plaques were obtained by carotid endarterectomy. The samples were used for the whole transcriptome sequencing (RNA-Seq) by the Next-Generation Sequencing using the Illumina HiSeq, and for proteome analysis by HPLC-MS/MS. The lncRNA-targeted genes and circRNA-originated genes were identified by analyzing their location and sequence. Gene Ontology and KEGG enrichment was carried out to analyze the functions of differentially expressed RNAs and proteins. The protein-protein interactions (PPI) network was constructed by the online tool STRING. The consistency of transcriptome and proteome were analyzed, and the lncRNA/circRNA-miRNA-mRNA interactions were predicted. As a result, 202 mRNAs, 488 lncRNAs, 91 circRNAs, and 293 proteins were identified to be differentially expressed between stable and unstable atherosclerotic plaques. The 488 lncRNAs might target 381 protein-coding genes by cis-acting mechanisms. Sequence analysis indicated the 91 differentially expressed circRNAs were originated from 97 protein-coding genes. These differentially expressed RNAs and proteins were mainly enriched in the terms of the cellular response to stress or stimulus, the regulation of gene transcription, the immune response, the nervous system functions, the hematologic activities, and the endocrine system. These results were consistent with the previous reported data in the dataset GSE41571. Further analysis identified CD5L, S100A12, CKB (target gene of lncRNA MSTRG.11455.17), CEMIP (target gene of lncRNA MSTRG.12845), and SH3GLB1 (originated gene of hsacirc_000411) to be critical genes in regulating the stability of atherosclerotic plaques. Our results provided a comprehensive transcriptomic and proteomic knowledge on the stability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Mei-Hua Bao
- Academician Workstation, Changsha, China.,School of Stomatology, Changsha Medical University, Changsha, China
| | - Ruo-Qi Zhang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Xiao-Shan Huang
- Department of Pharmacology, Changsha Health Vocational College, Changsha, China
| | - Ji Zhou
- Academician Workstation, Changsha, China
| | - Zhen Guo
- Academician Workstation, Changsha, China
| | - Bao-Feng Xu
- Academician Workstation, Changsha, China.,First Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Liu
- Academician Workstation, Changsha, China.,Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Knockdown of circular RNA hsa_circ_0003204 inhibits oxidative stress and apoptosis through the miR-330-5p/Nod2 axis to ameliorate endothelial cell injury induced by low-density lipoprotein. Cent Eur J Immunol 2021; 46:140-151. [PMID: 34764783 PMCID: PMC8568026 DOI: 10.5114/ceji.2021.108174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/30/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Atherosclerosis (AS) is the leading cause of cardiovascular disease. Circular RNA hsa_circ_0003204 (hsa_circ_0003204) was elevated in oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells. However, the role and molecular mechanism of hsa_circ_0003204 in the AS process have not been studied. Material and methods Human primary aortic endothelial cells (HAECs) were treated with low-density lipoprotein (ox-LDL) to establish the AS model. The viability of ox-LDL-induced HAECs was assessed by counting kit-8 (CCK8) assay. Reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) levels in ox-LDL-induced HAECs supernatant were evaluated with the relevant kits. The apoptosis of ox-LDL-induced HAECs was determined via flow cytometry assay. The expression of hsa_circ_0003204, miR-330-5p, and nucleotide-binding oligomerization domain 2 (Nod2) was analyzed through quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between hsa_circ_0003204 or Nod2 and miR-330-5p was verified by dual-luciferase reporter assay. Protein level of Nod2 was detected using western blot analysis. Results Hsa_circ_0003204 and Nod2 were upregulated while miR-330-5p was decreased in ox-LDL-induced HAECs. Hsa_circ_0003204 depletion restrained the oxidative stress and apoptosis of ox-LDL-induced HAECs. Notably, hsa_circ_0003204 regulated Nod2 expression via sponging miR-330-5p in HAECs. Moreover, miR-330-5p inhibition restored the constraint of the oxidative stress and apoptosis of ox-LDL-induced HAECs caused by hsa_circ_0003204 silencing. Additionally, miR-330-5p targeted Nod2 and Nod2 enhancement abolished the repressive effects of miR-330-5p overexpression on the oxidative stress and apoptosis of ox-LDL-induced HAECs. Conclusions Hsa_circ_0003204 exhaustion mitigated endothelial cell injury through suppressing the oxidative stress and apoptosis in ox-LDL-induced HAECs via the miR-330-5p/Nod2 axis.
Collapse
|
27
|
Wu S, Yang S, Qu H. circ_CHFR regulates ox-LDL-mediated cell proliferation, apoptosis, and EndoMT by miR-15a-5p/EGFR axis in human brain microvessel endothelial cells. Open Life Sci 2021; 16:1053-1063. [PMID: 34676300 PMCID: PMC8483062 DOI: 10.1515/biol-2021-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/29/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) is a significant risk factor for various brain vascular diseases. Circular RNA (circRNA) is involved in the pathogenesis of brain vascular diseases. This study revealed the roles of circ_CHFR in ox-LDL-mediated cell proliferation, apoptosis, and endothelial-to-mesenchymal transition (EndoMT). Our results showed that circ_CHFR and EGFR expressions were dramatically upregulated, while miR-15a-5p expression was downregulated in ox-LDL-induced human brain microvessel endothelial cells (HBMECs) relative to control groups. circ_CHFR knockdown hindered the effects of ox-LDL exposure on cell proliferation, cell cycle, apoptosis, and EndoMT in HBMECs, whereas these impacts were abolished by miR-15a-5p inhibitor. In addition, circ_CHFR functioned as a sponge of miR-15a-5p and miR-15a-5p bound to EGFR. Thus, we concluded that circ_CHFR silencing hindered ox-LDL-mediated cell proliferation, apoptosis, and EndoMT by downregulating EGFR expression through sponging miR-15a-5p in HBMECs. Our findings provide a new mechanism for studying circRNA-directed therapy in ox-LDL-induced human brain vascular diseases.
Collapse
Affiliation(s)
- Shanwu Wu
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| | - Sheng Yang
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| | - Hongyan Qu
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| |
Collapse
|
28
|
Sun L, He X, Zhang T, Tao G, Wang X. Knockdown of lnc-KCNC3-3:1 Alleviates the Development of Atherosclerosis via Downregulation of JAK1/STAT3 Signaling Pathway. Front Cardiovasc Med 2021; 8:701058. [PMID: 34540913 PMCID: PMC8446538 DOI: 10.3389/fcvm.2021.701058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Atherosclerosis is a major cause of coronary artery disease (CAD), and CAD is one of the main causes leading to death in most countries. It has been reported that lncRNAs play important roles in the development of atherosclerosis; thus, we aimed to explore lncRNAs that are closely related to the occurrence and development of atherosclerosis. Methods: The data GSE113079 from the GEO database was used to explore the dysregulated lncRNAs in peripheral blood mononuclear cells (PBMCs) between 93 patients with CAD and 48 healthy controls. Next, RT-qPCR was performed to detect the level of lncRNAs in HUVEC cells and CCK-8 was performed to detect cell viability. Then, flow cytometry assays were used to determine the apoptosis of HUVEC. In addition, ELISA assay was used to measure the concentrations of triglyceride (TG), low density lipoprotein cholesterin (LDL-C), and high density lipoprotein cholesterol (HDL-C). Moreover, western blot assay was used to detect the expression of proteins. Results: lnc-KCNC3-3:1 was significantly upregulated in PBMCs of patients with CAD. In addition, oxidized low density lipoprotein (oxLDL) notably inhibited the proliferation and induced the apoptosis of HUVEC, while this phenomenon was notably reversed by lnc-KCNC3-3:1 knockdown. Moreover, oxLDL significantly promoted the migration of HUVECs, which was significantly restored by knockdown of lnc-KCNC3-3:1. Moreover, lnc-KCNC3-3:1 siRNA1 could reverse oxLDL-induced HUVEC growth inhibition, and lnc-KCNC3-3:1 silencing could inhibit the expressions of p-JAK1 and p-STAT3 in oxLDL-treated HUVECs. Animal study revealed that knockdown of lnc-KCNC3-3:1 alleviated the symptom of atherosclerosis, and it could inhibit the expressions of p-JAK1, p-STAT3 and p-Akt in tissues of atherosclerosis mice. Conclusion: Knockdown of lnc-KCNC3-3:1 alleviates the development of atherosclerosis via downregulation of JAK1/STAT3 signaling pathway. These data indicated that lnc-KCNC3-3:1 might serve as a potential target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Limin Sun
- Department of General Practice, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xin He
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tao Zhang
- Department of General Practice, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Guizhou Tao
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xin Wang
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
29
|
Effect of BuShen JiangZhi Recipe on Atherosclerosis in ApoE -/- Mice by Regulating the Expression of Anpep via mmu_circRNA_22187. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4738264. [PMID: 34527061 PMCID: PMC8437613 DOI: 10.1155/2021/4738264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022]
Abstract
The BuShen JiangZhi (BSJZ) recipe is a Chinese medicine compound with the effect of tonifying the kidney, replenishing essence, and lowering blood fat to unblock vessels. The purpose of this study is to explore whether the mechanism of BSJZ for effective intervention in the treatment of AS is related to mmu_circRNA_22187 and aminopeptidase N (Anpep). ApoE−/− mice were induced by a high-fat diet to replicate the AS model. 24 ApoE−/− mice were randomly divided into model group (group M), BSJZ group (group BS), and 12 C57BL/6 mice of the same genetic background and same weeks of age as the normal control group (group C). Mice in the BS group were given an aqueous solution of BSJZ by gavage, while mice in groups C and M were given the same volume of distilled water. HE and Oil Red O staining were used to detect the pathomorphology and lipid accumulation of mouse aortic sinus. Arraystar version 2.0 mouse circRNA chip was used to scan with Agilent Scanner G2505C, and the differential circRNAs expression profile of mice aorta was obtained. Scatter plot, volcano plot, and cluster map, respectively, visualized the differentially expressed circRNAs, as well as the types of circRNAs and the chromosomes' distribution, screened and compared the differentially expressed circRNAs intersection between groups by Venny software, and then combined ceRNA bioinformatics analysis to construct a ceRNA network. The results showed that BSJZ could significantly reduce the area of AS plaque and lipid accumulation in the aortic sinus of ApoE−/− mice induced by a high-fat diet. The bioinformatics analysis showed that mmu_circRNA_22187 may be a key circRNA of BSJZ intervention in the treatment of AS. Compared with group C, the expressions of Anpep mRNA and protein were upregulated in group M. After the intervention of BSJZ, the expressions of Anpep mRNA and protein were downregulated. Therefore, BSJZ could effectively treat AS which might be related to the regulation of mmu_circRNA_22187 and Anpep.
Collapse
|
30
|
Liu J, Wei Y, Lin Y, Zhang P, Zhang Z, Huang H, Wu H, Zou T. Expression of the circular RNAs in astaxanthin promotes cholesterol efflux from THP-1 cells based on RNA-seq. GENES & NUTRITION 2021; 16:13. [PMID: 34454424 PMCID: PMC8403398 DOI: 10.1186/s12263-021-00693-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/03/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND It is reported that circular RNAs (circRNAs) play a key role in atherosclerosis (AS). Foam cell formation, which is the main feature of AS, can be significantly inhibited by cholesterol efflux. METHODS We established a model of astaxanthin (AST) promoting cholesterol efflux from macrophages through oil red O staining, real-time quantitative PCR (qRT-PCR), and western blot and used RNA sequencing to detect the expression of circRNAs in AST-treated and untreated THP-1 cells. Finally, siRNA transfection screened out circRNAs that were significantly differentially expressed. The data analysis was performed by Student's t test and P < 0.05 was considered statistically significant. RESULTS In the model of AST promoting cholesterol efflux from THP-1 cells, there were a total of 7276 circRNAs differentially expressed, among which the top 25 upregulated and the top 25 downregulated circRNAs were selected based on the log2 (fold change). GO analysis showed that differential expression of circRNAs in biological process (2066/3098; 66.69%), molecular function (543/3098; 17.53%), and cellular component (489/3098; 15.78%). Based on KEGG analysis, RNA transport was the most enriched pathway. Finally, we obtained 3 significantly upregulated circRNAs by siRNA transfection and qRT-PCR. CONCLUSIONS The 3 differentially expressed circRNAs may play an important role in the process of AST promoting cholesterol efflux and may be used as biomarkers to prevent AS.
Collapse
Affiliation(s)
- Jie Liu
- Department of Ultrasound, Shunde Women and Children's Hospital of Guangdong Medical University (Maternity & Child Healthcare Hospital of Shunde Foshan), 528300, Foshan, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yue Wei
- Department of Ultrasound, Shunde Women and Children's Hospital of Guangdong Medical University (Maternity & Child Healthcare Hospital of Shunde Foshan), 528300, Foshan, China
| | - Yong Lin
- Department of Surgery, the Third Affiliated Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), 528318, Foshan, China
| | - Peiwen Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Zhexiao Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hairong Huang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hongfu Wu
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China.
| | - Tangbin Zou
- Department of Ultrasound, Shunde Women and Children's Hospital of Guangdong Medical University (Maternity & Child Healthcare Hospital of Shunde Foshan), 528300, Foshan, China.
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
31
|
He X, Tao Z, Zhang Z, He W, Xie Y, Zhang L. The potential role of RAAS-related hsa_circ_0122153 and hsa_circ_0025088 in essential hypertension. Clin Exp Hypertens 2021; 43:715-722. [PMID: 34392742 DOI: 10.1080/10641963.2021.1945077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: The dysregulation of renin-angiotensin-aldosterone system (RAAS) is closely related to the development of essential hypertension (EH). MicroRNAs (miRNAs) are an important regulator of RAAS. The sponge effect of circular RNAs (circRNAs) on miRNAs makes the circRNA-miRNA-mRNA axis in EH possible, however, there is currently a lack of relevant evidence.Material and Methods: A circRNA-miRNA network was constructed based on the previous circRNAs microarray results. The expression of RAAS-related miRNAs and circRNAs were verified by qRT-PCR. Peripheral blood samples of 106 EH patients and 106 healthy volunteers were included in this study. GO and KEGG enrichment were performed to predict the role of candidate circRNAs in EH.Results: In EH patients, RAAS-related hsa-miR-483-3p and hsa-miR-27a-3p were down-regulated, and hsa_circ_0122153 and hsa_circ_0025088 were up-regulated. The relative expression of RAAS-related circRNAs and target miRNAs showed a negative correlation (hsa_circ_0122153-hsa-miR-483-3p and hsa_circ_0025088-hsa-miR-27a-3p). Hsa_circ_0122153 or hsa_circ_0025088 combined with corresponding miRNAs and environmental factors may support the early diagnosis of EH. Hsa_circ_0122153 and hsa_circ_0025088 may participate in the regulation of aldosterone and the secretion of renin through the circRNA-miRNA-mRNA network, respectively.Conclusion: Highly expressed hsa_circ_0122153 and hsa_circ_0025088 increase the risk of EH. The hsa_circ_0122153/hsa-miR-483-3p and hsa_circ_0025088/hsa-miR-27a-3p axis involving RAAS were potential EH pathways.
Collapse
Affiliation(s)
- Xin He
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China.,Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, Zhejiang Province, China
| | - Zhenbo Tao
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| | - Zebo Zhang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, Zhejiang Province, China
| | - Wenming He
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| | - Yanqing Xie
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| | - Lina Zhang
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| |
Collapse
|
32
|
Li R, Jiang Q, Zheng Y. Circ_0002984 induces proliferation, migration and inflammation response of VSMCs induced by ox-LDL through miR-326-3p/VAMP3 axis in atherosclerosis. J Cell Mol Med 2021; 25:8028-8038. [PMID: 34169652 PMCID: PMC8358879 DOI: 10.1111/jcmm.16734] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis can result in multiple cardiovascular diseases. Circular RNAs (CircRNAs) have been reported as significant non-coding RNAs in atherosclerosis progression. Dysfunction of vascular smooth muscle cells (VSMCs) is involved in atherosclerosis. However, up to now, the effect of circ_0002984 in atherosclerosis is still unknown. Currently, we aimed to investigate the function of circ_0002984 in VSMCs incubated by oxidized low-density lipoprotein (ox-LDL). Firstly, our findings indicated that the expression levels of circ_0002984 were significantly up-regulated in the serum of atherosclerosis patients and ox-LDL-incubated VSMCs. Loss of circ_0002984 suppressed VSMC viability, cell cycle distribution and migration capacity. Then, we carried out ELISA assay to determine TNF-α and IL-6 levels. The data implied that lack of circ_0002984 obviously repressed ox-LDL-stimulated VSMC inflammation. Meanwhile, miR-326-3p, which was predicted as a target of circ_0002984, was obviously down-regulated in VSMCs treated by ox-LDL. Additionally, after overexpression circ_0002984 in VSMCs, a decrease in miR-326-3p was observed. Subsequently, miR-326-3p was demonstrated to target vesicle-associated membrane protein 3 (VAMP3). Therefore, we hypothesized that circ_0002984 could modulate expression of VAMP3 through sponging miR-326-3p. Furthermore, we confirmed that up-regulation of miR-326-3p rescued the circ_0002984 overexpressing-mediated effects on VMSC viability, migration and inflammation. Additionally, miR-326-3p inhibitor-mediated functions on VSMCs were reversed by knockdown of VAMP3. In conclusion, circ_0002984 mediated cell proliferation, migration and inflammation through modulating miR-326-3p and VAMP3 in VSMCs, which suggested that circ_0002984 might hold great promise as a therapeutic strategy for atherosclerosis.
Collapse
MESH Headings
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell Movement/physiology
- Cell Proliferation/physiology
- Cells, Cultured
- Female
- Humans
- Inflammation/chemically induced
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Lipoproteins, LDL/toxicity
- Male
- MicroRNAs/genetics
- Middle Aged
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- RNA, Circular/genetics
- Signal Transduction
- Vesicle-Associated Membrane Protein 3/genetics
- Vesicle-Associated Membrane Protein 3/metabolism
Collapse
Affiliation(s)
- Ruogu Li
- Department of Cardiovascular SurgeryShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Qiliang Jiang
- Department of AnesthesiologyShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Yue Zheng
- Department of Cardiovascular SurgeryShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
33
|
Circular RNA Expression: Its Potential Regulation and Function in Abdominal Aortic Aneurysms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9934951. [PMID: 34306317 PMCID: PMC8263248 DOI: 10.1155/2021/9934951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022]
Abstract
Abdominal aortic aneurysms (AAAs) have posed a great threat to human life, and the necessity of its monitoring and treatment is decided by symptomatology and/or the aneurysm size. Accumulating evidence suggests that circular RNAs (circRNAs) contribute a part to the pathogenesis of AAAs. circRNAs are novel single-stranded RNAs with a closed loop structure and high stability, having become the candidate biomarkers for numerous kinds of human disorders. Besides, circRNAs act as molecular "sponge" in organisms, capable of regulating the transcription level. Here, we characterize that the molecular mechanisms underlying the role of circRNAs in AAA development were further elucidated. In the present work, studies on the biosynthesis, bibliometrics, and mechanisms of action of circRNAs were aims comprehensively reviewed, the role of circRNAs in the AAA pathogenic mechanism was illustrated, and their potential in diagnosing AAAs was examined. Moreover, the current evidence about the effects of circRNAs on AAA development through modulating endothelial cells (ECs), macrophages, and vascular smooth muscle cells (VSMCs) was summarized. Through thorough investigation, the molecular mechanisms underlying the role of circRNAs in AAA development were further elucidated. The results demonstrated that circRNAs had the application potential in the diagnosis and prevention of AAAs in clinical practice. The study of circRNA regulatory pathways would be of great assistance to the etiologic research of AAAs.
Collapse
|
34
|
Zhang Y, Zhang C, Chen Z, Wang M. Blocking circ_UBR4 suppressed proliferation, migration, and cell cycle progression of human vascular smooth muscle cells in atherosclerosis. Open Life Sci 2021; 16:419-430. [PMID: 33981849 PMCID: PMC8085462 DOI: 10.1515/biol-2021-0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
The circ_UBR4 (hsa_circ_0010283) is a novel abnormally overexpressed circRNA in oxidized low-density lipoprotein (ox-LDL)-induced model of atherosclerosis (AS) in human vascular smooth muscle cells (VSMCs). However, its role in the dysfunction of VSMCs remains to be further investigated. Here, we attempted to explore its role in ox-LDL-induced excessive proliferation and migration in VSMCs by regulating Rho/Rho-associated coiled-coil containing kinase 1 (ROCK1), a therapeutic target of AS. Expression of circ_UBR4 and ROCK1 was upregulated, whereas miR-107 was downregulated in human AS serum and ox-LDL-induced VSMCs. Depletion of circ_UBR4 arrested cell cycle, suppressed cell viability, colony-forming ability, and migration ability, and depressed expression of proliferating cell nuclear antigen and matrix metalloproteinase 2 in VSMCs in spite of the opposite effects of ox-LDL. Notably, ROCK1 upregulation mediated by plasmid transfection or miR-107 deletion could counteract the suppressive role of circ_UBR4 knockdown in ox-LDL-induced VSMCs proliferation, migration, and cell cycle progression. In mechanism, miR-107 was identified as a target of circ_UBR4 to mediate the regulatory effect of circ_UBR4 on ROCK1. circ_UBR4 might be a contributor in human AS partially by regulating VSMCs’ cell proliferation, migration, and cell cycle progression via circ_UBR4/miR-107/ROCK1 pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cardiology, Zhongshan Affiliated Hospital, Dalian University, No. 6, Zhonshan Road, Dalian, 116001, Liaoning, China
| | - Cheng Zhang
- Department of Cardiology, Zhongshan Affiliated Hospital, Dalian University, No. 6, Zhonshan Road, Dalian, 116001, Liaoning, China
| | - Zongwei Chen
- Department of Cardiology, Zhongshan Affiliated Hospital, Dalian University, No. 6, Zhonshan Road, Dalian, 116001, Liaoning, China
| | - Meilan Wang
- Department of Cardiology, Zhongshan Affiliated Hospital, Dalian University, No. 6, Zhonshan Road, Dalian, 116001, Liaoning, China
| |
Collapse
|
35
|
Zhang C, Wang L, Shen Y. Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis. BMC Cardiovasc Disord 2021; 21:207. [PMID: 33892646 PMCID: PMC8066471 DOI: 10.1186/s12872-021-02012-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background Circular RNAs have shown important regulatory roles in cardiovascular diseases, containing atherosclerosis (AS). We intended to explore the role of circ_0004104 in AS using oxidized low-density lipoprotein (ox-LDL)-induced vascular endothelial cells and its associated mechanism. Methods Real-time quantitative polymerase chain reaction and Western blot assay were conducted to analyze RNA levels and protein levels, respectively. Cell viability, apoptosis, angiogenic ability and inflammatory response were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, flow cytometry, capillary-like network formation assay and enzyme-linked immunosorbent assay, respectively. Cell oxidative stress was assessed using commercial kits. Dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA-pull down assay were performed to verify the intermolecular interaction. Results ox-LDL exposure up-regulated the level of circ_0004104 in HUVECs. ox-LDL exposure suppressed cell viability and angiogenic ability whereas promoted the apoptosis, inflammation and oxidative stress of HUVECs partly through up-regulating circ_0004104. MicroRNA-328-3p (miR-328-3p) was confirmed as a target of circ_0004104. MiR-328-3p interference largely reversed circ_0004104 silencing-mediated effects in HUVECs upon ox-LDL exposure. MiR-328-3p interacted with the 3′ untranslated region of tripartite motif 14, and circ_0004104 positively regulated TRIM14 expression by sponging miR-328-3p. TRIM14 overexpression largely overturned miR-328-3p accumulation-induced influences in HUVECs upon ox-LDL exposure. Conclusion Circ_0004104 knockdown attenuated ox-LDL-induced dysfunction in HUVECs via miR-328-3p-mediated regulation of TRIM14. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02012-7.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Cardiology, The Puren Hospital, No. 218, Changqing First Road, Jianghan District, Wuhan, 430081, Hubei, China
| | - Liyue Wang
- Department of Cardiology, The Puren Hospital, No. 218, Changqing First Road, Jianghan District, Wuhan, 430081, Hubei, China
| | - Ying Shen
- Department of Cardiology, The Puren Hospital, No. 218, Changqing First Road, Jianghan District, Wuhan, 430081, Hubei, China.
| |
Collapse
|
36
|
Kang L, Jia H, Huang B, Lu S, Chen Z, Shen J, Zou Y, Wang C, Sun Y. Identification of Differently Expressed mRNAs in Atherosclerosis Reveals CDK6 Is Regulated by circHIPK3/miR-637 Axis and Promotes Cell Growth in Human Vascular Smooth Muscle Cells. Front Genet 2021; 12:596169. [PMID: 33659023 PMCID: PMC7917241 DOI: 10.3389/fgene.2021.596169] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/08/2021] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is the leading cause of heart disease and stroke, and one of the leading causes of death and disability worldwide. The phenotypic transformation of vascular smooth muscle cells (VSMCs) plays an important role in the pathological process of atherosclerosis. The present study aimed to identify differently expressed mRNAs in atherosclerosis by analyzing GSE6088 database. Our results revealed there were totally 467 increased and 490 decreased differential expressed genes (DEGs) in atherosclerosis. Bioinformatics analysis demonstrated that the DEGs substantially existed in pathways, including Glyoxylate and dicarboxylate metabolism, Tyrosine metabolism, Tryptophan metabolism, Beta-Alanine metabolism, Fatty acid biosynthesis and Starch and sucrose metabolism. Next, we constructed a protein-protein interaction (PPI) network to identify hub genes in atherosclerosis. Also, we identified CDK6 as a key regulator of atherosclerosis. In this study, we found that CDK6 knockdown suppressed HASMC and HUASMC cell proliferation. Circular RNA (CircRNA) is a non-coding RNA which is reported to have an unusual influence on tumorigenesis process and other aspects in the last few years. Previous studies showed circRNAs could act as miRNAs sponging in multiple biological processes. Bioinformatics prediction and luciferase analysis showed that CDK6 were targeted and regulated by circHIPK3/miR-637. Moreover, silencing circHIPK3 could also significantly induce the arrest and apoptosis of cell cycle. In conclusion, this study discovered the important regulatory role of circHIPK3 in the proliferation and apoptosis of VSMCs by influencing the miR-637/CDK6 axis.
Collapse
Affiliation(s)
- Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Jia
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ben Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuyang Lu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenhang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinqiang Shen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Central Laboratory of Cardiovascular Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Lv Q, Ma C, Li H, Tan X, Wang G, Zhang Y, Wang P. Circular RNA microarray expression profile and potential function of circ0005875 in clear cell renal cell carcinoma. J Cancer 2020; 11:7146-7156. [PMID: 33193877 PMCID: PMC7646169 DOI: 10.7150/jca.48770] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Circular RNAs (circRNAs), a novel class of endogenous noncoding RNAs, are involved in a variety of diseases, including several types of cancers. We hypothesized that circRNAs are involved in the tumorigenesis and development of clear cell renal cell carcinoma (ccRCC). Methods: To verify our hypothesis, we explored the circRNA expression profiles in 4 pairs of ccRCC tissues and their adjacent non-carcinoma tissues via microarray analysis. Selected circRNAs were further validated by qPCR. Moreover, hsa_circ_0005875 was selected for further study and the potential clinical values of hsa_circ_0005875 were investigated in 60 pairs of ccRCC tissues and adjacent normal controls. In addition, the role of hsa_circ_0005875 in ccRCC progression were performed using colony formation assay, Transwell assay and Martrigel-Transwell assay respectively. Finally, interactions between the circRNAs and miRNAs were predicted using Arraystar's miRNA target prediction software. Luciferase reporter assays were performed to evaluate the interaction between hsa_circ_0005875 and hsa_miR-145-5p. Results: The microarray data showed 1988 circRNAs were significantly dysregulated circRNAs, including 1033 upregulated and 955 downregulated ones in the ccRCC tissues. Hsa_circ_0005875 was confirmed to be significantly upregulated in the ccRCC tumor tissues and renal carcinoma cells. Further analysis revealed that hsa_circ_0005875 expression was associated with tumor size, pathological TNM stage, histological differentiation, and lymphatic metastasis. Functional experiments demonstrated that overexpression of hsa_circ_0005875 increased proliferation, migration and invasion abilities. Moreover, bioinformatics analysis and luciferase reporter assays suggest that hsa_circ_0005875 may serve as a ceRNA (competing endogenous RNA) of miR-145-5p to relieve the repressive effect of miR-145-5p on target ZEB2. Conclusions: These data indicate that hsa_circ_0005875 might play a role in promoting tumor growth and metastasis and be a potential biomarker of ccRCC.
Collapse
Affiliation(s)
- Qi Lv
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun road No. 389, Shanghai, China
| | - Chunhui Ma
- Department of Orthopedics, Shanghai general hospital of Shanghai Jiaotong university, WujinRoad No. 85, 200080, shanghai, China
| | - Haoming Li
- Department of Human Anatomy and Neurobiology, Nantong University, School of Medicine, Qixiu road No. 19, Nantong 226001, Jiangsu, China
| | - Xuefeng Tan
- Department of Human Anatomy and Neurobiology, Nantong University, School of Medicine, Qixiu road No. 19, Nantong 226001, Jiangsu, China
| | - Gangmin Wang
- Department of Urology, Huashan Hospital, Fudan University, Urumuqi Road No.12, 200040, Shanghai, China
| | - Yinan Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No.324, Jinan 250001, Shandong, China
| | - Peijun Wang
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun road No. 389, Shanghai, China
| |
Collapse
|
38
|
Wang W, Ma F, Zhang H. MicroRNA-374 is a potential diagnostic biomarker for atherosclerosis and regulates the proliferation and migration of vascular smooth muscle cells. Cardiovasc Diagn Ther 2020; 10:687-694. [PMID: 32968625 DOI: 10.21037/cdt-20-444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background The occurrence and development of atherosclerosis (AS) are closely related to the abnormality of vascular smooth muscle cells (VSMCs), and multiple microRNAs (miRNAs) have been reported to participate in the pathogenesis of AS. This study explored the expression and clinical value of miR-374 in the serum of AS patients, and analyzed its effect on the proliferation and migration of VSMCs. Methods The expression levels of miR-374 in the serum of 102 asymptomatic patients with AS and 89 healthy patients were detected by fluorescence quantitative PCR. The diagnostic value of miR-374 was evaluated through the receiver operating characteristic (ROC) curve. What's more, CCK-8 and Transwell assays were used to analyze the effects of miR-374 on the proliferation and migration of VSMCs. Results The expression level of miR-374 in the serum of AS patients was significantly higher than that of the control group. At the same time, the expression of miR-374 in AS patients was positively correlated with carotid intima-media thickness (CIMT). The area under the ROC curve is 0.824. Furthermore, overexpression of miR-374 significantly promoted the proliferation and migration of VSMCs, whereas reducing miR-374 inhibited the proliferation and migration of VSMCs. Conclusions The high expression of miR-374 may be a potential diagnostic marker for AS, and overexpression of miR-374 may play a role in AS by promoting the proliferation and migration of VSMCs.
Collapse
Affiliation(s)
- Weihong Wang
- Department of Healthcare, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fenghua Ma
- Department of Healthcare, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyan Zhang
- Department of Thoracic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Wang F, Li X, Li Z, Wang S, Fan J. Functions of Circular RNAs in Regulating Adipogenesis of Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:3763069. [PMID: 32802080 PMCID: PMC7416283 DOI: 10.1155/2020/3763069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
The mesenchymal stem cells (MSCs) are known as highly plastic stem cells and can differentiate into specialized tissues such as adipose tissue, osseous tissue, muscle tissue, and nervous tissue. The differentiation of mesenchymal stem cells is very important in regenerative medicine. Their differentiation process is regulated by signaling pathways of epigenetic, transcriptional, and posttranscriptional levels. Circular RNA (circRNA), a class of noncoding RNAs generated from protein-coding genes, plays a pivotal regulatory role in many biological processes. Accumulated studies have demonstrated that several circRNAs participate in the cell differentiation process of mesenchymal stem cells in vitro and in vivo. In the current review, characteristics and functions of circRNAs in stem cell differentiation will be discussed. The mechanism and key role of circRNAs in regulating mesenchymal stem cell differentiation, especially adipogenesis, will be reviewed and discussed. Understanding the roles of these circRNAs will present us with a more comprehensive signal path network of modulating stem cell differentiation and help us discover potential biomarkers and therapeutic targets in clinic.
Collapse
Affiliation(s)
- Fanglin Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, And Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhiyuan Li
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Shoushuai Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
40
|
Liang B, Li M, Deng Q, Wang C, Rong J, He S, Xiang Y, Zheng F. CircRNA ZNF609 in peripheral blood leukocytes acts as a protective factor and a potential biomarker for coronary artery disease. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:741. [PMID: 32647666 PMCID: PMC7333115 DOI: 10.21037/atm-19-4728] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Circular RNAs (circRNAs) have been reported to aberrantly express in coronary artery disease (CAD). Due to their special structures, circRNAs have the potential to be specific and stable markers. We conducted this study to explore circZNF609's function in atherosclerosis and to evaluate its predictive values for CAD. Methods About 330 CAD patients and 209 controls were enrolled and the expression of circZNF609 in peripheral blood leukocytes (PBLs) was detected by quantitative real time polymerase chain reaction (RT-PCR). Spearman correlation, multivariate regression, multivariate logistic regression and receiver operating characteristic curve (ROC) were performed. Moreover, circZNF609 was overexpressed in mice macrophage RAW264.7 to investigate its influence on inflammatory cytokines. Finally, bioinformatics analysis was executed to excavate the potential downstream pathway of circZNF609. Results The expression level of circZNF609 in PBLs of CAD patients was significantly decreased compared with the controls (the fold changes of 0.4133, P<0.0001). The logistic regression analysis showed that decreased circZNF609 expressions were independently associated with increased risks of CAD. The area under the ROC curve was 0.761 (95% CI: 0.721-0.800, P<0.0001). Furthermore, the circZNF609 expression level was correlated with C-reactive protein (r=-0.138, P=0.026) and lymphocyte counts (r=0.16, P=0.01). After overexpression of circZNF609 in RAW264.7 cells, the expression level of IL-6 (P<0.001) and TNF-α (P<0.01) were significantly decreased and IL-10 was significantly increased (P<0.001). Bioinformatics analysis suggested that the abnormal expression of circZNF609 might probably sponge miRNA to modulate the inflammation cytokines. Conclusions CircRNA ZNF609 played an anti-inflammatory role and was an independent protective factor for CAD. It represented a moderate diagnostic value and might provide a new therapeutic target for CAD.
Collapse
Affiliation(s)
- Bin Liang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Menglan Li
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Qianyun Deng
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Chen Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jialing Rong
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siying He
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Xiang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Prestes PR, Maier MC, Woods BA, Charchar FJ. A Guide to the Short, Long and Circular RNAs in Hypertension and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21103666. [PMID: 32455975 PMCID: PMC7279167 DOI: 10.3390/ijms21103666] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in adults in developed countries. CVD encompasses many diseased states, including hypertension, coronary artery disease and atherosclerosis. Studies in animal models and human studies have elucidated the contribution of many genetic factors, including non-coding RNAs. Non-coding RNAs are RNAs not translated into protein, involved in gene expression regulation post-transcriptionally and implicated in CVD. Of these, circular RNAs (circRNAs) and microRNAs are relevant. CircRNAs are created by the back-splicing of pre-messenger RNA and have been underexplored as contributors to CVD. These circRNAs may also act as biomarkers of human disease, as they can be extracted from whole blood, plasma, saliva and seminal fluid. CircRNAs have recently been implicated in various disease processes, including hypertension and other cardiovascular disease. This review article will explore the promising and emerging roles of circRNAs as potential biomarkers and therapeutic targets in CVD, in particular hypertension.
Collapse
|
42
|
Diling C, Longkai Q, Yinrui G, Yadi L, Xiaocui T, Xiangxiang Z, Miao Z, Ran L, Ou S, Dongdong W, Yizhen X, Xujiang Y, Yang BB, Qingping W. CircNF1-419 improves the gut microbiome structure and function in AD-like mice. Aging (Albany NY) 2020; 12:260-287. [PMID: 31905172 PMCID: PMC6977659 DOI: 10.18632/aging.102614] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023]
Abstract
Our pre-experiments found that the brain circRNA sequence profiles and gut microbiota in AD-like mice were changed, as circNF1-419 could enhance autophagy to ameliorate senile dementia in AD-like mice, so we conclude that there might some connections between circRNA and gut microbiome. Therefore, we use the over-expressed circNF1-419 adeno-associated virus (AAV) animal system with the aim of identifying possible connections. Our results showed that over-expression of circNF1-419 in brain not only influenced the cholinergic system of brain, but also changed the gut microbiota composition as the Candidatus Arthromitus, Lachnospiraceae FCS020 group, Lachnospiraceae UCG-006, and [Eubacterium] xylanophilum group, and the intestinal homeostasis and physiology, and even the gut microbiota trajectory in new born mice. These findings demonstrate a link between circRNA and gut microbiome, enlarge the 'microbiome- transcriptome' linkage library and provide more information on gut-brain axis.
Collapse
Affiliation(s)
- Chen Diling
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qi Longkai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Guo Yinrui
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liu Yadi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tang Xiaocui
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhu Xiangxiang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Academy of Life Sciences, Jinan University, Guangdong Province, Guangzhou 510000, China
| | - Zeng Miao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Li Ran
- Department of Physiology, Shantou University Medical College, Shantou 515063, China
| | - Shuai Ou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wang Dongdong
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xie Yizhen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuan Xujiang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Burton B. Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wu Qingping
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
43
|
Zhang S, Song G, Yuan J, Qiao S, Xu S, Si Z, Yang Y, Xu X, Wang A. Circular RNA circ_0003204 inhibits proliferation, migration and tube formation of endothelial cell in atherosclerosis via miR-370-3p/TGFβR2/phosph-SMAD3 axis. J Biomed Sci 2020; 27:11. [PMID: 31900142 PMCID: PMC6941276 DOI: 10.1186/s12929-019-0595-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) represent a class of non-coding RNAs (ncRNAs) which are widely expressed in mammals and tissue-specific, of which some could act as critical regulators in the atherogenesis of cerebrovascular disease. However, the underlying mechanisms by which circRNA regulates the ectopic phenotype of endothelial cells (ECs) in atherosclerosis remain largely elusive. METHODS CCK-8, transwell, wound healing and Matrigel assays were used to assess cell viability, migration and tube formation. QRT-qPCR and Immunoblotting were used to examine targeted gene expression in different groups. The binding sites of miR-370-3p (miR-370) with TGFβR2 or hsa_circ_0003204 (circ_0003204) were predicted using a series of bioinformatic tools, and validated using dual luciferase assay and RNA immunoprecipitation (RIP) assay. The localization of circ_0003204 and miR-370 in ECs were investigated by fluorescence in situ hybridization (FISH). Gene function and pathways were enriched through Metascape and gene set enrichment analysis (GSEA). The association of circ_0003204 and miR-370 in extracellular vesicles (EVs) with clinical characteristics of patients were investigated using multiple statistical analysis. RESULTS Circ_0003204, mainly located in the cytoplasm of human aorta endothelial cells (HAECs), was upregulated in the ox-LDL-induced HAECs. Functionally, the ectopic expression of circ_0003204 inhibited proliferation, migration and tube formation of HAECs exposed to ox-LDL. Mechanically, circ_0003204 could promote protein expression of TGFβR2 and its downstream phosph-SMAD3 through sponging miR-370, and miR-370 targeted the 3' untranslated region (UTR) of TGFβR2. Furthermore, the expression of circ_0003204 in plasma EVs was upregulated in the patients with cerebral atherosclerosis, and represented a potential biomarker for diangnosis and prognosis of cerebrovascular atherogenesis. CONCLUSIONS Circ_0003204 could act as a novel stimulator for ectopic endothelial inactivation in atherosclerosis and a potential biomarker for cerebral atherosclerosis.
Collapse
Affiliation(s)
- Shanchao Zhang
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China.
| | - Guixiang Song
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| | - Jing Yuan
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| | - Shan Qiao
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| | - Shan Xu
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| | - Zhihua Si
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| | - Yang Yang
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| | - Xuxu Xu
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| | - Aihua Wang
- Department of Neurology, the First Affiliated Hospital of Shandong, First Medical University, NO.16766 JingShi Road, Jinan, 250014, Shandong, China
| |
Collapse
|