1
|
Bellina A, Malfatti MC, Salgado G, Fleming AM, Antoniali G, Othman Z, Gualandi N, La Manna S, Marasco D, Dassi E, Burrows CJ, Tell G. Apurinic/Apyrimidinic Endodeoxyribonuclease 1 modulates RNA G-quadruplex folding of miR-92b and controls its expression in cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2317861121. [PMID: 39495925 PMCID: PMC11572961 DOI: 10.1073/pnas.2317861121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
In the last decade, several novel functions of the mammalian Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) have been discovered, going far beyond its canonical function as DNA repair enzyme and unveiling its potential roles in cancer development. Indeed, it was shown to be involved in DNA G-quadruplex biology and RNA metabolism, most importantly in the miRNA maturation pathway and the decay of oxidized or abasic miRNAs during oxidative stress conditions. In recent years, several noncanonical pathways of miRNA biogenesis have emerged, with a specific focus on guanosine-rich precursors that can form RNA G-quadruplex (rG4) structures. Here, we show that several miRNA precursors, dysregulated upon APE1 depletion, contain an rG4 motif and that their corresponding target genes are up-regulated after APE1 depletion. We also demonstrate, both by in vitro assays and by using different cancer cell lines, that APE1 can modulate the folding of an rG4 structure contained in pre-miR-92b, with a mechanism strictly dependent on lysine residues present in its N-terminal disordered region. Furthermore, APE1 cellular depletion alters the maturation process of miR-92b, mainly affecting the shuttling between the nucleus and cytosol. Bioinformatic analysis of APE1-regulated rG4-containing miRNAs supports the relevance of our findings in cancer biology. Specifically, these miRNAs exhibit high prognostic significance in lung, cervical, and liver tumors, as suggested by their involvement in several cancer-related pathways.
Collapse
Affiliation(s)
- Alessia Bellina
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
- Liver Cancer Unit, Fondazione Italiana Fegato—Organizzazione Non Lucrativa di Utilità Sociale, Basovizza34149, Italy
| | - Gilmar Salgado
- Department of Life Sciences and Technology for Health, ARNA laboratory, INSERM U1212, CNRS, UMR 5320, University of Bordeaux, BordeauxF-33076, France
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Zahraa Othman
- Department of Life Sciences and Technology for Health, ARNA laboratory, INSERM U1212, CNRS, UMR 5320, University of Bordeaux, BordeauxF-33076, France
| | - Nicolò Gualandi
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Sara La Manna
- STARS lab (Structure Activity Relationship Synthesis and Spectroscopy), Department of Pharmacy, University of Naples “Federico II”, Naples80131, Italy
| | - Daniela Marasco
- STARS lab (Structure Activity Relationship Synthesis and Spectroscopy), Department of Pharmacy, University of Naples “Federico II”, Naples80131, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento38123, Italy
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| |
Collapse
|
2
|
Liu Q, Zhang Q, Zhang Y, Tian F, Long K, Yang Y, Wang W, Peng C, Wang H. A recognition-induced three-dimensional bipedal DNA walker for highly sensitive detection of APE1. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6220-6228. [PMID: 39193784 DOI: 10.1039/d4ay01353k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In contrast to the unipedal DNA walker, a bipedal DNA walker features a broader walking area and exhibits faster walking kinetics, leading to enhanced amplification efficiency. In this study, we designed a stochastic three-dimensional (3D) bipedal DNA walker, capable of navigating AuNP-based 3D tracks, driven by exonuclease III (Exo III). This detection system enables the linear detection of the non-invasive biomarker apurinic/apyrimidinic endonuclease 1 (APE1) activity across a range of 0 to 120 U per mL, with a detection limit of 0.03 U per mL. The platform not only offers a novel DNA walker for sensitive APE1 detection in cell lysate but also facilitates the precise assessment of NCA's inhibitory effect on APE1. This research holds promise for future screening of other potential APE1 inhibitors.
Collapse
Affiliation(s)
- Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Yuting Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Fanghong Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Kang Long
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, 410208, Changsha, China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| |
Collapse
|
3
|
Xavier PL, Marção M, Simões RL, Job MEG, de Francisco Strefezzi R, Fukumasu H, Malta TM. Machine learning determines stemness associated with simple and basal-like canine mammary carcinomas. Heliyon 2024; 10:e26714. [PMID: 38439848 PMCID: PMC10909659 DOI: 10.1016/j.heliyon.2024.e26714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Simple and complex carcinomas are the most common type of malignant Canine Mammary Tumors (CMTs), with simple carcinomas exhibiting aggressive behavior and poorer prognostic. Stemness is an ability associated with cancer initiation, malignancy, and therapeutic resistance, but is still few elucidated in canine mammary tumor subtypes. Here, we first validated, using CMT samples, a previously published canine one-class logistic regression machine learning algorithm (OCLR) to predict stemness (mRNAsi) in canine cancer cells. Then, using the canine mRNAsi, we observed that simple carcinomas exhibit higher stemness than complex carcinomas and other histological subtypes. Also, we confirmed that stemness is higher and associated with basal-like CMTs and with NMF2 metagene signature, a tumor-specific DNA-repair metagene signature. Using correlation analysis, we selected the top 50 genes correlated with higher stemness, and the top 50 genes correlated with lower stemness and further performed a gene set enrichment analysis to observe the biological processes enriched for these genes. Finally, we suggested two promise stemness-associated targets in CMTs, POLA2 and APEX1, especially in simple carcinomas. Thus, our work elucidates stemness as a potential mechanism behind the aggressiveness and development of canine mammary tumors, especially in simple carcinomas, describing evidence of a promising strategy to target this disease.
Collapse
Affiliation(s)
- Pedro L.P. Xavier
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Maycon Marção
- Cancer Epigenomics Laboratory, Department of Clinical Analysis, Toxicology and Food Sciences, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renan L.S. Simões
- Cancer Epigenomics Laboratory, Department of Clinical Analysis, Toxicology and Food Sciences, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Eduarda G. Job
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Ricardo de Francisco Strefezzi
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Tathiane M. Malta
- Cancer Epigenomics Laboratory, Department of Clinical Analysis, Toxicology and Food Sciences, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
4
|
George DC, Bertrand FE, Sigounas G. Notch-3 affects chemoresistance in colorectal cancer via DNA base excision repair enzymes. Adv Biol Regul 2024; 91:101013. [PMID: 38290285 DOI: 10.1016/j.jbior.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Colon cancer is the second leading cause of cancer death. With over 153,000 new CRC cases predicted, it is the third most commonly diagnosed cancer. Early detection can lead to curative surgical intervention, but recurrent and late metastatic disease is frequently treated with chemotherapeutic options based on induction of DNA damage. Understanding mechanism(s) that regulate DNA damage repair within colon tumor cells is essential to developing effective therapeutic strategies. The Notch signaling pathway is known to participate in normal colon development and we have recently described a pathway by which Notch-1, Notch-3 and Smad may regulated EMT and stem-like properties in colon tumor cells, promoting tumorigenesis. Little is known about how Notch may regulate drug resistance. In this study, we used shRNA to generate colon tumor cells with loss of Notch-3 expression. These cells exhibited reduced expression of the base-excision repair proteins PARP1 and APE1, along with increased sensitivity to ara-c and cisplatin. These data point to a pathway in which Notch-3 signaling can regulate DNA repair within colon tumor cells and suggests that targeting Notch-3 may be an effective approach to rendering colon tumors sensitive to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Dennis C George
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Fred E Bertrand
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - George Sigounas
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
5
|
Hong JY, Oh HH, Park SY, Park YL, Cho SB, Joo YE. Expression of Apurinic/Apyrimidinic Endonuclease 1 in Colorectal Cancer and its Relation to Tumor Progression and Prognosis. In Vivo 2023; 37:2070-2077. [PMID: 37652525 PMCID: PMC10500501 DOI: 10.21873/invivo.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM Over-expression of apurinic/apyrimidinic endonuclease 1 (APE1) has been demonstrated to be associated with cancer progression, chemo- and radioresistance in various cancers. This study examined the expression of APE1 and its relation to tumor progression and prognosis in patients with colorectal cancer (CRC). MATERIALS AND METHODS We investigated 193 patients with CRC who received curative surgery for whom formalin-fixed and paraffin-embedded blocks were available, and long-term tumor-specific survival rate analysis was possible. The expression of APE1 was investigated by reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry in CRC and lymph node tissues. The apoptosis, proliferation, and angiogenesis of CRC cells were determined using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, and immunohistochemical staining for Ki-67 and CD34 antibodies. RESULTS APE1 was over-expressed in CRC and metastatic lymph node tissues compared with normal colorectal mucosa and non-metastatic lymph node tissues. Over-expression of APE1 was significantly associated with advanced stage, lymphovascular invasion, perineural invasion, deeper tumor invasion, lymph node metastasis, distant metastasis, and poor survival. Multivariate analysis demonstrated that APE1, perineural invasion, and lymph node metastasis were the independent prognostic factors associated with overall survival. The mean Ki-67 labeling index value of APE1-positive tumors was significantly higher than that of APE1-negative tumors. However, there was no significant association between APE1 expression and the apoptotic index or microvessel density. CONCLUSION Over-expression of APE1 is significantly associated with tumor progression and poor survival in patients with CRC. Therefore, APE1 may be a novel biomarker and present a potential prognostic factor for CRC.
Collapse
Affiliation(s)
- Ji-Yun Hong
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyung-Hoon Oh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sun-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sung-Bum Cho
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Liu L, Wu Q, Wang Z, Niu B, Jiao Y, An H. APE1 promotes embryonic stem cell proliferation and teratoma formation by regulating GDNF/GFRα1 axis. Reprod Biol 2023; 23:100792. [PMID: 37523789 DOI: 10.1016/j.repbio.2023.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
The teratomas formation has severely hindered the application of embryonic stem cells (ESCs) in clinical trials. Apurinic/apyrimidinic endonuclease 1 (APE1) is strongly involved in the development of tumors and differentiation process of stem cells. However, the role of APE1 in teratomas remains unknown. The expression of APE1 was examined in mouse ESCs (mESCs) by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot. The role and mechanism of APE1 in the proliferation, pluripotency and differentiation of E14 cells were determined by cell counting, flow cytometry and western blot assays. Besides, the role of APE1 in teratomas was also probed in xenografted mice. The expression of APE1 was upregulated in mESCs with differentiation. Knockdown of APE1 reduced the cell numbers, induced the arrest of the G2/M phase, and decreased the expression of cell cycle-related proteins in E14 cells. Besides, loss- and gain-of-function assays revealed that APE1 enhanced the levels of proteins involved in pluripotency, reduced the protein expression of ectoderm markers, and increased the protein levels of endoderm markers in E14 cells. Mechanically, inhibition of APE1 downregulated the expression of GDNF and GFRα1 in E14 cells. GDNF reversed the role of APE1 in the proliferation, pluripotency and embryogenesis of E14 cells. Moreover, suppression of APE1 reduced the teratoma volume and the relative protein expression of endoderm markers, but increased the relative protein expression of ectoderm markers in xenografted mice. Collectively, knockdown of APE1 attenuated proliferation, pluripotency and embryogenesis of mESCs via GDNF/GFRα1 axis.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pathology, Childern's Hospital of Hebei Province, Shijiazhuang, Heibei 050031, China
| | - Qiang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050004, China
| | - Zan Wang
- Department of General Surgery, Childern's Hospital of Hebei Province, Shijiazhuang, Heibei 050031, China
| | - Bobo Niu
- Department of General Surgery, Childern's Hospital of Hebei Province, Shijiazhuang, Heibei 050031, China
| | - Yaguang Jiao
- Department of Pathology, Childern's Hospital of Hebei Province, Shijiazhuang, Heibei 050031, China
| | - Huibo An
- Department of Pathology, Childern's Hospital of Hebei Province, Shijiazhuang, Heibei 050031, China.
| |
Collapse
|
7
|
Malfatti MC, Bellina A, Antoniali G, Tell G. Revisiting Two Decades of Research Focused on Targeting APE1 for Cancer Therapy: The Pros and Cons. Cells 2023; 12:1895. [PMID: 37508559 PMCID: PMC10378182 DOI: 10.3390/cells12141895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
APE1 is an essential endodeoxyribonuclease of the base excision repair pathway that maintains genome stability. It was identified as a pivotal factor favoring tumor progression and chemoresistance through the control of gene expression by a redox-based mechanism. APE1 is overexpressed and serum-secreted in different cancers, representing a prognostic and predictive factor and a promising non-invasive biomarker. Strategies directly targeting APE1 functions led to the identification of inhibitors showing potential therapeutic value, some of which are currently in clinical trials. Interestingly, evidence indicates novel roles of APE1 in RNA metabolism that are still not fully understood, including its activity in processing damaged RNA in chemoresistant phenotypes, regulating onco-miRNA maturation, and oxidized RNA decay. Recent data point out a control role for APE1 in the expression and sorting of onco-miRNAs within secreted extracellular vesicles. This review is focused on giving a portrait of the pros and cons of the last two decades of research aiming at the identification of inhibitors of the redox or DNA-repair functions of APE1 for the definition of novel targeted therapies for cancer. We will discuss the new perspectives in cancer therapy emerging from the unexpected finding of the APE1 role in miRNA processing for personalized therapy.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Alessia Bellina
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
8
|
Wu Z, Liu Z, Sun Y, Yuan Y, Zou Q, Wen Y, Luo J, Liu R. APEX1 predicts poor prognosis of gallbladder cancer and affects biological properties of CD133 + GBC-SD cells via upregulating Jagged1. J Cancer 2023; 14:1443-1457. [PMID: 37283798 PMCID: PMC10240672 DOI: 10.7150/jca.83356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Although APEX1 is associated with the tumorigenesis and progression of some human cancer types, the function of APEX1 in gallbladder cancer (GBC) is unclear. In this study, we found that APEX1 expression is up-regulated in GBC tissues, and APEX1 positive expression is related to aggressive clinicopathological features and poor prognosis of GBC. APEX1 was an independent risk factor of GBC prognosis, and presented some pathological diagnostic significance in GBC. Furthermore, APEX1 was overexpressed in CD133+ GBC-SD cells in comparison with GBC-SD cells. APEX1 knockdown increased the sensitivity of CD133+ GBC-SD cells to 5-Fluorouracil via facilitating cell necrosis and apoptosis. APEX1 knockdown in CD133+ GBC-SD cells dramatically inhibited cell proliferation, migration, and invasion, and promoted cell apoptosis in vitro. APEX1 knockdown in CD133+ GBC-SD cells accelerated tumor growth in the xenograft models. Mechanistically, APEX1 affected these malignant properties via upregulating Jagged1 in CD133+ GBC-SD cells. Thus, APEX1 is a promising prognostic biomarker, and a potential therapeutic target for GBC.
Collapse
Affiliation(s)
- Zhengchun Wu
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan410013, China
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan410011, China
| | - Ziru Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan410011, China
| | - Yi Sun
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan410011, China
| | - Yuan Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan410013, China
| | - Qiong Zou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan410013, China
| | - Yun Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan410011, China
| | - Jia Luo
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan410013, China
| | - Rushi Liu
- Laboratory of Medical Molecular and Immunological Diagnostics, School of medicine, Hunan Normal University, Changsha, Hunan 410013, China
| |
Collapse
|
9
|
Coskun E, Singh N, Scanlan LD, Jaruga P, Doak SH, Dizdaroglu M, Nelson BC. Inhibition of human APE1 and MTH1 DNA repair proteins by dextran-coated γ-Fe 2O 3 ultrasmall superparamagnetic iron oxide nanoparticles. Nanomedicine (Lond) 2022; 17:2011-2021. [PMID: 36853189 PMCID: PMC10031551 DOI: 10.2217/nnm-2022-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Aim: To quantitatively evaluate the inhibition of human DNA repair proteins APE1 and MTH1 by dextran-coated γ-Fe2O3 ultrasmall superparamagnetic iron oxide nanoparticles (dUSPIONs). Materials & methods: Liquid chromatography-tandem mass spectrometry with isotope-dilution was used to measure the expression levels of APE1 and MTH1 in MCL-5 cells exposed to increasing doses of dUSPIONs. The expression levels of APE1 and MTH1 were measured in cytoplasmic and nuclear fractions of cell extracts. Results: APE1 and MTH1 expression was significantly inhibited in both cell fractions at the highest dUSPION dose. The expression of MTH1 was linearly inhibited across the full dUSPION dose range in both fractions. Conclusion: These findings warrant further studies to characterize the capacity of dUSPIONs to inhibit other DNA repair proteins in vitro and in vivo.
Collapse
Affiliation(s)
- Erdem Coskun
- Institute for Bioscience & Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Neenu Singh
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Leona D Scanlan
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I Street, Sacramento, CA 95814, USA
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Shareen H Doak
- Institute of Life Science, Center for NanoHealth, Swansea University Medical School, Wales, SA2 8PP, UK
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Bryant C Nelson
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
10
|
Lu X, Li D, Luo Z, Duan Y. A dual-functional fluorescent biosensor based on enzyme-involved catalytic hairpin assembly for the detection of APE1 and miRNA-21. Analyst 2022; 147:2834-2842. [PMID: 35621039 DOI: 10.1039/d2an00108j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Both apurinic/apyrimidinic endonuclease 1 (APE1) and microRNA-21 (miRNA-21) have been reported to be related to tumors, enabling them to be the biomarkers of several cancers. This has led to the development of various biosensors to detect APE1 or miRNA-21. However, biosensors that focus on single target detection are subject to low accuracy. In this work, a fluorescent biosensor based on enzyme-involved catalytic hairpin assembly (CHA) for the detection of APE1 and miRNA-21 was developed, aimed at improving the accuracy of early-phase diagnosis of cancers. Two hairpin structured DNA probes (H1 and H2) were utilized to concatenate the enzyme-assisted circuit and CHA circuit in the system. The stem of H1 with a blunt end was modified with an AP site, while H2 was modified with 6-FAM at the 5' terminal and Dabcyl at the 3' terminal. In the presence of APE1, H1 was cleaved from the AP site to expose the toehold sequence. Then, miRNA-21 bound with the toehold sequence to initiate the CHA reaction between H1 and H2. The assembled product of CHA triggered the 6-FAM of H2 at a distance from Dabcyl, which recovered the fluorescence signal. It is worth noting that only under the co-stimulation of APE1 and miRNA-21 can the fluorescence signal be detected, indicating that the biosensor could work as an AND logic gate. The proposed dual-functional biosensor achieved a limit of detection (LOD) of 0.016 U mL-1 for APE1 and 0.25 nM for miRNA-21 and APE1, respectively, and also exhibits good selectivity and stability for the two biomarkers. Thus, the biosensor has great potential to be applied as a new platform for cancer diagnosis.
Collapse
Affiliation(s)
- Xiaoyong Lu
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P.R. China.
| | - Dan Li
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, P.R. China.
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, P.R. China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P.R. China.
| |
Collapse
|
11
|
Pramanik S, Chen Y, Song H, Khutsishvili I, Marky LA, Ray S, Natarajan A, Singh P, Bhakat K. The human AP-endonuclease 1 (APE1) is a DNA G-quadruplex structure binding protein and regulates KRAS expression in pancreatic ductal adenocarcinoma cells. Nucleic Acids Res 2022; 50:3394-3412. [PMID: 35286386 PMCID: PMC8990529 DOI: 10.1093/nar/gkac172] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 11/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the most aggressive types of cancer, is characterized by aberrant activity of oncogenic KRAS. A nuclease-hypersensitive GC-rich region in KRAS promoter can fold into a four-stranded DNA secondary structure called G-quadruplex (G4), known to regulate KRAS expression. However, the factors that regulate stable G4 formation in the genome and KRAS expression in PDAC are largely unknown. Here, we show that APE1 (apurinic/apyrimidinic endonuclease 1), a multifunctional DNA repair enzyme, is a G4-binding protein, and loss of APE1 abrogates the formation of stable G4 structures in cells. Recombinant APE1 binds to KRAS promoter G4 structure with high affinity and promotes G4 folding in vitro. Knockdown of APE1 reduces MAZ transcription factor loading onto the KRAS promoter, thus reducing KRAS expression in PDAC cells. Moreover, downregulation of APE1 sensitizes PDAC cells to chemotherapeutic drugs in vitro and in vivo. We also demonstrate that PDAC patients' tissue samples have elevated levels of both APE1 and G4 DNA. Our findings unravel a critical role of APE1 in regulating stable G4 formation and KRAS expression in PDAC and highlight G4 structures as genomic features with potential application as a novel prognostic marker and therapeutic target in PDAC.
Collapse
Affiliation(s)
- Suravi Pramanik
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yingling Chen
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heyu Song
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Irine Khutsishvili
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Luis A Marky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sutapa Ray
- Hematology/Oncology Division, Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
12
|
Balian A, Hernandez FJ. Nucleases as molecular targets for cancer diagnosis. Biomark Res 2021; 9:86. [PMID: 34809722 PMCID: PMC8607607 DOI: 10.1186/s40364-021-00342-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Early cancer diagnosis is a crucial element to improved treatment options and survival. Great research efforts have been made in the search for better performing cancer diagnostic biomarkers. However, the quest continues as novel biomarkers with high accuracy for an early diagnosis remain an unmet clinical need. Nucleases, which are enzymes capable of cleaving nucleic acids, have been long considered as potential cancer biomarkers. The implications of nucleases are key for biological functions, their presence in different cellular counterparts and catalytic activity led the enthusiasm towards investigating the role of nucleases as promising cancer biomarkers. However, the most essential feature of these proteins, which is their enzymatic activity, has not been fully exploited. This review discusses nucleases interrogated as cancer biomarkers, providing a glimpse of their physiological roles. Moreover, it highlights the potential of harnessing the enzymatic activity of cancer-associated nucleases as a novel diagnostic biomarker using nucleic acid probes as substrates.
Collapse
Affiliation(s)
- Alien Balian
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Linköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Frank J Hernandez
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Linköping, Sweden.
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
13
|
Chen W, Wang S, Xing D. New Horizons for the Roles and Association of APE1/Ref-1 and ABCA1 in Atherosclerosis. J Inflamm Res 2021; 14:5251-5271. [PMID: 34703267 PMCID: PMC8526300 DOI: 10.2147/jir.s330147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/25/2021] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide. APE1/Ref-1 and ABCA1 play key roles in the progression of atherosclerosis. APE1/Ref-1 suppresses atherosclerosis via multiple mechanisms, including reducing the IL-6-, TNF-α-, and IL-1β-mediated proinflammatory responses, suppressing ROS-mediated oxidant activity and Bax/Bcl-2-mediated vascular calcification and apoptosis, and reducing LOX-1-mediated cholesterol uptake. However, APE1/Ref-1 also promotes atherosclerosis by increasing the activity of the NK-κB and S1PR1 pathways. APE1/Ref-1 localizes to the nucleus, cytoplasm, and mitochondria and can be secreted from the cell. APE1/Ref-1 localization is dynamically regulated by the disease state and may be responsible for its proatherogenic and antiatherogenic effects. ABCA1 promotes cholesterol efflux and anti-inflammatory responses by binding to apoA-I and regulates apoptotic cell clearance and HSPC proliferation to protect against inflammatory responses. Interestingly, in addition to mediating these functions, ABCA1 promotes the secretion of acetylated APE1/Ref-1 (AcAPE1/Ref-1), a therapeutic target, which protects against atherosclerosis development. The APE1/Ref-1 inhibitor APX3330 is being evaluated in a phase II clinical trial. The LXR agonist LXR-623 (WAY-252623) is an agonist of ABCA1 and the first LXR-targeting compound to be evaluated in clinical trials. In this article, we review the roles of ABCA1 and APE1/Ref-1 in atherosclerosis and focus on new insights into the ABCA1-APE1/Ref-1 axis and its potential as a novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, People's Republic of China
| | - Shuai Wang
- School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, People's Republic of China.,School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
14
|
Beyond the Double-Strand Breaks: The Role of DNA Repair Proteins in Cancer Stem-Cell Regulation. Cancers (Basel) 2021; 13:cancers13194818. [PMID: 34638302 PMCID: PMC8508278 DOI: 10.3390/cancers13194818] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) are a tumor cell population maintaining tumor growth and promoting tumor relapse if not wholly eradicated during treatment. CSCs are often equipped with molecular mechanisms making them resistant to conventional anti-cancer therapies whose curative potential depends on DNA damage-induced cell death. An elevated expression of some key DNA repair proteins is one of such defense mechanisms. However, new research reveals that the role of critical DNA repair proteins is extending far beyond the DNA repair mechanisms. This review discusses the diverse biological functions of DNA repair proteins in CSC maintenance and the adaptation to replication and oxidative stress, anti-cancer immune response, epigenetic reprogramming, and intracellular signaling mechanisms. It also provides an overview of their potential therapeutic targeting. Abstract Cancer stem cells (CSCs) are pluripotent and highly tumorigenic cells that can re-populate a tumor and cause relapses even after initially successful therapy. As with tissue stem cells, CSCs possess enhanced DNA repair mechanisms. An active DNA damage response alleviates the increased oxidative and replicative stress and leads to therapy resistance. On the other hand, mutations in DNA repair genes cause genomic instability, therefore driving tumor evolution and developing highly aggressive CSC phenotypes. However, the role of DNA repair proteins in CSCs extends beyond the level of DNA damage. In recent years, more and more studies have reported the unexpected role of DNA repair proteins in the regulation of transcription, CSC signaling pathways, intracellular levels of reactive oxygen species (ROS), and epithelial–mesenchymal transition (EMT). Moreover, DNA damage signaling plays an essential role in the immune response towards tumor cells. Due to its high importance for the CSC phenotype and treatment resistance, the DNA damage response is a promising target for individualized therapies. Furthermore, understanding the dependence of CSC on DNA repair pathways can be therapeutically exploited to induce synthetic lethality and sensitize CSCs to anti-cancer therapies. This review discusses the different roles of DNA repair proteins in CSC maintenance and their potential as therapeutic targets.
Collapse
|
15
|
Kühl Svoboda Baldin R, Austrália Paredes Marcondes Ribas C, de Noronha L, Veloso da Silva-Camargo CC, Santos Sotomaior V, Martins Sebastião AP, Vasconcelos de Castilho AP, Rodrigues Montemor Netto M. Expression of Parkin, APC, APE1, and Bcl-xL in Colorectal Polyps. J Histochem Cytochem 2021; 69:437-449. [PMID: 34126796 PMCID: PMC8246528 DOI: 10.1369/00221554211026296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer can develop through molecular, chromosomal, and epigenetic cumulative changes that transform the normal intestinal epithelium into the colorectal polyps, called conventional adenomas (CAs) or serrated polyps (SPs), recognized as precursors of invasive colorectal neoplasia. These benign lesions need to explore the morphology, histological diagnosis, and biomarkers profile to accurately characterize lesions with potential for evolution to cancer. This study aimed to correlate the immunohistochemical expression of Parkin and Adenomatous Polyposis Coli (APC; tumor suppressors), Human Apurinic/Apyrimidinic endonuclease 1 (APE1), and B-cell lymphoma-extra-large (Bcl-xL; oncogenic proteins) in sporadic colorectal polyps with clinical, endoscopic, and diagnostic data. Immunohistochemical analysis was performed on tissue microarray samples of 306 polyps. Based on the Allred score, the expressions were graduated in the cytoplasm and nucleus of superficial and cryptic cells. There was higher Parkin nuclear expression (p=0.006 and 0.010) and APC cytoplasmic expression in cryptic cells (p<0.001) in SPs. CAs, APE1 (p<0.001) and Bcl-xL (p<0.001) were more expressed in the nuclei and cytoplasms, respectively. These results are related to the biological role proposed for these proteins in cellular functions. They can contribute to the diagnosis criteria for polyps and improve the knowledge of biomarkers that could predict cancer development.
Collapse
Affiliation(s)
- Rosimeri Kühl Svoboda Baldin
- Group of Studies and Research in Tumor Markers, Faculdade Evangélica Mackenzie do Paraná, Curitiba, Brazil
- Department of Medical Pathology, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Lúcia de Noronha
- Department of Medical Pathology, Universidade Federal do Paraná, Curitiba, Brazil
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Claudia Caroline Veloso da Silva-Camargo
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Vanessa Santos Sotomaior
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | | | | |
Collapse
|
16
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
17
|
Association between apurinic/apyrimidinic endonuclease 1 rs1760944 T>G polymorphism and susceptibility of cancer: a meta-analysis involving 21764 subjects. Biosci Rep 2020; 39:221420. [PMID: 31804681 PMCID: PMC6923335 DOI: 10.1042/bsr20190866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/03/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous case-control studies have suggested that apurinic/apyrimidinic endonuclease 1 (APE1) rs1760944 T>G polymorphism may be associated with cancer risk. Here, we carried out an updated meta-analysis to focus on the correlation between APE1 rs1760944 T>G locus and the risk of cancer. METHODS We used the crude odds ratios (ORs) with their 95% confidence intervals (CIs) to evaluate the possible relationship between the APE1 rs1760944 T>G polymorphism and cancer risk. Heterogeneity, publication bias and sensitivity analysis were also harnessed to check the potential bias of the present study. RESULTS Twenty-three independent studies involving 10166 cancer cases and 11598 controls were eligible for this pooled analysis. We found that APE1 rs1760944 T>G polymorphism decreased the risk of cancer in four genetic models (G vs. T: OR, 0.87; 95% CI, 0.83-0.92; P<0.001; GG vs. TT: OR, 0.77; 95% CI, 0.69-0.86; P<0.001; GG/TG vs. TT: OR, 0.83; 95% CI, 0.77-0.89, P<0.001 and GG vs. TT/TG: OR, 0.85; 95% CI, 0.80-0.92, P<0.001). Results of subgroup analyses also demonstrated that this single-nucleotide polymorphism (SNP) modified the risk among lung cancer, breast cancer, osteosarcoma, and Asians. Evidence of publication bias was found in the present study. When we treated the publication bias with 'trim-and-fill' method, the adjusted ORs and CIs were not significantly changed. CONCLUSION In conclusion, current evidence highlights that the APE1 rs1760944 T>G polymorphism is a protective factor for cancer susceptibility. In the future, case-control studies with detailed risk factors are needed to confirm or refute our findings.
Collapse
|
18
|
Luo Q, Fu Q, Zhang X, Zhang H, Qin T. Application of Single-Cell RNA Sequencing in Pancreatic Cancer and the Endocrine Pancreas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:143-152. [PMID: 32949397 DOI: 10.1007/978-981-15-4494-1_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pancreas is a complex organ composed of an endocrine (pancreatic islets) and an exocrine portion. This mixed cell population has resulted in an implacable barrier to exploring the detailed mechanism and function of each cell type in previous investigative approaches. In recent years, single-cell RNA sequencing (scRNA-seq) technologies have provided in-depth analysis of cell heterogeneity in the pancreas and in pancreatic cancer. It is especially effective in cell-type-specific molecule identification and detection of interactions between cancer cells and the stromal microenvironment. To date, numerous reports have described the application of scRNA-seq in studies of pancreatic islets and pancreatic cancer. The aim of this paper is to review recent advances of pancreatic transcriptomics and pancreatic cancer using scRNA-seq strategies.
Collapse
Affiliation(s)
- Qiankun Luo
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiang Fu
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongwei Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Qin
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
19
|
Wang Y, Li X, Zhang L, Li M, Dai N, Luo H, Shan J, Yang X, Xu M, Feng Y, Xu C, Qian C, Wang D. A randomized, double-blind, placebo-controlled study of B-cell lymphoma 2 homology 3 mimetic gossypol combined with docetaxel and cisplatin for advanced non-small cell lung cancer with high expression of apurinic/apyrimidinic endonuclease 1. Invest New Drugs 2020; 38:1862-1871. [PMID: 32529467 PMCID: PMC7575477 DOI: 10.1007/s10637-020-00927-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/16/2020] [Indexed: 01/28/2023]
Abstract
Background Overexpression of apurinic/apyrimidinic endonuclease 1 (APE1) is an important cause of poor chemotherapeutic efficacy in advanced non-small cell lung cancer (NSCLC) patients. Gossypol, a new inhibitor of APE1, in combination with docetaxel and cisplatin is believed to improve the efficacy of chemotherapy for advanced NSCLC with high APE1 expression. Methods Sixty-two patients were randomly assigned to two groups. Thirty-one patients in the experimental group received 75 mg/m2 docetaxel and 75 mg/m2 cisplatin on day 1 with gossypol administered at 20 mg once daily on days 1 to 14 every 21 days. The control group received placebo with the same docetaxel and cisplatin regimen. The primary endpoint was progression-free survival (PFS); secondary endpoints included overall survival (OS), response rate, and toxicity. Results There were no significant differences in PFS and OS between the experimental group and the control group. The median PFS (mPFS) in the experimental and control groups was 7.43 and 4.9 months, respectively (HR = 0.54; p = 0.06), and the median OS (mOS) was 18.37 and 14.7 months, respectively (HR = 0.68; p = 0.27). No significant differences in response rate and serious adverse events were found between the groups. Conclusion The experimental group had a better mPFS and mOS than did the control group, though no significant difference was observed. Because the regimen of gossypol combined with docetaxel and cisplatin was well tolerated, future studies with larger sample sizes should be performed.
Collapse
Affiliation(s)
- Yuxiao Wang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Xuemei Li
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Liang Zhang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Mengxia Li
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Nan Dai
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Hao Luo
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Jinlu Shan
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Xueqin Yang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Mingfang Xu
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Yan Feng
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Chengxiong Xu
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Chengyuan Qian
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China.
| | - Dong Wang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China.
| |
Collapse
|
20
|
Liu Y, Zhang Z, Li Q, Zhang L, Cheng Y, Zhong Z. Mitochondrial APE1 promotes cisplatin resistance by downregulating ROS in osteosarcoma. Oncol Rep 2020; 44:499-508. [PMID: 32627008 PMCID: PMC7336412 DOI: 10.3892/or.2020.7633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/22/2020] [Indexed: 01/20/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a primary nuclear-localized multifunctional protein in osteosarcoma. However, the cytoplasmic localization of APE1 was found to be functional and to increase with cisplatin resistance, yet the molecular mechanism is unknown. In the present study, we explored the cisplatin resistance mechanism in osteosarcoma from the new perspective of APE1 extranuclear biological activity. Using cisplatin-resistant and cisplatin-sensitive osteosarcoma cell lines, we found that mitochondrial APE1 (mtAPE1) was overexpressed in cisplatin-resistant cells but not in sensitive cells. Overexpression of mtAPE1 reduced cisplatin-induced apoptosis, while knockdown of APE1 reversed this phenomenon and caused oxidative DNA damage via overproduction of reactive oxygen species (ROS). We further demonstrated that high mtAPE1 expression could downregulate ROS production by decreasing the phosphorylation of Rac1 (p-Rac1), further promoting cisplatin resistance in osteosarcoma. Our findings suggest that mitochondrial APE1 promotes cisplatin resistance by decreasing ROS generation, which may provide new ideas for researching the molecular mechanism of osteosarcoma chemoresistance and strategies to overcome cisplatin resistance in osteosarcoma.
Collapse
Affiliation(s)
- Yufeng Liu
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Zhimin Zhang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Qing Li
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Liang Zhang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Yi Cheng
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
21
|
Banerjee S, Mukherjee S, Bhattacharya A, Basak U, Chakraborty S, Paul S, Khan P, Jana K, Hazra TK, Das T. Pyridoxine enhances chemo-responsiveness of breast cancer stem cells via redox reconditioning. Free Radic Biol Med 2020; 152:152-165. [PMID: 32145302 DOI: 10.1016/j.freeradbiomed.2020.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
A plethora of molecular strategies are employed by breast cancer stem cells (bCSCs) to evade chemotherapy-induced death signals, redox modulation being a crucial factor among those. Here, we observed that bCSCs are resistant to DNA damage and generate low ROS upon doxorubicin (Dox) treatment. Further exploration revealed inherently high NEIL2, a base excision repair (BER) enzyme that plays a key regulatory role in repairing DNA damage, in bCSCs. However, its role in modulating the redox status of bCSCs remains unexplored. In addition, Dox not only upregulates NEIL2 in bCSCs at both transcriptional and translational levels but also declines p300-induced acetylation thus activating NEIL2 and providing a protective effect against the stress inflicted by the genotoxic drug. However, when the redox status of bCSCs is altered by inducing high ROS, apoptosis of the resistant population is accomplished. Subsequently, when NEIL2 is suppressed in bCSCs, chemo-sensitization of the resistant population is enabled by redox reconditioning via impaired DNA repair. This signifies a possibility of therapeutically disrupting the redox balance in bCSCs to enhance their chemo-responsiveness. Our search for an inhibitor of NEIL2 revealed that vitamin B6, i.e., pyridoxine (PN), hinders NEIL2-mediated transcription-coupled repair process by not only decreasing NEIL2 expression but also inhibiting its association with RNA Pol II, thus stimulating DNA damage and triggering ROS. As a consequence of altered redox regulation, bCSCs become susceptible towards Dox, which then induces apoptosis via caspase cascade. These findings signify that PN enhances chemo-responsiveness of bCSCs via redox reconditioning.
Collapse
Affiliation(s)
- Shruti Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme, VIIM, Kolkata, 700054, India
| | - Shravanti Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme, VIIM, Kolkata, 700054, India
| | - Apoorva Bhattacharya
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme, VIIM, Kolkata, 700054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme, VIIM, Kolkata, 700054, India
| | - Sourio Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme, VIIM, Kolkata, 700054, India
| | - Swastika Paul
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme, VIIM, Kolkata, 700054, India
| | - Poulami Khan
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme, VIIM, Kolkata, 700054, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme, VIIM, Kolkata, 700054, India
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555-1074, USA
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme, VIIM, Kolkata, 700054, India.
| |
Collapse
|
22
|
Zhang H, Ba S, Yang Z, Wang T, Lee JY, Li T, Shao F. Graphene Quantum Dot-Based Nanocomposites for Diagnosing Cancer Biomarker APE1 in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13634-13643. [PMID: 32129072 DOI: 10.1021/acsami.9b21385] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
As an essential DNA repair enzyme, apurinic/apyrimidinic endonuclease 1 (APE1) is overexpressed in most human cancers and is identified as a cancer diagnostic and predictive biomarker for cancer risk assessment, diagnosis, prognosis, and prediction of treatment efficacy. Despite its importance in cancer, however, it is still a significant challenge nowadays to sense abundance variation and monitor enzymatic activity of this biomarker in living cells. Here, we report our construction of biocompatible functional nanocomposites, which are a combination of meticulously designed unimolecular DNA and fine-sized graphene quantum dots. Upon utilization of these nanocomposites as diagnostic probes, massive accumulation of fluorescence signal in living cells can be triggered by merely a small amount of cellular APE1 through repeated cycles of enzymatic catalysis. Most critically, our delicate structural designs assure that these graphene quantum dot-based nanocomposites are capable of sensing cancer biomarker APE1 in identical type of cells under different cell conditions and can be applied to multiple cancerous cells in a highly sensitive and specific manners. This work not only brings about new methods for cytology-based cancer screening but also lays down a general principle for fabricating diagnostic probes that target other endogenous biomarkers in living cells.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Sai Ba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhaoqi Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tianxiang Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jasmine Yiqin Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fangwei Shao
- ZJU-UIUC Institute, Zhejiang University, Haining, Zhejiang 314400, China
| |
Collapse
|
23
|
Abad E, Graifer D, Lyakhovich A. DNA damage response and resistance of cancer stem cells. Cancer Lett 2020; 474:106-117. [PMID: 31968219 DOI: 10.1016/j.canlet.2020.01.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
The cancer stem cell (CSC) model defines tumors as hierarchically organized entities, containing a small population of tumorigenic CSC, or tumour-initiating cells, placed at the apex of this hierarchy. These cells may share common qualities with chemo- and radio-resistant cancer cells and contribute to self-renewal activities resulting in tumour formation, maintenance, growth and metastasis. Yet, it remains obscure what self-defense mechanisms are utilized by these cells against the chemotherapeutic drugs or radiotherapy. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis. In line with this note, an increased DDR that prevents CSC and chemoresistant cells from genotoxic pressure of chemotherapeutic drugs or radiation may be responsible for cancer metastasis. In this review, we focus on the current knowledge concerning the role of DDR in CSC and resistant cancer cells and describe the existing opportunities of re-sensitizing such cells to modulate therapeutic treatment effects.
Collapse
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia; Vall D'Hebron Institut de Recerca, 08035, Barcelona, Spain.
| |
Collapse
|
24
|
Liu Y, Zhang Z, Zhang L, Zhong Z. Cytoplasmic APE1 promotes resistance response in osteosarcoma patients with cisplatin treatment. Cell Biochem Funct 2020; 38:195-203. [PMID: 31930546 DOI: 10.1002/cbf.3461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/02/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022]
Abstract
Chemotherapy resistance has become a hold back and major clinical challenge in osteosarcoma cancer. The alteration and subcellular distribution of apurinic/apyrimidinic endonuclease 1 (APE1) has been reported to be involved in chemotherapy resistance in many cancers. Here, we report that the cytoplasmic distribution of APE1 plays a key role in the sensitivity of combination platinum chemotherapy in osteosarcoma. Interestingly, the prevalence of cisplatin-induced DNA damage and apoptosis in low cytoplasmic APE1 osteosarcoma cell lines was higher than in high expression of cytoplasmic APE1 cell lines. Overexpression of cytoplasmic APE1 protected the osteosarcoma cells from CDDP-induced apoptosis. In addition, clinical data also show that the level of cytoplasmic APE1 was negatively associated with sensitivity to combination chemotherapy of cisplatin in osteosarcoma patients. Our findings suggest that cytoplasmic APE1 plays a significant role in chemotherapy resistance. This role is a supplement to the extranuclear function of APE1, and cytoplasmic APE1 expression level could be a promising predictor of platinum treatment prognosis for osteosarcoma patients.
Collapse
Affiliation(s)
- Yufeng Liu
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhimin Zhang
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Liang Zhang
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhaoyang Zhong
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|
25
|
Codrich M, Comelli M, Malfatti MC, Mio C, Ayyildiz D, Zhang C, Kelley MR, Terrosu G, Pucillo CEM, Tell G. Inhibition of APE1-endonuclease activity affects cell metabolism in colon cancer cells via a p53-dependent pathway. DNA Repair (Amst) 2019; 82:102675. [PMID: 31450087 PMCID: PMC7092503 DOI: 10.1016/j.dnarep.2019.102675] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Abstract
The pathogenesis of colorectal cancer (CRC) involves different mechanisms, such as genomic and microsatellite instabilities. Recently, a contribution of the base excision repair (BER) pathway in CRC pathology has been emerged. In this context, the involvement of APE1 in the BER pathway and in the transcriptional regulation of genes implicated in tumor progression strongly correlates with chemoresistance in CRC and in more aggressive cancers. In addition, the APE1 interactome is emerging as an important player in tumor progression, as demonstrated by its interaction with Nucleophosmin (NPM1). For these reasons, APE1 is becoming a promising target in cancer therapy and a powerful prognostic and predictive factor in several cancer types. Thus, specific APE1 inhibitors have been developed targeting: i) the endonuclease activity; ii) the redox function and iii) the APE1-NPM1 interaction. Furthermore, mutated p53 is a common feature of advanced CRC. The relationship between APE1 inhibition and p53 is still completely unknown. Here, we demonstrated that the inhibition of the endonuclease activity of APE1 triggers p53-mediated effects on cell metabolism in HCT-116 colon cancer cell line. In particular, the inhibition of the endonuclease activity, but not of the redox function or of the interaction with NPM1, promotes p53 activation in parallel to sensitization of p53-expressing HCT-116 cell line to genotoxic treatment. Moreover, the endonuclease inhibitor affects mitochondrial activity in a p53-dependent manner. Finally, we demonstrated that 3D organoids derived from CRC patients are susceptible to APE1-endonuclease inhibition in a p53-status correlated manner, recapitulating data obtained with HCT-116 isogenic cell lines. These findings suggest the importance of further studies aimed at testing the possibility to target the endonuclease activity of APE1 in CRC.
Collapse
Affiliation(s)
- Marta Codrich
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Marina Comelli
- Laboratory of Bioenergetics, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Catia Mio
- Institute of Medical Genetics, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Dilara Ayyildiz
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and Pharmacology & Toxicology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Giovanni Terrosu
- General Surgery and Transplantation Unit, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Carlo E M Pucillo
- Laboratory of Immunology, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, 33100, Italy.
| |
Collapse
|
26
|
Manoel-Caetano FS, Rossi AFT, Calvet de Morais G, Severino FE, Silva AE. Upregulation of the APE1 and H2AX genes and miRNAs involved in DNA damage response and repair in gastric cancer. Genes Dis 2019; 6:176-184. [PMID: 31194025 PMCID: PMC6545450 DOI: 10.1016/j.gendis.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer remains one of the leading causes of cancer-related death worldwide, and most of the cases are associated with Helicobacter pylori infection. This bacterium promotes the production of reactive oxygen species (ROS), which cause DNA damage in gastric epithelial cells. In this study, we evaluated the expression of important genes involved in the recognition of DNA damage (ATM, ATR, and H2AX) and ROS-induced damage repair (APE1) and the expression of some miRNAs (miR-15a, miR-21, miR-24, miR-421 and miR-605) that target genes involved in the DNA damage response (DDR) in 31 fresh tissues of gastric cancer. Cytoscape v3.1.1 was used to construct the postulated miRNA:mRNA interaction network. Analysis performed by real-time quantitative PCR exhibited significantly increased levels of the APE1 (RQ = 2.55, p < 0.0001) and H2AX (RQ = 2.88, p = 0.0002) genes beyond the miR-421 and miR-605 in the gastric cancer samples. In addition, significantly elevated levels of miR-21, miR-24 and miR-421 were observed in diffuse-type gastric cancer. Correlation analysis reinforced some of the gene:gene (ATM/ATR/H2AX) and miRNA:mRNA relationships obtained also with the interaction network. Thus, our findings show that tumor cells from gastric cancer presents deregulation of genes and miRNAs that participate in the recognition and repair of DNA damage, which could confer an advantage to cell survival and proliferation in the tumor microenvironment.
Collapse
Affiliation(s)
- Fernanda S Manoel-Caetano
- Department of Biology, UNESP, São Paulo State University, Campus of São José do Rio Preto, Rua Cristóvão Colombo, 2265, 15.054-000, São José do Rio Preto, São Paulo, Brazil
| | - Ana Flávia T Rossi
- Department of Biology, UNESP, São Paulo State University, Campus of São José do Rio Preto, Rua Cristóvão Colombo, 2265, 15.054-000, São José do Rio Preto, São Paulo, Brazil
| | - Gabriela Calvet de Morais
- Department of Biology, UNESP, São Paulo State University, Campus of São José do Rio Preto, Rua Cristóvão Colombo, 2265, 15.054-000, São José do Rio Preto, São Paulo, Brazil
| | - Fábio Eduardo Severino
- Department of Surgery and Orthopedics, Faculty of Medicine, UNESP, São Paulo State University, Campus of Botucatu, Av. Prof. Mário Rubens Guimarães Montenegro, s/n, 18.618-687, Botucatu, São Paulo, Brazil
| | - Ana Elizabete Silva
- Department of Biology, UNESP, São Paulo State University, Campus of São José do Rio Preto, Rua Cristóvão Colombo, 2265, 15.054-000, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
27
|
Sardar Pasha SPB, Sishtla K, Sulaiman RS, Park B, Shetty T, Shah F, Fishel ML, Wikel JH, Kelley MR, Corson TW. Ref-1/APE1 Inhibition with Novel Small Molecules Blocks Ocular Neovascularization. J Pharmacol Exp Ther 2018; 367:108-118. [PMID: 30076264 DOI: 10.1124/jpet.118.248088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/01/2018] [Indexed: 01/11/2023] Open
Abstract
Ocular neovascular diseases like wet age-related macular degeneration are a major cause of blindness. Novel therapies are greatly needed for these diseases. One appealing antiangiogenic target is reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1). This protein can act as a redox-sensitive transcriptional activator for nuclear factor (NF)-κB and other proangiogenic transcription factors. An existing inhibitor of Ref-1's function, APX3330, previously showed antiangiogenic effects. Here, we developed improved APX3330 derivatives and assessed their antiangiogenic activity. We synthesized APX2009 and APX2014 and demonstrated enhanced inhibition of Ref-1 function in a DNA-binding assay compared with APX3330. Both compounds were antiproliferative against human retinal microvascular endothelial cells (HRECs; GI50 APX2009: 1.1 μM, APX2014: 110 nM) and macaque choroidal endothelial cells (Rf/6a; GI50 APX2009: 26 μM, APX2014: 5.0 μM). Both compounds significantly reduced the ability of HRECs and Rf/6a cells to form tubes at mid-nanomolar concentrations compared with control, and both significantly inhibited HREC and Rf/6a cell migration in a scratch wound assay, reducing NF-κB activation and downstream targets. Ex vivo, APX2009 and APX2014 inhibited choroidal sprouting at low micromolar and high nanomolar concentrations, respectively. In the laser-induced choroidal neovascularization mouse model, intraperitoneal APX2009 treatment significantly decreased lesion volume by 4-fold compared with vehicle (P < 0.0001, ANOVA with Dunnett's post-hoc tests), without obvious intraocular or systemic toxicity. Thus, Ref-1 inhibition with APX2009 and APX2014 blocks ocular angiogenesis in vitro and ex vivo, and APX2009 is an effective systemic therapy for choroidal neovascularization in vivo, establishing Ref-1 inhibition as a promising therapeutic approach for ocular neovascularization.
Collapse
Affiliation(s)
- Sheik Pran Babu Sardar Pasha
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Kamakshi Sishtla
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Rania S Sulaiman
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Bomina Park
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Trupti Shetty
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Fenil Shah
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Melissa L Fishel
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - James H Wikel
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Mark R Kelley
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| | - Timothy W Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology (S.P.B.S.P., K.S., R.S.S., B.P., T.S., T.W.C.), Department of Pharmacology and Toxicology (R.S.S., B.P., T.S., M.L.F., M.R.K., T.W.C.), Department of Biochemistry and Molecular Biology (M.R.K., T.W.C.), Herman B Wells Center for Pediatric Research, Department of Pediatrics (F.S., M.L.F., M.R.K.), and Melvin and Bren Simon Cancer Center (M.L.F., M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana; and Apexian Pharmaceuticals (J.H.W.), Indianapolis, Indiana
| |
Collapse
|
28
|
Shah F, Goossens E, Atallah NM, Grimard M, Kelley MR, Fishel ML. APE1/Ref-1 knockdown in pancreatic ductal adenocarcinoma - characterizing gene expression changes and identifying novel pathways using single-cell RNA sequencing. Mol Oncol 2017; 11:1711-1732. [PMID: 28922540 PMCID: PMC5709621 DOI: 10.1002/1878-0261.12138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1 or APE1) is a multifunctional protein that regulates numerous transcription factors associated with cancer-related pathways. Because APE1 is essential for cell viability, generation of APE1-knockout cell lines and determining a comprehensive list of genes regulated by APE1 has not been possible. To circumvent this challenge, we utilized single-cell RNA sequencing to identify differentially expressed genes (DEGs) in relation to APE1 protein levels within the cell. Using a straightforward yet novel statistical design, we identified 2837 genes whose expression is significantly changed following APE1 knockdown. Using this gene expression profile, we identified multiple new pathways not previously linked to APE1, including the EIF2 signaling and mechanistic target of Rapamycin pathways and a number of mitochondrial-related pathways. We demonstrate that APE1 has an effect on modifying gene expression up to a threshold of APE1 expression, demonstrating that it is not necessary to completely knockout APE1 in cells to accurately study APE1 function. We validated the findings using a selection of the DEGs along with siRNA knockdown and qRT-PCR. Testing additional patient-derived pancreatic cancer cells reveals particular genes (ITGA1, TNFAIP2, COMMD7, RAB3D) that respond to APE1 knockdown similarly across all the cell lines. Furthermore, we verified that the redox function of APE1 was responsible for driving gene expression of mitochondrial genes such as PRDX5 and genes that are important for proliferation such as SIPA1 and RAB3D by treating with APE1 redox-specific inhibitor, APX3330. Our study identifies several novel genes and pathways affected by APE1, as well as tumor subtype specificity. These findings will allow for hypothesis-driven approaches to generate combination therapies using, for example, APE1 inhibitor APX3330 with other approved FDA drugs in an innovative manner for pancreatic and other cancer treatments.
Collapse
Affiliation(s)
- Fenil Shah
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emery Goossens
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Nadia M Atallah
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Michelle Grimard
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark R Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa L Fishel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
29
|
Abstract
Reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease (Ref-1/APE1) is a critical node in tumor cells, both as a redox regulator of transcription factor activation and as part of the DNA damage response. As a redox signaling protein, Ref-1/APE1 enhances the transcriptional activity of STAT3, HIF-1α, nuclear factor kappa B, and other transcription factors to promote growth, migration, and survival in tumor cells as well as inflammation and angiogenesis in the tumor microenvironment. Ref-1/APE1 is activated in a variety of cancers, including prostate, colon, pancreatic, ovarian, lung and leukemias, leading to increased aggressiveness. Transcription factors downstream of Ref-1/APE1 are key contributors to many cancers, and Ref-1/APE1 redox signaling inhibition slows growth and progression in a number of tumor types. Ref-1/APE1 inhibition is also highly effective when paired with other drugs, including standard-of-care therapies and therapies targeting pathways affected by Ref-1/APE1 redox signaling. Additionally, Ref-1/APE1 plays a role in a variety of other indications, such as retinopathy, inflammation, and neuropathy. In this review, we discuss the functional consequences of activation of the Ref-1/APE1 node in cancer and other diseases, as well as potential therapies targeting Ref-1/APE1 and related pathways in relevant diseases. APX3330, a novel oral anticancer agent and the first drug to target Ref-1/APE1 for cancer is entering clinical trials and will be explored in various cancers and other diseases bringing bench discoveries to the clinic.
Collapse
|
30
|
Pinzón-Daza ML, Cuellar-Saenz Y, Nualart F, Ondo-Mendez A, Del Riesgo L, Castillo-Rivera F, Garzón R. Oxidative Stress Promotes Doxorubicin-Induced Pgp and BCRP Expression in Colon Cancer Cells Under Hypoxic Conditions. J Cell Biochem 2017; 118:1868-1878. [PMID: 28106284 DOI: 10.1002/jcb.25890] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/18/2017] [Indexed: 12/26/2022]
Abstract
P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) are ATP binding cassette (ABC) transporters that are overexpressed in different drug-resistant cancer cell lines. In this study, we investigated whether doxorubicin promotes Pgp and/or BCRP expression to induce drug resistance in colon cancer cells under hypoxic conditions. We analyzed HIF-1α activity via ELISA, Pgp, and BCRP expression by qRT-PCR and the relationship between doxorubicin uptake and ABC transporter expression via confocal microscopy in HT-29WT and HT-29 doxorubicin-resistant colon cancer cells (HT-29DxR). These cells were treated with doxorubicin and/or CoCl2 (chemical hypoxia), and reactive oxygen species inductors. We found that the combination of chemically induced hypoxia and doxorubicin promoted Pgp mRNA expression within 24 h in HT-29WT and HT-29DxR cells. Both doxorubicin and CoCl2 alone or in combination induced Pgp and BCRP expression, as demonstrated via confocal microscopy in each of the above two cell lines. Thus, we surmised that Pgp and BCRP expression may result from synergistic effects exerted by the combination of doxorubicin-induced ROS production and HIF-1α activity under hypoxic conditions. However, HIF-1α activity disruption via the administration of E3330, an APE-1 inhibitor, downregulated Pgp expression and increased doxorubicin delivery to HT-29 cells, where it served as a substrate for Pgp, indicating the existence of an indirect relationship between Pgp expression and doxorubicin accumulation. Thus, we concluded that Pgp and BCRP expression can be regulated via cross-talk between doxorubicin and hypoxia, promoting drug resistance in HT-29 WT, and HT-29DxR cells and that this process may be ROS dependent. J. Cell. Biochem. 118: 1868-1878, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martha L Pinzón-Daza
- Universidad del Rosario, Escuela de Medicina y Ciencias de la Salud, RG in Biochemistry and Biotechnology (BIO-BIO), Bogotá, Colombia
| | - Yenith Cuellar-Saenz
- Universidad del Rosario, Escuela de Medicina y Ciencias de la Salud, RG in Biochemistry and Biotechnology (BIO-BIO), Bogotá, Colombia
| | - Francisco Nualart
- Centro de Microscopía Avanzada (CMA)-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Alejandro Ondo-Mendez
- Universidad del Rosario, Escuela de Medicina y Ciencias de la Salud, RG in Biochemistry and Biotechnology (BIO-BIO), Bogotá, Colombia
| | - Lilia Del Riesgo
- Universidad del Rosario, Escuela de Medicina y Ciencias de la Salud, RG in Biochemistry and Biotechnology (BIO-BIO), Bogotá, Colombia
| | - Fabio Castillo-Rivera
- Universidad del Rosario, Escuela de Medicina y Ciencias de la Salud, RG in Biochemistry and Biotechnology (BIO-BIO), Bogotá, Colombia
| | - Ruth Garzón
- Universidad del Rosario, Escuela de Medicina y Ciencias de la Salud, RG in Biochemistry and Biotechnology (BIO-BIO), Bogotá, Colombia
| |
Collapse
|
31
|
Lyakhovich A, Lleonart ME. Bypassing Mechanisms of Mitochondria-Mediated Cancer Stem Cells Resistance to Chemo- and Radiotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:1716341. [PMID: 26697128 PMCID: PMC4677234 DOI: 10.1155/2016/1716341] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 01/03/2023]
Abstract
Cancer stem cells (CSCs) are highly resistant to conventional chemo- and radiotherapeutic regimes. Therefore, the multiple drug resistance (MDR) of cancer is most likely due to the resistance of CSCs. Such resistance can be attributed to some bypassing pathways including detoxification mechanisms of reactive oxygen and nitrogen species (RO/NS) formation or enhanced autophagy. Unlike in normal cells, where RO/NS concentration is maintained at certain threshold required for signal transduction or immune response mechanisms, CSCs may develop alternative pathways to diminish RO/NS levels leading to cancer survival. In this minireview, we will focus on elaborated mechanisms developed by CSCs to attenuate high RO/NS levels. Gaining a better insight into the mechanisms of stem cell resistance to chemo- or radiotherapy may lead to new therapeutic targets thus serving for better anticancer strategies.
Collapse
Affiliation(s)
- Alex Lyakhovich
- International Clinical Research Center, St. Anne's University Hospital, Masaryk University, Kamenice 5/A7, 625 00 Brno, Czech Republic
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Matilde E. Lleonart
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
32
|
Coskun E, Jaruga P, Reddy PT, Dizdaroglu M. Extreme Expression of DNA Repair Protein Apurinic/Apyrimidinic Endonuclease 1 (APE1) in Human Breast Cancer As Measured by Liquid Chromatography and Isotope Dilution Tandem Mass Spectrometry. Biochemistry 2015; 54:5787-90. [PMID: 26359670 DOI: 10.1021/acs.biochem.5b00928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a DNA repair protein and plays other important roles. Increased levels of APE1 in cancer have been reported. However, available methods for measuring APE1 levels are indirect and not quantitative. We previously developed an approach using liquid chromatography and tandem mass spectrometry with isotope dilution to accurately measure APE1 levels. Here, we applied this methodology to measure APE1 levels in normal and cancerous human breast tissues. Extreme expression of APE1 in malignant tumors was observed, suggesting that breast cancer cells may require APE1 for survival. Accurate measurement of APE1 may be essential for the development of novel treatment strategies and APE1 inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Erdem Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States.,Department of Toxicology, Faculty of Pharmacy, Gazi University , Ankara, Turkey
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - Prasad T Reddy
- Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| |
Collapse
|
33
|
Jiang S, Zhu L, Tang H, Zhang M, Chen Z, Fei J, Han B, Zou GM. Ape1 regulates WNT/β-catenin signaling through its redox functional domain in pancreatic cancer cells. Int J Oncol 2015; 47:610-20. [PMID: 26081414 DOI: 10.3892/ijo.2015.3048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/06/2015] [Indexed: 11/05/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (Ape1/Ref-1, Ape1) is a multifunctional protein that is upregulated in human pancreatic cancer. Ape1 redox domain plays an essential role in regulating the effects of reactive oxygen species (ROS) generated during physiological metabolism and pathological stress. In the present study, we explored whether Ape1 and ROS affect WNT/β-catenin signaling. We used E3330, a small molecule inhibitor of the redox activity of Ape1, and a siRNA approach to knock down Ape1, in two human pancreatic cancer cell lines. Inhibition of Ape1 resulted in growth suppression of pancreatic cancer cells, increased ROS levels, upregulation of β-catenin and c-myc and downregulation of cyclin D1. Consistent with these data, overexpression of Ape1 in pancreatic cancer cells reduced ROS and c-myc levels and increased cyclin D1 levels. Moreover, treatment of pancreatic cancer cells with H2O2 to induce oxidative stress resulted in upregulated ROS levels, decreased Ape1 at both the mRNA and protein level, and alterations in WNT/β-catenin pathway components. Finally, treatment of pancreatic cancer cells with the WNT/β-catenin inhibitor IWR-1 resulted in growth inhibition, which was greatly enhanced when combined with E3330 treatment. In summary, our results demonstrate that ROS is an important intracellular messenger that can modulate WNT/β‑catenin signaling. The present study provides interesting new insight into crosstalk between the redox function of Ape1 and WNT/β-catenin signaling in cancer cells. Furthermore, our data show that the combination of Ape1 and WNT inhibitors enhanced the inhibition of pancreatic cell proliferation. These results provide a promising novel therapeutic strategy for treating pancreatic cancer in future.
Collapse
Affiliation(s)
- Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lina Zhu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Haimei Tang
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Miaofeng Zhang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhihua Chen
- Xin Hua Hospital, Shanghai Key Laboratory for Pediatrics Gastroenterology and Nutrition, Shanghai Institute for Pediatrics Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Jian Fei
- Department of Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Baosan Han
- Department of Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Gang-Ming Zou
- Xin Hua Hospital, Shanghai Key Laboratory for Pediatrics Gastroenterology and Nutrition, Shanghai Institute for Pediatrics Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
34
|
Ren T, Shan J, Li M, Qing Y, Qian C, Wang G, Li Q, Lu G, Li C, Peng Y, Luo H, Zhang S, Yang Y, Cheng Y, Wang D, Zhou SF. Small-molecule BH3 mimetic and pan-Bcl-2 inhibitor AT-101 enhances the antitumor efficacy of cisplatin through inhibition of APE1 repair and redox activity in non-small-cell lung cancer. Drug Des Devel Ther 2015; 9:2887-910. [PMID: 26089640 PMCID: PMC4467754 DOI: 10.2147/dddt.s82724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AT-101 is a BH3 mimetic and pan-Bcl-2 inhibitor that has shown potent anticancer activity in non-small-cell lung cancer (NSCLC) in murine models, but failed to show clinical efficacy when used in combination with docetaxel in NSCLC patients. Our recent study has demonstrated that AT-101 enhanced the antitumor effect of cisplatin (CDDP) in a murine model of NSCLC via inhibition of the interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway. This study explored the underlying mechanisms for the enhanced anticancer activity of CDDP by AT-101. Our results show that, when compared with monotherapy, AT-101 significantly enhanced the inhibitory effects of CDDP on proliferation and migration of A549 cells and on tube formation and migration in human umbilical vein endothelial cells. AT-101 promoted the proapoptotic activity of CDDP in A549 cells. AT-101 also enhanced the inhibitory effect of CDDP on DNA repair and redox activities of apurinic/apyrimidinic endonuclease 1 (APE1) in A549 cells. In tumor tissues from nude mice treated with AT-101 plus CDDP or monotherapy, the combination therapy resulted in greater inhibition of angiogenesis and tumor cell proliferation than the monotherapy. These results suggest that AT-101 can enhance the antitumor activity of CDDP in NSCLC via inhibition of APE1 DNA repair and redox activities and by angiogenesis and induction of apoptosis, but other mechanisms cannot be excluded. We are now conducting a Phase II trial to examine the clinical efficacy and safety profile of combined use of AT-101 plus CDDP in advanced NSCLC patients.
Collapse
Affiliation(s)
- Tao Ren
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
- Department of Oncology, The Affiliated Hospital, North Sichuan Medical College, Sichuan, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Jinlu Shan
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yi Qing
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chengyuan Qian
- Department of Oncology, The 97 Hospital of PLA, Jiangsu, People’s Republic of China
| | - Guangjie Wang
- Cancer Diagnosis and Treatment Center, Military District General Hospital of Chengdu Military Region, Sichuan, People’s Republic of China
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Guoshou Lu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chongyi Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yu Peng
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Hao Luo
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Shiheng Zhang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yuxing Yang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yi Cheng
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|