1
|
Rai V. Transcriptomics Revealed Differentially Expressed Transcription Factors and MicroRNAs in Human Diabetic Foot Ulcers. Proteomes 2024; 12:32. [PMID: 39585119 PMCID: PMC11587442 DOI: 10.3390/proteomes12040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Non-healing diabetic foot ulcers (DFUs) not only significantly increase morbidity and mortality but also cost a lot and drain healthcare resources. Persistent inflammation, decreased angiogenesis, and altered extracellular matrix remodeling contribute to delayed healing or non-healing. Recent studies suggest an increasing trend of DFUs in diabetes patients, and non-healing DFYs increase the incidence of amputation. Despite the current treatment with offloading, dressing, antibiotics use, and oxygen therapy, the risk of amputation persists. Thus, there is a need to understand the molecular and cellular factors regulating healing in DFUs. The ongoing research based on proteomics and transcriptomics has predicted multiple potential targets, but there is no definitive therapy to enhance healing in chronic DFUs. Increased or decreased expression of various proteins encoded by genes, whose expression transcriptionally and post-transcriptionally is regulated by transcription factors (TFs) and microRNAs (miRs), regulates DFU healing. For this study, RNA sequencing was conducted on 20 DFU samples of ulcer tissue and non-ulcerated nearby healthy tissues. The IPA analysis revealed various activated and inhibited transcription factors and microRNAs. Further network analysis revealed interactions between the TFs and miRs and the molecular targets of these TFs and miRs. The analysis revealed 30 differentially expressed transcription factors (21 activated and 9 inhibited), two translational regulators (RPSA and EIF4G2), and seven miRs, including mir-486, mir-324, mir-23, mir-186, mir-210, mir-199, and mir-338 in upstream regulators (p < 0.05), while causal network analysis (p < 0.05) revealed 28 differentially expressed TFs (19 activated and 9 inhibited), two translational regulators (RPSA and EIF4G2), and five miRs including mir-155, mir-486, mir-324, mir-210, and mir-1225. The protein-protein interaction analysis revealed the interaction of various novel proteins with the proteins involved in regulating DFU pathogenesis and healing. The results of this study highlight many activated and inhibited novel TFs and miRs not reported in the literature so far, as well as the targeted molecules. Since proteins are the functional units during biological processes, alteration of gene expression may result in different proteoforms and protein species, making the wound microenvironment a complex protein interaction (proteome complexity). Thus, investigating the effects of these TFs and miRs on protein expression using proteomics and combining these results with transcriptomics will help advance research on DFU healing and delineate potential therapeutic strategies.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766-1854, USA
| |
Collapse
|
2
|
Townsend EC, Cheong JZA, Radzietza M, Fritz B, Malone M, Bjarnsholt T, Ousey K, Swanson T, Schultz G, Gibson ALF, Kalan LR. What is slough? Defining the proteomic and microbial composition of slough and its implications for wound healing. Wound Repair Regen 2024; 32:783-798. [PMID: 38558438 PMCID: PMC11442687 DOI: 10.1111/wrr.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Slough is a well-known feature of non-healing wounds. This pilot study aims to determine the proteomic and microbiologic components of slough as well as interrogate the associations between wound slough components and wound healing. Ten subjects with slow-to-heal wounds and visible slough were enrolled. Aetiologies included venous stasis ulcers, post-surgical site infections and pressure ulcers. Patient co-morbidities and wound healing outcome at 3-months post-sample collection was recorded. Debrided slough was analysed microscopically, through untargeted proteomics, and high-throughput bacterial 16S-ribosomal gene sequencing. Microscopic imaging revealed wound slough to be amorphous in structure and highly variable. 16S-profiling found slough microbial communities to associate with wound aetiology and location on the body. Across all subjects, slough largely consisted of proteins involved in skin structure and formation, blood-clot formation and immune processes. To predict variables associated with wound healing, protein, microbial and clinical datasets were integrated into a supervised discriminant analysis. This analysis revealed that healing wounds were enriched for proteins involved in skin barrier development and negative regulation of immune responses. While wounds that deteriorated over time started off with a higher baseline Bates-Jensen Wound Assessment Score and were enriched for anaerobic bacterial taxa and chronic inflammatory proteins. To our knowledge, this is the first study to integrate clinical, microbiome, and proteomic data to systematically characterise wound slough and integrate it into a single assessment to predict wound healing outcome. Collectively, our findings underscore how slough components can help identify wounds at risk of continued impaired healing and serves as an underutilised biomarker.
Collapse
Affiliation(s)
- Elizabeth C. Townsend
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Microbiology Doctoral Training ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Medical Scientist Training ProgramUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - J. Z. Alex Cheong
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Microbiology Doctoral Training ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Michael Radzietza
- Infectious Diseases and MicrobiologyWestern Sydney UniversitySydneyAustralia
| | - Blaine Fritz
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Matthew Malone
- Infectious Diseases and MicrobiologyWestern Sydney UniversitySydneyAustralia
| | - Thomas Bjarnsholt
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical MicrobiologyCopenhagen University HospitalCopenhagenDenmark
- International Wound Infection InstituteLondonUK
| | - Karen Ousey
- International Wound Infection InstituteLondonUK
- Institute of Skin Integrity and Infection PreventionUniversity of HuddersfieldWest YorkshireUK
| | | | - Gregory Schultz
- International Wound Infection InstituteLondonUK
- Department of Obstetrics and GynecologyUniversity of FloridaGainesvilleFloridaUSA
| | - Angela L. F. Gibson
- Department of SurgeryUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- International Wound Infection InstituteLondonUK
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
- M.G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
- David Braley Centre for Antibiotic DiscoveryMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
3
|
Lin G, Liu X. Key extracellular proteins and TF-miRNA co-regulatory network in diabetic foot ulcer: Bioinformatics and experimental insights. PLoS One 2024; 19:e0307205. [PMID: 39037979 PMCID: PMC11262672 DOI: 10.1371/journal.pone.0307205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFUs), a serious complication of diabetes, are associated with abnormal extracellular protein (EP) metabolism. The identification of key EPs and their regulatory networks is crucial for the understanding of DFU formation and development of effective treatments. In this study, a large-scale bioinformatics analysis was conducted to identify potential therapeutic targets and experimental validation was performed to ensure the reliability and biological relevance of the findings. METHODS Due to the comprehensive profiling of DFU samples provided by the GSE80178 dataset, we initially selected it to derive differentially expressed genes (DEGs) associated with DFU. Subsequently, utilizing the UniProt database and annotated EP list from the Human Protein Atlas annotation database, we screened for extracellular protein-related differentially expressed genes (EP-DEGs) due to their crucial role in the pathogenesis and healing of DFU. We examined EP-DEG pathway enrichment and protein-protein interaction networks, analyzed paired full-thickness skin tissue samples from 24 patients with DFUs and healthy controls, and performed polymerase chain reaction (PCR) experiments to validate candidate genes. Ultimately, we constructed a transcription factor (TF)-microRNA (miRNA)-hub gene co-regulatory network to explore upstream and downstream regulatory connections based on validated DEGs. RESULTS Four crucial candidate genes (FMOD, LUM, VCAN, and S100A12) were identified and verified via PCR analysis. The TF-miRNA-hub EP-DEG regulatory network contained the pivotal TFs TRIM28 and STAT3 and the miRNAs hsa-mir-20a-5p, hsa-miR-21, and hsa-miR-203. CONCLUSION The findings of this study advance our understanding of the pathology of DFU by defining key roles of specific EPs and elucidating a comprehensive regulatory network. These insights pave the way for novel approaches to improve DFU treatment outcomes.
Collapse
Affiliation(s)
- Guanlin Lin
- Department of Orthopaedic Surgery, General Hospital of Central Theater Command, Wuhan, China
- College of Acupuncture and Orthopaedic, Hubei University of Chinese Medicine, Wuhan, China
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ximing Liu
- Department of Orthopaedic Surgery, General Hospital of Central Theater Command, Wuhan, China
- College of Acupuncture and Orthopaedic, Hubei University of Chinese Medicine, Wuhan, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Lu Y, Zhao D, Cao G, Yin S, Liu C, Song R, Ma J, Sun R, Wu Z, Liu J, Wu P, Wang Y. Research progress on and molecular mechanism of vacuum sealing drainage in the treatment of diabetic foot ulcers. Front Surg 2024; 11:1265360. [PMID: 38464666 PMCID: PMC10920358 DOI: 10.3389/fsurg.2024.1265360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/05/2024] [Indexed: 03/12/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are common chronic wounds and a common complication of diabetes. The foot is the main site of diabetic ulcers, which involve small and medium-sized arteries, peripheral nerves, and microcirculation, among others. DFUs are prone to coinfections and affect many diabetic patients. In recent years, interdisciplinary research combining medicine and material science has been increasing and has achieved significant clinical therapeutic effects, and the application of vacuum sealing drainage (VSD) in the treatment of DFUs is a typical representative of this progress, but the mechanism of action remains unclear. In this review, we integrated bioinformatics and literature and found that ferroptosis is an important signaling pathway through which VSD promotes the healing of DFUs and that System Xc-GSH-GPX4 and NAD(P)H-CoQ10-FSP1 are important axes in this signaling pathway, and we speculate that VSD is most likely to inhibit ferroptosis to promote DFU healing through the above axes. In addition, we found that some classical pathways, such as the TNF, NF-κB, and Wnt/β-catenin pathways, are also involved in the VSD-mediated promotion of DFU healing. We also compiled and reviewed the progress from clinical studies on VSD, and this information provides a reference for the study of VSD in the treatment of DFUs.
Collapse
Affiliation(s)
- Yongpan Lu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Dejie Zhao
- Department of Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqi Cao
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Siyuan Yin
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunyan Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ru Song
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiaxu Ma
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Rui Sun
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhenjie Wu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jian Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Peng Wu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yibing Wang
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
5
|
Li Z, Wei J, Lu S. Association between diabetic retinopathy and diabetic foot ulcer in patients with diabetes: A meta-analysis. Int Wound J 2023; 20:4077-4082. [PMID: 37554103 PMCID: PMC10681479 DOI: 10.1111/iwj.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023] Open
Abstract
This study aimed to explore the relationship between diabetic retinopathy (DR) and diabetic foot ulcers (DFUs) to provide evidence for the prevention of diabetic complications. PubMed, EMBASE, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Chinese Biomedical Literature Database and Wanfang Data databases were searched from their inception until March 2023 for studies on the relationship between DR and DFU. Two researchers independently screened the literature and extracted data according to the inclusion and exclusion criteria. The meta-analysis was performed using the RevMan 5.3 software. Eleven articles referring to 10 208 patients were included, of whom 2191 patients had DFU and 8017 patients did not have DFU. The meta-analysis results showed that DR significantly increased the incidence of DFU (47.94% vs. 16.38%; OR, 4.13; 95% CI, 2.33-7.33; p < 0.001). The results of this study suggest that patients with DR have a higher risk of developing DFU, highlighting the importance of regular screening for these two complications to prevent serious adverse outcomes of diabetes. However, further high-quality studies are required to validate the conclusions of the present study.
Collapse
Affiliation(s)
- Ziye Li
- Department of OphthalmologyThe First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Jing Wei
- Department of OphthalmologyThe First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Song Lu
- Department of OphthalmologyThe First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| |
Collapse
|
6
|
Ravindhran B, Schafer N, Howitt A, Carradice D, Smith G, Chetter I. Molecular mechanisms of action of negative pressure wound therapy: a systematic review. Expert Rev Mol Med 2023; 25:e29. [PMID: 37853784 DOI: 10.1017/erm.2023.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Negative pressure wound therapy (NPWT) has significantly advanced wound care and continues to find new applications. Its effects at a molecular level however, remain a subject of debate. The aim of this systematic review is to summarize the current evidence regarding the molecular mechanisms of action of NPWT. Medline, Embase, EBSCO databases and clinical trial registries were searched from inception to January 2023. Clinical studies, animal models or in-vitro studies that quantitatively or semi-quantitatively evaluated the influence of NPWT on growth factors, cytokine or gene-expression in the circulation or wound-bed were included. Risk of Bias assessment was performed using the RoBANS tool for non-randomized studies, the COCHRANE's Risk of Bias 2(ROB-2) tool for randomized clinical studies, OHAT tool for in-vitro studies or the SYRCLE tool for animal model studies. A descriptive summary was collated and the aggregated data is presented as a narrative synthesis. This review included 19 clinical studies, 11 animal studies and 3 in-vitro studies. The effects of NPWT on 43 biomarkers and 17 gene expressions were studied across included studies. NPWT stimulates modulation of numerous local and circulating cytokines and growth factor expressions to promote an anti-inflammatory profile. This is most likely achieved by downregulation of TNFα, upregulation of VEGF, TGF-β and fibronectin.
Collapse
Affiliation(s)
- Bharadhwaj Ravindhran
- Academic Vascular Surgical Unit, Hull Royal Infirmary, Hull, UK
- Department of Health Sciences, University of York, York, UK
| | - Nicole Schafer
- Academic Vascular Surgical Unit, Hull Royal Infirmary, Hull, UK
| | - Annabel Howitt
- Academic Vascular Surgical Unit, Hull Royal Infirmary, Hull, UK
| | | | - George Smith
- Academic Vascular Surgical Unit, Hull Royal Infirmary, Hull, UK
| | - Ian Chetter
- Academic Vascular Surgical Unit, Hull Royal Infirmary, Hull, UK
| |
Collapse
|
7
|
Tang Y, Liu L, Jie R, Tang Y, Zhao X, Xu M, Chen M. Negative pressure wound therapy promotes wound healing of diabetic foot ulcers by up-regulating PRDX2 in wound margin tissue. Sci Rep 2023; 13:16192. [PMID: 37758743 PMCID: PMC10533814 DOI: 10.1038/s41598-023-42634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
To understand the changes in the peroxiredoxin-2 (PRDX2) expression level in the wound margin tissue (T-PRDX2) of patients with diabetic foot ulcer (DFU) before and after negative pressure wound therapy (NPWT). Additionally, the study aimed to explore the association between PRDX2 expression and the treatment outcome of DFUs to provide a new theoretical basis for revealing the mechanism of NPWT promoting the healing of DFUs. Fifty-six type 2 diabetes patients with foot ulcers undergoing NPWT (the DFU group) and 28 patients with chronic lower limb skin ulcers with normal glucose tolerance undergoing NPWT (the skin ulcer control [SUC] group) were included in the study. T-PRDX2 was detected using Western blotting, and the superoxide dismutase (SOD) activity and the malondialdehyde (MDA) and glutathione (GSH) levels were detected using a biochemical method. In addition, in vitro experiments were conducted to determine the effect of PRDX2 expression on normal human dermal fibroblast (NHDF) proliferation, migration, and apoptosis. Before NPWT, the DFU group exhibited a significantly lower T-PRDX2 expression level compared with the SUC group. After one week of NPWT, the T-PRDX2 expression level, SOD activity, and GSH content in the wound margin tissues of the DFU and SUC groups significantly increased compared with the before NPWT levels. Conversely, the inflammatory indicators (white blood cell, neutrophil percentage, C-reactive protein, and procalcitonin) and MDA content were significantly lower than the before NPWT levels. The expression changes of T-PRDX2 before and after NPWT in the DFU and SUC groups were positively correlated with the 4-week wound healing rate. In vitro experiments demonstrated that PRDX2 could alleviate the oxidative stress in NHDFs, thereby promoting their proliferation and migration, while reducing cell apoptosis. NPWT promotes DFU healing by increasing T-PRDX2, and changes in the T-PRDX2 might be associated with the therapeutic effect of NPWT.
Collapse
Affiliation(s)
- Ying Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, People's Republic of China
| | - Lei Liu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, People's Republic of China
| | - Ruyan Jie
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, People's Republic of China
| | - Yizhong Tang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, People's Republic of China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, People's Republic of China.
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, People's Republic of China.
| |
Collapse
|
8
|
Schmidt BM, Holmes CM, Najarian K, Gallagher K, Haus JM, Shadiow J, Ye W, Ang L, Burant A, Baker N, Katona A, Martin CL, Pop-Busui R. On diabetic foot ulcer knowledge gaps, innovation, evaluation, prediction markers, and clinical needs. J Diabetes Complications 2022; 36:108317. [PMID: 36215794 PMCID: PMC10087892 DOI: 10.1016/j.jdiacomp.2022.108317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
Abstract
Diabetic foot ulcers (DFUs) remain a very prevalent and challenging complication of diabetes worldwide due to high morbidity, high risks of lower extremity amputation and associated mortality. Despite major advances in diabetes treatment in general, there is a paucity of FDA approved technologies and therapies to promote successful healing. Furthermore, accurate biomarkers to identify patients at risk of non-healing and monitor response-to-therapy are significantly lacking. To date, research has been slowed by a lack of coordinated efforts among basic scientists and clinical researchers and confounded by non-standardized heterogenous collection of biospecimen and patient associated data. Novel technologies, especially those in the single and 'multiomics' arena, are being used to advance the study of diabetic foot ulcers but require pragmatic study design to ensure broad adoption following validation. These high throughput analyses offer promise to investigate potential biomarkers across wound trajectories and may support information on wound healing and pathophysiology not previously well understood. Additionally, these biomarkers may be used at the point-of-care. In combination with national scalable research efforts, which seek to address the limitations and better inform clinical practice, coordinated and integrative insights may lead to improved limb salvage rates.
Collapse
Affiliation(s)
- Brian M Schmidt
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America.
| | - Crystal M Holmes
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Kayvan Najarian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States of America
| | - Katherine Gallagher
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Abor, MI 48109, United States of America
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Wen Ye
- Biostatistics Department, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Lynn Ang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Aaron Burant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Nicole Baker
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Aimee Katona
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Catherine L Martin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Rodica Pop-Busui
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| |
Collapse
|