1
|
Abdellatif AAH, Alshubrumi AS, Younis MA. Targeted Nanoparticles: the Smart Way for the Treatment of Colorectal Cancer. AAPS PharmSciTech 2024; 25:23. [PMID: 38267656 DOI: 10.1208/s12249-024-02734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Colorectal cancer (CRC) is a widespread cancer that starts in the digestive tract. It is the third most common cause of cancer deaths around the world. The World Health Organization (WHO) estimates an expected death toll of over 1 million cases annually. The limited therapeutic options as well as the drawbacks of the existing therapies necessitate the development of non-classic treatment approaches. Nanotechnology has led the evolution of valuable drug delivery systems thanks to their ability to control drug release and precisely target a wide variety of cancers. This has also been extended to the treatment of CRC. Herein, we shed light on the pertinent research that has been performed on the potential applications of nanoparticles in the treatment of CRC. The various types of nanoparticles in addition to their properties, applications, targeting approaches, merits, and demerits are discussed. Furthermore, innovative therapies for CRC, including gene therapies and immunotherapies, are also highlighted. Eventually, the research gaps, the clinical potential of such delivery systems, and a future outlook on their development are inspired.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452, Buraydah, Al Qassim, Saudi Arabia.
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| | | | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
2
|
Brisset M, Mehlen P, Meurette O, Hollande F. Notch receptor/ligand diversity: contribution to colorectal cancer stem cell heterogeneity. Front Cell Dev Biol 2023; 11:1231416. [PMID: 37860822 PMCID: PMC10582728 DOI: 10.3389/fcell.2023.1231416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Cancer cell heterogeneity is a key contributor to therapeutic failure and post-treatment recurrence. Targeting cell subpopulations responsible for chemoresistance and recurrence seems to be an attractive approach to improve treatment outcome in cancer patients. However, this remains challenging due to the complexity and incomplete characterization of tumor cell subpopulations. The heterogeneity of cells exhibiting stemness-related features, such as self-renewal and chemoresistance, fuels this complexity. Notch signaling is a known regulator of cancer stem cell (CSC) features in colorectal cancer (CRC), though the effects of its heterogenous signaling on CRC cell stemness are only just emerging. In this review, we discuss how Notch ligand-receptor specificity contributes to regulating stemness, self-renewal, chemoresistance and cancer stem cells heterogeneity in CRC.
Collapse
Affiliation(s)
- Morgan Brisset
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Patrick Mehlen
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Olivier Meurette
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Frédéric Hollande
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Ezenkwa US, Ogun GO, Mashor MI, Ogunbiyi OJ. EpCAM expression negatively regulates E-cadherin function in colorectal carcinomas. Ecancermedicalscience 2023; 17:1569. [PMID: 37533952 PMCID: PMC10393316 DOI: 10.3332/ecancer.2023.1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 08/04/2023] Open
Abstract
Background This study aimed to characterise epithelial cell adhesion molecule (EpCAM) expression patterns in colorectal carcinomas (CRC) from Nigerian patients, its association with E-cadherin and tumour characteristics, to forecast patient selection for anti-EpCAM therapy among whom no data existed previously. Methods Tissue microarray blocks of formalin-fixed and paraffin-embedded CRC tissues, with their non-cancer margins of resection, were sectioned and stained with EpCAM and E-cadherin primary antibodies. Scoring for antibody staining was done semiquantitatively by combining staining proportion and intensity. The outcome was correlated with patient age, gender and tumour histological parameters with p ≤ 0.05 regarded as statistically significant. Results Sixty-three carcinoma tissues had staining status for the two markers and were included in this study. Of these, 36 (57.1%) showed positive EpCAM expression (immunoscore ≥3) out of which 83% (30/36 positive cases) were overexpressed (combined immunoscore ≥4) while 12 (19%) tissues were positive for E-cadherin. Non-tumour margins of resection tissues showed less EpCAM positivity in 24% (6/25) of histospots. The difference in staining between tumour and non-tumour margin tissues with EpCAM was significant (p < 0.001). Also, EpCAM overexpression was significantly associated with reduced E-cadherin (p < 0.035) expression in tumour cells. Tumour extent within the gut wall was equal (50% each) for early and late pT stages among EpCAM overexpressing tumours but two-thirds (8/12) of cases expressing E-cadherin had later pT stage paradoxically, while distant metastasis was negligible among tumours bearing both markers. Also, tumours overexpressing EpCAM had significant association with tumour-associated lymphocytes (p < 0.02 each). Conclusion CRC in this study preferentially overexpress EpCAM over E-cadherin whose strong cell-cell contact inhibitory role is weakened even when expressed, resulting in further local tumour spread. This, and the observed immune response, supports targeted therapy among eligible patients.
Collapse
Affiliation(s)
- Uchenna Simon Ezenkwa
- Federal Medical Centre Azare, Azare 751101, Bauchi, Nigeria
- https://orcid.org/0000-0002-7022-8268
| | - Gabriel Olabiyi Ogun
- Department of Pathology, University College Hospital, Ibadan 200285, Oyo, Nigeria
| | - Mbwas Isaac Mashor
- Department of Pathology, Bringham University, Jos 930105, Plateau, Nigeria
| | - Olufemi John Ogunbiyi
- Department of Pathology, University College Hospital, Ibadan 200285, Oyo, Nigeria
- https://orcid.org/0000-0002-8748-2879
| |
Collapse
|
4
|
Yehya A, Youssef J, Hachem S, Ismael J, Abou-Kheir W. Tissue-specific cancer stem/progenitor cells: Therapeutic implications. World J Stem Cells 2023; 15:323-341. [PMID: 37342220 PMCID: PMC10277968 DOI: 10.4252/wjsc.v15.i5.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/26/2023] Open
Abstract
Surgical resection, chemotherapy, and radiation are the standard therapeutic modalities for treating cancer. These approaches are intended to target the more mature and rapidly dividing cancer cells. However, they spare the relatively quiescent and intrinsically resistant cancer stem cells (CSCs) subpopulation residing within the tumor tissue. Thus, a temporary eradication is achieved and the tumor bulk tends to revert supported by CSCs' resistant features. Based on their unique expression profile, the identification, isolation, and selective targeting of CSCs hold great promise for challenging treatment failure and reducing the risk of cancer recurrence. Yet, targeting CSCs is limited mainly by the irrelevance of the utilized cancer models. A new era of targeted and personalized anti-cancer therapies has been developed with cancer patient-derived organoids (PDOs) as a tool for establishing pre-clinical tumor models. Herein, we discuss the updated and presently available tissue-specific CSC markers in five highly occurring solid tumors. Additionally, we highlight the advantage and relevance of the three-dimensional PDOs culture model as a platform for modeling cancer, evaluating the efficacy of CSC-based therapeutics, and predicting drug response in cancer patients.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Sana Hachem
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jana Ismael
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
5
|
Omar FA, Brown TC, Gillanders WE, Fleming TP, Smith MA, Bremner RM, Sankpal NV. Cytosolic EpCAM cooperates with H-Ras to regulate epithelial to mesenchymal transition through ZEB1. PLoS One 2023; 18:e0285707. [PMID: 37192201 PMCID: PMC10187930 DOI: 10.1371/journal.pone.0285707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
Next generation sequencing of human cancer mutations has identified novel therapeutic targets. Activating Ras oncogene mutations play a central role in oncogenesis, and Ras-driven tumorigenesis upregulates an array of genes and signaling cascades that can transform normal cells into tumor cells. In this study, we investigated the role of altered localization of epithelial cell adhesion molecule (EpCAM) in Ras-expressing cells. Analysis of microarray data demonstrated that Ras expression induced EpCAM expression in normal breast epithelial cells. Fluorescent and confocal microscopy showed that H-Ras mediated transformation also promoted epithelial-to-mesenchymal transition (EMT) together with EpCAM. To consistently localize EpCAM in the cytosol, we generated a cancer-associated EpCAM mutant (EpCAM-L240A) that is retained in the cytosol compartment. Normal MCF-10A cells were transduced with H-Ras together with EpCAM wild-type (WT) or EpCAM-L240A. WT-EpCAM marginally effected invasion, proliferation, and soft agar growth. EpCAM-L240A, however, markedly altered cells and transformed to mesenchymal phenotype. Ras-EpCAM-L240A expression also promoted expression of EMT factors FRA1, ZEB1 with inflammatory cytokines IL-6, IL-8, and IL1. This altered morphology was reversed using MEK-specific inhibitors and to some extent JNK inhibition. Furthermore, these transformed cells were sensitized to apoptosis using paclitaxel and quercetin, but not other therapies. For the first time, we have demonstrated that EpCAM mutations can cooperate with H-Ras and promote EMT. Collectively, our results highlight future therapeutic opportunities in EpCAM and Ras mutated cancers.
Collapse
Affiliation(s)
- Fatma A. Omar
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Taylor C. Brown
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - William E. Gillanders
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Timothy P. Fleming
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Michael A. Smith
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Ross M. Bremner
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Narendra V. Sankpal
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| |
Collapse
|
6
|
SNAI2 Attenuated the Stem-like Phenotype by Reducing the Expansion of EPCAM high Cells in Cervical Cancer Cells. Int J Mol Sci 2023; 24:ijms24021062. [PMID: 36674577 PMCID: PMC9864029 DOI: 10.3390/ijms24021062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
SNAI2 (Snai2) is a zinc-finger transcriptional repressor that belongs to the Snail family. The accumulated evidence suggests that SNAI2 exhibits biphasic effects on regulating a stem-like phenotype in various types of cells, both normal and malignant. In this study, by exogenously expressing SNAI2 in SiHa cells, SNAI2 exhibited the capacity to inhibit a stem-like phenotype in cervical cancer cells. The SNAI2-overexpressing cells inhibited cell growth, tumorsphere formation, tumor growth, enhanced sensitivity to cisplatin, reduced stem cell-related factors' expression, and lowered tumor initiating frequency. In addition, the EPCAMhigh cells sorted from SiHa cells exhibited an enhanced capacity to maintain a stem-like phenotype. Further study demonstrated that the trans-suppression of EPCAM expression by SNAI2 led to blockage of the nuclear translocation of β-catenin, as well as reduction in SOX2 and c-Myc expression in SiHa and HeLa cells, but induction in SNAI2 knockdown cells (CaSki), which would be responsible for the attenuation of the stem-like phenotype in cervical cancer cells mediated by SNAI2. All of these results demonstrated that SNAI2 could attenuate the stem-like phenotype in cervical cancer cells through the EPCAM/β-catenin axis.
Collapse
|
7
|
Lyu N, Pedersen B, Shklovskaya E, Rizos H, Molloy MP, Wang Y. SERS characterization of colorectal cancer cell surface markers upon anti-EGFR treatment. EXPLORATION (BEIJING, CHINA) 2022; 2:20210176. [PMID: 37323700 PMCID: PMC10190927 DOI: 10.1002/exp.20210176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/11/2022] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the third most diagnosed and the second lethal cancer worldwide. Approximately 30-50% of CRC are driven by mutations in the KRAS oncogene, which is a strong negative predictor for response to anti-epidermal growth factor receptor (anti-EGFR) therapy. Examining the phenotype of KRAS mutant and wild-type (WT) CRC cells in response to anti-EGFR treatment may provide significant insights into drug response and resistance. Herein, surface-enhanced Raman spectroscopy (SERS) assay was applied to phenotype four cell surface proteins (EpCAM, EGFR, HER2, HER3) in KRAS mutant (SW480) and WT (SW48) cells over a 24-day time course of anti-EGFR treatment with cetuximab. Cell phenotypes were obtained using Raman reporter-coated and antibody-conjugated gold nanoparticles (SERS nanotags), where a characteristic Raman spectrum was generated upon single laser excitation, reflecting the presence of the targeted surface marker proteins. Compared to the KRAS mutant cells, KRAS WT cells were more sensitive to anti-EGFR treatment and displayed a significant decrease in HER2 and HER3 expression. The SERS results were validated with flow cytometry, confirming the SERS assay is promising as an alternative method for multiplexed characterization of cell surface biomarkers using a single laser excitation system.
Collapse
Affiliation(s)
- Nana Lyu
- ARC Center of Excellence for Nanoscale BioPhotonics and School of Natural Sciences, Faculty of Science and EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | - Bernadette Pedersen
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Elena Shklovskaya
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Mark P. Molloy
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, Kolling InstituteThe University of SydneySydneyNew South WalesAustralia
| | - Yuling Wang
- ARC Center of Excellence for Nanoscale BioPhotonics and School of Natural Sciences, Faculty of Science and EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
8
|
Kalantari E, Taheri T, Fata S, Abolhasani M, Mehrazma M, Madjd Z, Asgari M. Significant co-expression of putative cancer stem cell markers, EpCAM and CD166, correlates with tumor stage and invasive behavior in colorectal cancer. World J Surg Oncol 2022; 20:15. [PMID: 35016698 PMCID: PMC8751119 DOI: 10.1186/s12957-021-02469-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The crucial oncogenic role of cancer stem cells (CSCs) in tumor maintenance, progression, drug resistance, and relapse has been clarified in different cancers, particularly in colorectal cancer (CRC). The current study was conducted to evaluate the co-expression pattern and clinical significance of epithelial cell adhesion molecules (EpCAM) and activated leukocyte cell adhesion (CD166 or ALCAM) in CRC patients. METHODS This study was carried out on 458 paraffin-embedded CRC specimens by immunohistochemistry on tissue microarray (TMA) slides. RESULTS Elevated expression of EpCAM and CD166 was observed in 61.5% (246/427) and 40.5% (164/405) of CRC cases. Our analysis showed a significant positive association of EpCAM expression with tumor size (P = 0.02), tumor stage (P = 0.007), tumor differentiate (P = 0.005), vascular (P = 0.01), neural (P = 0.01), and lymph node (P = 0.001) invasion. There were no significant differences between CD166 expression and clinicopathological parameters. Moreover, the combined analysis demonstrated a reciprocal significant correlation between EpCAM and CD166 expression (P = 0.02). Interestingly, there was a significant positive correlation between EpCAM/CD166 phenotypes expression and tumor stage (P = 0.03), tumor differentiation (P = 0.05), neural, and lymph node invasion (P =0.01). CONCLUSIONS The significant correlation of EpCAM and CD166 expression and their association with tumor progression and aggressive behavior is the reason for the suggestion of these two CSC markers as promising targets to promote novel effective targeted-therapy strategies for cancer treatment in the present study.
Collapse
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Tahereh Taheri
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Fata
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Department of Pathology, Hasheminejad kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Mehrazma
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mojgan Asgari
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Department of Pathology, Hasheminejad kidney Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
AbdelMageed M, Ismail HTH, Olsson L, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. Clinical Significance of Stem Cell Biomarkers EpCAM, LGR5 and LGR4 mRNA Levels in Lymph Nodes of Colon Cancer Patients. Int J Mol Sci 2021; 23:403. [DOI: https:/doi.org/10.3390/ijms23010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
The significance of cancer stem cells (CSCs) in initiation and progression of colon cancer (CC) has been established. In this study, we investigated the utility of measuring mRNA expression levels of CSC markers EpCAM, LGR5 and LGR4 for predicting survival outcome in surgically treated CC patients. Expression levels were determined in 5 CC cell lines, 66 primary CC tumors and 382 regional lymph nodes of 121 CC patients. Prognostic relevance was determined using Kaplan-Meier survival and Cox regression analyses. CC patients with lymph nodes expressing high levels of EpCAM, LGR5 or LGR4 (higher than a clinical cutoff of 0.07, 0.06 and 2.558 mRNA copies/18S rRNA unit, respectively) had a decreased mean survival time of 32 months for EpCAM and 42 months for both LGR5 and LGR4 at a 12-year follow-up (p = 0.022, p = 0.005 and p = 0.011, respectively). Additional patients at risk for recurrence were detected when LGR5 was combined with the biomarkers CXCL17 or CEA plus CXCL16. In conclusion, the study underscores LGR5 as a particularly useful prognostic biomarker and illustrates the strength of combining biomarkers detecting different subpopulations of cancer cells and/or cells in the tumor microenvironment for predicting recurrence.
Collapse
|
10
|
Clinical Significance of Stem Cell Biomarkers EpCAM, LGR5 and LGR4 mRNA Levels in Lymph Nodes of Colon Cancer Patients. Int J Mol Sci 2021; 23:ijms23010403. [PMID: 35008827 PMCID: PMC8745090 DOI: 10.3390/ijms23010403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
The significance of cancer stem cells (CSCs) in initiation and progression of colon cancer (CC) has been established. In this study, we investigated the utility of measuring mRNA expression levels of CSC markers EpCAM, LGR5 and LGR4 for predicting survival outcome in surgically treated CC patients. Expression levels were determined in 5 CC cell lines, 66 primary CC tumors and 382 regional lymph nodes of 121 CC patients. Prognostic relevance was determined using Kaplan-Meier survival and Cox regression analyses. CC patients with lymph nodes expressing high levels of EpCAM, LGR5 or LGR4 (higher than a clinical cutoff of 0.07, 0.06 and 2.558 mRNA copies/18S rRNA unit, respectively) had a decreased mean survival time of 32 months for EpCAM and 42 months for both LGR5 and LGR4 at a 12-year follow-up (p = 0.022, p = 0.005 and p = 0.011, respectively). Additional patients at risk for recurrence were detected when LGR5 was combined with the biomarkers CXCL17 or CEA plus CXCL16. In conclusion, the study underscores LGR5 as a particularly useful prognostic biomarker and illustrates the strength of combining biomarkers detecting different subpopulations of cancer cells and/or cells in the tumor microenvironment for predicting recurrence.
Collapse
|
11
|
Silva VR, Santos LDS, Dias RB, Quadros CA, Bezerra DP. Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells. Cancer Commun (Lond) 2021; 41:1275-1313. [PMID: 34791817 PMCID: PMC8696218 DOI: 10.1002/cac2.12235] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most commonly diagnosed cancer and the second leading cause of cancer death worldwide. The modern concept of cancer biology indicates that cancer is formed of a small population of cells called cancer stem cells (CSCs), which present both pluripotency and self-renewal properties. These cells are considered responsible for the progression of the disease, recurrence and tumor resistance. Interestingly, some cell signaling pathways participate in CRC survival, proliferation, and self-renewal properties, and most of them are dysregulated in CSCs, including the Wingless (Wnt)/β-catenin, Notch, Hedgehog, nuclear factor kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), peroxisome proliferator-activated receptor (PPAR), phosphatidyl-inositol-3-kinase/Akt/mechanistic target of rapamycin (PI3K/Akt/mTOR), and transforming growth factor-β (TGF-β)/Smad pathways. In this review, we summarize the strategies for eradicating CRC stem cells by modulating these dysregulated pathways, which will contribute to the study of potential therapeutic schemes, combining conventional drugs with CSC-targeting drugs, and allowing better cure rates in anti-CRC therapy.
Collapse
Affiliation(s)
- Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Claudio A Quadros
- São Rafael Hospital, Rede D'Or/São Luiz, Salvador, Bahia, 41253-190, Brazil.,Bahia State University, Salvador, Bahia, 41150-000, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| |
Collapse
|
12
|
Profiling Colorectal Cancer in the Landscape Personalized Testing-Advantages of Liquid Biopsy. Int J Mol Sci 2021; 22:ijms22094327. [PMID: 33919272 PMCID: PMC8122648 DOI: 10.3390/ijms22094327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022] Open
Abstract
Drug-specific therapeutic approaches for colorectal cancer (CRC) have contributed to significant improvements in patient health. Nevertheless, there is still a great need to improve the personalization of treatments based on genetic and epigenetic tumor profiles to maximize the quality and efficacy while limiting cytotoxicity. Currently, CEA and CA 19-9 are the only validated blood biomarkers in clinical practice. For this reason, laboratories are trying to identify new specific prognostics and, more importantly, predictive biomarkers for CRC patient profiling. Thus, the unique landscape of personalized biomarker data should have a clinical impact on CRC treatment strategies and molecular genetic screening tests should become the standard method for diagnosing CRC. This review concentrates on recent molecular testing in CRC and discusses the potential modifications in CRC assay methodology with the upcoming clinical application of novel genomic approaches. While mechanisms for analyzing circulating tumor DNA have been proven too inaccurate, detecting and analyzing circulating tumor cells and protein analysis of exosomes represent more promising options. Blood liquid biopsy offers good prospects for the future if the results align with pathologists’ tissue analyses. Overall, early detection, accurate diagnosis and treatment monitoring for CRC with specific markers and targeted molecular testing may benefit many patients.
Collapse
|
13
|
Effect of Cetuximab-Conjugated Gold Nanoparticles on the Cytotoxicity and Phenotypic Evolution of Colorectal Cancer Cells. Molecules 2021; 26:molecules26030567. [PMID: 33499047 PMCID: PMC7865832 DOI: 10.3390/molecules26030567] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is estimated to be overexpressed in 60~80% of colorectal cancer (CRC), which is associated with a poor prognosis. Anti-EGFR targeted monoclonal antibodies (cetuximab and panitumumab) have played an important role in the treatment of metastatic CRC. However, the therapeutic response of anti-EGFR monoclonal antibodies is limited due to multiple resistance mechanisms. With the discovery of new functions for gold nanoparticles (AuNPs), we hypothesize that cetuximab-conjugated AuNPs (cetuximab-AuNPs) will not only improve the cytotoxicity for cancer cells, but also introduce expression change of the related biomarkers on cancer cell surface. In this contribution, we investigated the size-dependent cytotoxicity of cetuximab-AuNPs to CRC cell line (HT-29), while also monitored the expression of cell surface biomarkers in response to treatment with cetuximab and cetuximab-AuNPs. AuNPs with the size of 60 nm showed the highest impact for cell cytotoxicity, which was tested by cell counting kit-8 (CCK-8) assay. Three cell surface biomarkers including epithelial cell adhesion molecule (EpCAM), melanoma cell adhesion molecule (MCAM), and human epidermal growth factor receptor-3 (HER-3) were found to be expressed at higher heterogeneity when cetuximab was conjugated to AuNPs. Both surface-enhanced Raman scattering/spectroscopy (SERS) and flow cytometry demonstrated the correlation of cell surface biomarkers in response to the drug treatment. We thus believe this study provides powerful potential for drug-conjugated AuNPs to enhance cancer prognosis and therapy.
Collapse
|
14
|
Breast tumour cell subpopulations with expression of the MYC and OCT4 proteins. J Mol Histol 2020; 51:717-728. [PMID: 33037978 DOI: 10.1007/s10735-020-09917-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
The MYC and OCT4 genes are known factors associated with maintaining pluripotency and are linked with a more aggressive course, progression, and resistance to therapy in cancer. Determining the subpopulations of tumour cells expressing the Myc and Oct4 proteins will provide an opportunity to understand which tumour cell subpopulations expressing MYC and OCT4 are associated with metastasis and resistance and which subpopulations can be targeted by anti-MYC and anti-OCT4 therapy. The study included paraffin-embedded tissue from tumours from 27 patients with luminal B breast cancer obtained after neoadjuvant chemotherapy (NACT). Immunofluorescence staining was used to identify subpopulations of tumour cells expressing Myc, Oct4 and Snai2 (Opal™ 7-Color Kit (PerkinElmer, Hopkinton, MA). The following tumour cell subpopulations were identified with the Myc and Oct4 proteins and the Snai2 EMT marker: stem/progenitor tumour cells with/without Myc, Oct4 or Snai2 expression; differentiated tumour cells with/without Myc, Oct4 or Snai2 expression; and other nontumour cells (CK7-EpCAM-CD44+/-Myc+/-(Oct4, Snai2)+/-) within the inflammatory infiltrate in the tumour parenchyma and stroma. The circulating tumour cell subpopulations with Oct4 protein expression in the bloodstream were studied by flow cytometry. It was found that in patients with partial regression (PR) in response to NACT, the frequency of tumour stem cells was 3.6-fold increased (p = 0.038) in the non-EMT state (CK7+EpCam+CD44+Snai2-). In patients with metastases, there was a statistically significant 2.5-fold increase in the frequency of differentiated tumour cells with Myc expression (CK7+EpCam+CD44-Myc+) and a 2.7-fold increase in the frequency of cells with Oct4 expression (CK7+EpCam+CD44-OCT4+). In the next stage, the frequencies of subpopulations with expression of the Oct4 protein and signs of EMT among circulating tumour cells (CTCs) were determined. In patients with metastases, the frequency of tumour stem cells in the EMT state (CD326+CD44+CD24-CD325+) (p = 0.015) was more than fourfold increased, and the frequency of progenitor tumour cells with expression of the Oct4 stem protein (CD326+CD44+CD24+Oct4+) (p = 0.016) was almost sixfold higher than that in patients without metastases. Nonstem (differentiated) tumour cells with expression of the stemness proteins Myc and Oct4 were present in the breast tumour. Their content was significantly higher in residual tumours after NACT in patients who subsequently developed metastases compared with that in patients without metastases. Such cells are a new in situ marker of metastasis.
Collapse
|
15
|
Chen HN, Liang KH, Lai JK, Lan CH, Liao MY, Hung SH, Chuang YT, Chen KC, Tsuei WWF, Wu HC. EpCAM Signaling Promotes Tumor Progression and Protein Stability of PD-L1 through the EGFR Pathway. Cancer Res 2020; 80:5035-5050. [PMID: 32978170 DOI: 10.1158/0008-5472.can-20-1264] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/17/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022]
Abstract
Although epithelial cell adhesion molecule (EpCAM) has previously been shown to promote tumor progression, the underlying mechanisms remain largely unknown. Here, we report that the EGF-like domain I within the extracellular domain of EpCAM (EpEX) binds EGFR, activating both AKT and MAPK signaling to inhibit forkhead transcription factor O3a (FOXO3a) function and stabilize PD-L1 protein, respectively. Treatment with the EpCAM neutralizing antibody, EpAb2-6, inhibited AKT and FOXO3a phosphorylation, increased FOXO3a nuclear translocation, and upregulated high temperature requirement A2 (HtrA2) expression to promote apoptosis while decreasing PD-L1 protein levels to enhance the cytotoxic activity of CD8+ T cells. In vivo, EpAb2-6 markedly extended survival in mouse metastasis and orthotopic models of human colorectal cancer. The combination of EpAb2-6 with atezolizumab, an anti-PD-L1 antibody, almost completely eliminated tumors. Moreover, the number of CD8+ T cells in combination-treated tumors was increased compared with atezolizumab alone. Our findings suggest a new combination strategy for cancer immunotherapy in patients with EpCAM-expressing tumors. SIGNIFICANCE: This study shows that treatment with an EpCAM neutralizing antibody promotes apoptosis while decreasing PD-L1 protein to enhance cytotoxic activity of CD8+ T cells.
Collapse
Affiliation(s)
- Hao-Nien Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Kang-Hao Liang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Jun-Kai Lai
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Chun-Hsin Lan
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Mei-Ying Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Shao-Hsi Hung
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Yi-Ting Chuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Kai-Chi Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - William Wei-Fu Tsuei
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan.
| |
Collapse
|
16
|
Ma YS, Li W, Liu Y, Shi Y, Lin QL, Fu D. Targeting Colorectal Cancer Stem Cells as an Effective Treatment for Colorectal Cancer. Technol Cancer Res Treat 2020; 19:1533033819892261. [PMID: 32748700 PMCID: PMC7785997 DOI: 10.1177/1533033819892261] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As one of the common cancers that threaten human life, the recurrence and metastasis of colorectal cancer seriously affect the prognosis of patients. Although new drugs and comprehensive treatments have been adopted, the current treatment effect on this tumor, especially in advanced colorectal cancer, is still not satisfactory. More and more evidence shows that tumors are likely to be a stem cell disease. In recent years, the rise of cancer stem cell theory has provided a new way for cancer treatment. Studies have found that a small number of special cells in colorectal cancer tissues that induce tumorigenesis, proliferation, and promote tumor migration and metastasis, namely, colorectal cancer stem cells. Colorectal cancer stem cells are defined with a group of cell-surface markers, such as CD44, CD133, CD24, epithelial cell adhesion factor molecule, LGR5, and acetaldehyde dehydrogenase. They are highly tumorigenic, aggressive, and chemoresistant and thus are critical in the metastasis and recurrence of colorectal cancer. Therefore, targeting colorectal cancer stem cells may become an important research direction for the future cure of colorectal cancer.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Li
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yu Liu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Shi
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin-Lu Lin
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Da Fu
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Cancer Stem Cells: Acquisition, Characteristics, Therapeutic Implications, Targeting Strategies and Future Prospects. Stem Cell Rev Rep 2020; 15:331-355. [PMID: 30993589 DOI: 10.1007/s12015-019-09887-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since last two decades, the major cancer research has focused on understanding the characteristic properties and mechanism of formation of Cancer stem cells (CSCs), due to their ability to initiate tumor growth, self-renewal property and multi-drug resistance. The discovery of the mechanism of acquisition of stem-like properties by carcinoma cells via epithelial-mesenchymal transition (EMT) has paved a way towards a deeper understanding of CSCs and presented a possible avenue for the development of therapeutic strategies. In spite of years of research, various challenges, such as identification of CSC subpopulation, lack of appropriate experimental models, targeting cancer cells and CSCs specifically without harming normal cells, are being faced while dealing with CSCs. Here, we discuss the biology and characteristics of CSCs, mode of acquisition of stemness (via EMT) and development of multi-drug resistance, the role of tumor niche, the process of dissemination and metastasis, therapeutic implications of CSCs and necessity of targeting them. We emphasise various strategies being developed to specifically target CSCs, including those targeting biomarkers, key pathways and microenvironment. Finally, we focus on the challenges that need to be subdued and propose the aspects that need to be addressed in future studies in order to broaden the understanding of CSCs and develop novel strategies to eradicate them in clinical applications. Graphical Abstract Cancer Stem Cells(CSCs) have gained much attention in the last few decades due to their ability to initiate tumor growth and, self-renewal property and multi-drug resistance. Here, we represent the CSC model of cancer, Characteristics of CSCs, acquisition of stemness and metastatic dissemination of cancer, Therapeutic implications of CSCs and Various strategies being employed to target and eradicate CSCs.
Collapse
|
18
|
Mohamed SY, Kaf RM, Ahmed MM, Elwan A, Ashour HR, Ibrahim A. The Prognostic Value of Cancer Stem Cell Markers (Notch1, ALDH1, and CD44) in Primary Colorectal Carcinoma. J Gastrointest Cancer 2020; 50:824-837. [PMID: 30136202 DOI: 10.1007/s12029-018-0156-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cancer stem cells proved to have a vital role in cell migration, invasion, metastasis, and treatment resistance of colorectal cancer (CRC) that subsequently lead to poor clinical outcomes. These stem cells may be a novel therapeutic target for the management of CRC progression. Signals of the Notch-1 pathway are responsible for acquisition of stem cell characters. ALDH1 and CD44 are usually detected in stem cells in colorectal cancer. AIM The aims of this work are to evaluate the immunohistochemical expression of cancer stem cell markers ALDH1, Notch1, and CD44 in colorectal cancer and investigate their correlation with clinicopathological characters and patient survival. METHODS Paraffin-embedded specimens of 70 patients with primary colorectal carcinoma were analyzed for Notch 1, ALDH1, and CD44 expressions by immunohistochemistry. RESULTS Notch1 was mainly located in the cytoplasm of CRC tissues, rarely expressed in adjacent normal tissues. A highly statistically significant relationship was found between grading, lymphovascular invasion, the degree of lymphocytic infiltration, peritumoral budding, lymph node ratio, lymph node metastasis, and Notch1 expression (p < 0.001). There was a highly statistically significant relationship found between AJCC stage and Notch1 expression (p < 0.001). CD44 was mainly located in the cell membrane of CRC tissues. A highly statistically significant relationship was found between grading (p = 0.006), lymphovascular invasion, the degree of lymphocytic infiltration, peritumoral budding, lymph node metastasis, lymph node ratio, and CD44 expression (p < 0.001). There was a highly statistically significant relationship found between AJCC stage and CD44 expression (p < 0.001). ALDH1 was detected in the cytoplasm of the CRC tissue. A highly statistically significant relationship was found between grading, lymphovascular invasion, the degree of lymphocytic infiltration, peritumoral budding, lymph node metastasis, lymph node ratio, and ALDH1 expression (p < 0.001). There was a highly statistically significant relationship found between AJCC stage and ALDH1 expression (p < 0.001). There is a highly statistically significant direct correlation between Notch1, CD44 expression, and ALDH1 expression (p < 0.001). CONCLUSIONS There is a substantial correlation between Notch 1, ALDH1, and CD44 as cancer stem cell markers and lymph node metastasis, advanced stage and tumor recurrence in colorectal carcinoma. CONCLUSION Expression of stem cell markers ALDH1, Notch1, and CD44 correlates with poor prognosis in a CRC and represents an independent prognostic factor. They are associated with a feature of epithelial-mesenchymal transition evidenced by their association with high tumor burden.
Collapse
Affiliation(s)
- Salem Y Mohamed
- Gastroenterology and Hepatology Unit, Internal Medicine Department, Faculty of Medicine, Zagazig University, Faqous city, Markaz El-Zakazik, Ash Sharqia Governorate, 44519, Egypt.
| | - Randa Mohamed Kaf
- Department of Pathology, Faculty of Medicine, Zagazig University, Markaz El-Zakazik, Ash Sharqia Governorate, 44519, Egypt
| | - Mona Mostafa Ahmed
- Department of Pathology, Faculty of Medicine, Zagazig University, Markaz El-Zakazik, Ash Sharqia Governorate, 44519, Egypt
| | - Amira Elwan
- Department of Clinical Oncology, Faculty of Medicine, Zagazig University, Markaz El-Zakazik, Ash Sharqia Governorate, 44519, Egypt
| | - Hassan R Ashour
- Department of General Surgery, Faculty of Medicine, Zagazig University, Markaz El-Zakazik, Ash Sharqia Governorate, 44519, Egypt
| | - Amr Ibrahim
- Department of General Surgery, Faculty of Medicine, Zagazig University, Markaz El-Zakazik, Ash Sharqia Governorate, 44519, Egypt
| |
Collapse
|
19
|
Alhabbab RY. Targeting Cancer Stem Cells by Genetically Engineered Chimeric Antigen Receptor T Cells. Front Genet 2020; 11:312. [PMID: 32391048 PMCID: PMC7188929 DOI: 10.3389/fgene.2020.00312] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The term cancer stem cell (CSC) starts 25 years ago with the evidence that CSC is a subpopulation of tumor cells that have renewal ability and can differentiate into several distinct linages. Therefore, CSCs play crucial role in the initiation and the maintenance of cancer. Moreover, it has been proposed throughout several studies that CSCs are behind the failure of the conventional chemo-/radiotherapy as well as cancer recurrence due to their ability to resist the therapy and their ability to re-regenerate. Thus, the need for targeted therapy to eliminate CSCs is crucial; for that reason, chimeric antigen receptor (CAR) T cells has currently been in use with high rate of success in leukemia and, to some degree, in patients with solid tumors. This review outlines the most common CSC populations and their common markers, in particular CD133, CD90, EpCAM, CD44, ALDH, and EGFRVIII, the interaction between CSCs and the immune system, CAR T cell genetic engineering and signaling, CAR T cells in targeting CSCs, and the barriers in using CAR T cells as immunotherapy to treat solid cancers.
Collapse
Affiliation(s)
- Rowa Y. Alhabbab
- Division of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Mohtar MA, Syafruddin SE, Nasir SN, Yew LT. Revisiting the Roles of Pro-Metastatic EpCAM in Cancer. Biomolecules 2020; 10:biom10020255. [PMID: 32046162 PMCID: PMC7072682 DOI: 10.3390/biom10020255] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a cell surface protein that was discovered as a tumour marker of epithelial origins nearly four decades ago. EpCAM is expressed at basal levels in the basolateral membrane of normal epithelial cells. However, EpCAM expression is upregulated in solid epithelial cancers and stem cells. EpCAM can also be found in disseminated tumour cells and circulating tumour cells. Various OMICs studies have demonstrated that EpCAM plays roles in several key biological processes such as cell adhesion, migration, proliferation and differentiation. Additionally, EpCAM can be detected in the bodily fluid of cancer patients suggesting that EpCAM is a pathophysiologically relevant anti-tumour target as well as being utilized as a diagnostic/prognostic agent for a variety of cancers. This review will focus on the structure-features of EpCAM protein and discuss recent evidence on the pathological and physiological roles of EpCAM in modulating cell adhesion and signalling pathways in cancers as well as deliberating the clinical implication of EpCAM as a therapeutic target.
Collapse
|
21
|
Abstract
BACKGROUND Worldwide, gastric carcinoma (GC) is the 5th most common malignancies in both sexes representing 6.8% of the total fatalities and is the 3rd leading cause of cancer death representing 8.8% of total fatalities. In Egypt, GC considers the 12th leading cause of cancer death representing 2.2% of the total cancer mortality. A growing body of evidence supports that cancer stem cells (CSCs) are resistant to chemotherapy or radiation, and the cell adhesion molecule CD44 has been identified as a cell surface marker associated with cancer stem cell in several types of tumors including gastric cancer. CD44 regulates gastric stem cell proliferation by increasing cyclin D1 expression which represents an important regulatory protein in the cell cycle transition from G1 phase to S phase. This study aimed to investigate whether cyclin D1 and CD44 can be used as prognostic indicators in gastric cancer. MATERIAL AND METHODS Forty formalin-fixed and paraffin-embedded gastric tissues, obtained from patients who underwent endoscopic resection or surgical resection, constituted the group of our study. The immunohistochemical expression of cyclin D1 and CD44 was examined and correlated with clinical-pathological parameters and outcome of the patients. RESULTS Overexpression of CD44 and cyclin D1 was noted (in of 55 and 50% respectively). Cyclin D1 and CD44 positive expressions in GC were positively correlated with tumor differentiation (p = 0.020, p = 0.004 respectively), TNM stage (p < 0.001 for both), poor survival (p < 0.001 for both), and with increased rate of recurrence (p = 0.020, p = 0.005 respectively). CONCLUSION CD44 and cyclin D1 were associated with poor prognosis in gastric cancer, and so, they comprise an attractive target for anticancer drug development.
Collapse
|
22
|
Conciatori F, Bazzichetto C, Falcone I, Ferretti G, Cognetti F, Milella M, Ciuffreda L. Colorectal cancer stem cells properties and features: evidence of interleukin-8 involvement. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:968-979. [PMID: 35582268 PMCID: PMC9019202 DOI: 10.20517/cdr.2019.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) still remains a disease with high percentage of death, principally due to therapy resistance and metastasis. During the time the hypothesis has been reinforced that CRC stem cells (CRCSC) are involved in allowing intratumoral heterogeneity, drug escape mechanisms and secondary tumors. CRCSC are characterized by specific surface markers (i.e., CD44 and CD133), signaling pathways activation (i.e., Wnt and Notch) and gene expression (i.e., Oct4 and Snail), which confer to CRCSC self-renewal abilities and pluripotent capacity. Interleukin (IL)-8 is correlated to CRC progression, development of liver metastases and chemoresistance; moreover, IL-8 modulates not only stemness maintenance but also stemness promotion, such as epithelial-mesenchymal transition. This review wants to give a brief and up-to-date overview on IL-8 implication in CRCSC cues.
Collapse
Affiliation(s)
- Fabiana Conciatori
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Italia Falcone
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Gianluigi Ferretti
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona 37126, Italy
| | - Ludovica Ciuffreda
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy.,SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| |
Collapse
|
23
|
Allgayer H, Leupold JH, Patil N. Defining the "Metastasome": Perspectives from the genome and molecular landscape in colorectal cancer for metastasis evolution and clinical consequences. Semin Cancer Biol 2019; 60:1-13. [PMID: 31362074 DOI: 10.1016/j.semcancer.2019.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Metastasis still poses the highest challenge for personalized therapy in cancer, partly due to a still incomplete understanding of its molecular evolution. We recently presented the most comprehensive whole-genome study of colorectal metastasis vs. matched primary tumors and suggested novel components of disease progression and metastasis evolution, some of them potentially relevant for targeted therapy. In this review, we try to put these findings into perspective with latest discoveries of colleagues and recent literature, and propose a systematic international team effort to collectively define the "metastasome", a term we introduce to summarize all genomic, epigenomic, transcriptomic, further -omic, molecular and functional characteristics rendering metastases different from primary tumors. Based on recent discoveries, we propose a revised metastasis model for colorectal cancer which is based on a common ancestor clone, early dissemination but flexible early or late stage clonal separation paralleling stromal interactions. Furthermore, we discuss hypotheses on site-specific metastasis, colorectal cancer progression, metastasis-targeted diagnosis and therapy, and metastasis prevention based on latest metastasome data.
Collapse
Affiliation(s)
- Heike Allgayer
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Theodor Kutzer Ufer 1-3, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ludolf-Krehl-Str. 6, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany.
| | - Jörg H Leupold
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Theodor Kutzer Ufer 1-3, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ludolf-Krehl-Str. 6, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany
| | - Nitin Patil
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Theodor Kutzer Ufer 1-3, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ludolf-Krehl-Str. 6, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany
| |
Collapse
|
24
|
Vázquez-Iglesias L, Barcia-Castro L, Rodríguez-Quiroga M, Páez de la Cadena M, Rodríguez-Berrocal J, Cordero OJ. Surface expression marker profile in colon cancer cell lines and sphere-derived cells suggests complexity in CD26 + cancer stem cells subsets. Biol Open 2019; 8:bio.041673. [PMID: 31285270 PMCID: PMC6679411 DOI: 10.1242/bio.041673] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Taking advantage of eight established cell lines from colorectal cancer patients at different stages of the disease and the fact that all of them could form spheres, cell surface biomarkers of cancer stem cells and epithelial-mesenchymal transition were tested. The aim was to investigate cancer stem cells and metastatic stem cells in order to provide functional characterization of circulating tumor cells and promote the development of new anti-metastatic therapies. Our model showed an important heterogeneity in EpCAM, CD133, CD44, LGR5, CD26 and E-cadherin expression. We showed the presence of a subset of E-cadherin+ (some cells being E-cadherinhigh) expressing CD26+ (or CD26high) together with the well-known CSC markers LGR5 and EpCAMhigh, sometimes in the absence of CD44 or CD133. The already described CD26+/E-cadherinlow or negative and CD26+/EpCAM−/CD133− subsets were also present. Cell division drastically affected the expression of all markers, in particular E-cadherin, so new-born cells resembled mesenchymal cells in surface staining. CD26 and/or dipeptidyl peptidase 4 inhibitors have already shown anti-metastatic effects in pre-clinical models, and the existence of these CD26+ subsets may help further research against cancer metastasis. Summary: In our model of eight established cell lines from colorectal cancer patients we show the presence of different putative cancer stem cell (CSC) subsets with expression of CD26/DPP4.
Collapse
Affiliation(s)
- Lorena Vázquez-Iglesias
- Department of Biochemistry, Genetics and Immunology, Facultade de Bioloxía, Universidade de Vigo, 36200 Vigo, Galicia, Spain (EU)
| | - Leticia Barcia-Castro
- Department of Biochemistry, Genetics and Immunology, Facultade de Bioloxía, Universidade de Vigo, 36200 Vigo, Galicia, Spain (EU)
| | - Marta Rodríguez-Quiroga
- Department of Biochemistry, Genetics and Immunology, Facultade de Bioloxía, Universidade de Vigo, 36200 Vigo, Galicia, Spain (EU)
| | - María Páez de la Cadena
- Department of Biochemistry, Genetics and Immunology, Facultade de Bioloxía, Universidade de Vigo, 36200 Vigo, Galicia, Spain (EU)
| | - Javier Rodríguez-Berrocal
- Department of Biochemistry, Genetics and Immunology, Facultade de Bioloxía, Universidade de Vigo, 36200 Vigo, Galicia, Spain (EU)
| | - Oscar J Cordero
- Department of Biochemistry and Molecular Biology. CIBUS Building, Facultade de Bioloxía. Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain (EU)
| |
Collapse
|
25
|
Gupta R, Bhatt LK, Johnston TP, Prabhavalkar KS. Colon cancer stem cells: Potential target for the treatment of colorectal cancer. Cancer Biol Ther 2019; 20:1068-1082. [PMID: 31050577 DOI: 10.1080/15384047.2019.1599660] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite incessant research, colon cancer still is one of the most common causes of fatalities in both men and women worldwide. Also, nearly 50% of patients with colorectal cancer show tumor recurrence. Recent investigations have highlighted the involvement of colon cancer stem cells (CCSCs) in cancer relapse and chemoresistance. CCSCs deliver a significant protumorigenic niche through persistent overexpression of self-renewal capabilities. Moreover, CSCs cross network with stromal cells, immune infiltrates, and cyotokine-chemokine, which potentiate their aggressive proliferative potential. Targeting CCSCs through small molecule inhibitors, miRNAs, and monoclonal antibodies (mAbs) in in vivo studies has generated compelling evidence for the effectiveness of these various treatments. This review effectively compiles the role of CCSC surface markers and dysregulated and/or upregulated pathways in the pathogenesis of colorectal cancer that can be used to target CCSCs for effective colorectal cancer treatment.
Collapse
Affiliation(s)
- Riya Gupta
- a Department of Pharmacology , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| | - Lokesh Kumar Bhatt
- a Department of Pharmacology , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| | - Thomas P Johnston
- b Division of Pharmacology and Pharmaceutical Sciences , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Kedar S Prabhavalkar
- a Department of Pharmacology , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| |
Collapse
|
26
|
Pradhan T, Padmanabhan K, Prasad M, Chandramohan K, Nair SA. Augmented CD133 expression in distal margin correlates with poor prognosis in colorectal cancer. J Cell Mol Med 2019; 23:3984-3994. [PMID: 30950180 PMCID: PMC6533563 DOI: 10.1111/jcmm.14284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/08/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Pathological assessment of excised tumour and surgical margins in colorectal cancer (CRC) play crucial role in prognosis after surgery. Molecular assessment of margins could be more sensitive and informative than conventional histopathological analysis. Considering this view, we evaluated the distal surgical margins for expression of cancer stem cell (CSC) markers. Cellular and molecular assessment of normal, tumour and distal margin tissues were performed by flow cytometry, real-time q-PCR and immuno-histochemical analysis for CRC patients after tumour excision. CRC patients were evaluated for expression of CSC markers in their normal, tumour and distal tissues. Flow cytometry assay revealed CD133 and CD44 enriched cells in distal margin and tumour compared to normal colorectal tissues, which was further confirmed by immunohistochemistry. Most importantly, immunohistochemistry also revealed the enrichment of CSC markers expression in pathologically negative distal margins. Patients with distal margin enriched for CD133 expression showed an increased recurrence rate and decreased disease-free survival. This study proposes that although distal margin seems to be tumour free in conventional histopathological analysis, it could harbour cells enriched for CSC markers. Further CD133 could be a promising molecule to be used in molecular pathology for disease prognosis after surgery in CRC patients.
Collapse
Affiliation(s)
- Tapas Pradhan
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | | | - Manu Prasad
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - K Chandramohan
- Department of surgical oncology, Regional Cancer Centre, Trivandrum, Kerala, India
| | - S Asha Nair
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
27
|
Demystifying the Differences Between Tumor-Initiating Cells and Cancer Stem Cells in Colon Cancer. CURRENT COLORECTAL CANCER REPORTS 2018. [DOI: 10.1007/s11888-018-0421-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Dükel M, Tavsan Z, Erdogan D, Erkan Gök D, Ayar Kayali H. Protein kinase C Inhibitors selectively modulate dynamics of cell adhesion molecules and cell death in human colon cancer cells. Cell Adh Migr 2018; 13:83-97. [PMID: 30289336 PMCID: PMC6527378 DOI: 10.1080/19336918.2018.1530933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During development of colon cancer, Protein Kinase Cs (PKCs) are involved in regulation of many genes controlling several cellular mechanisms. Here, we examined the changes in cell adhesion molecules and PKCs for colorectal cancer progression. We identified that PKCs affected expression of EpCAM, claudins, tetraspanins. Treatment with low concentrations of PKC inhibitors resulted in decreased cell viability. In addition, immunoblotting and qRT-PCR analysis showed that apoptosis was inhibited while autophagy was induced by PKC inhibition in colon cancer cells. Furthermore, we observed decreased levels of intracellular Reactive Oxygen Species (ROS), lipid peroxidation and protein carbonyl, confirming the ROS-induced apoptosis. Taken together, our results reveal that PKC signalling modulates not only cell adhesion dynamics but also cell death-related mechanisms. Abbreviations: PKC: Protein Kinase C; EpCAM: Epithelial cell adhesion molecule; FBS: fetal bovine serum; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); CAM: cell adhesion molecule; ROS: reactive oxygen species.
Collapse
Affiliation(s)
- Muzaffer Dükel
- a Moleculer Biology and Genetic Department, Faculty of Art and Science , Mehmet Akif Ersoy University , Burdur , Turkey.,b Izmir Biomedicine and Genome Center , Izmir , Turkey
| | - Zehra Tavsan
- b Izmir Biomedicine and Genome Center , Izmir , Turkey
| | - Duygu Erdogan
- c Izmir International Biomedicine and Genome Institute , Dokuz Eylül University , Izmir , Turkey
| | | | - Hulya Ayar Kayali
- b Izmir Biomedicine and Genome Center , Izmir , Turkey.,d Biochemistry Division, Chemistry Department, Science Faculty , Dokuz Eylul University , Izmir , Turkey
| |
Collapse
|
29
|
Soltanian S, Riahirad H, Pabarja A, Jafari E, Khandani BK. Effect of Cinnamic acid and FOLFOX in diminishing side population and downregulating cancer stem cell markers in colon cancer cell line HT-29. Daru 2018; 26:10.1007/s40199-018-0210-8. [PMID: 30209760 PMCID: PMC6154487 DOI: 10.1007/s40199-018-0210-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
PURPOSE There is a lot of evidence suggesting that a small subset of cancer cells resistant to conventional chemotherapy and radiotherapy and known as cancer stem cells (CSCs) is responsible for promoting metastasis and cancer relapse. Therefore, targeting and eliminating the CSCs could lead to higher survival rates and a better quality of life. In comparison with conventional chemical drugs that may not be effective against CSCs, phytochemicals are strong anti-CSCs agents. The current study examines the effect of 5-fluorouracil plus oxaliplatin (FOLFOX) as a common chemotherapy drug on colorectal cancer as well as the influence of Cinnamic acid (CINN) as a plant-derived phytochemical on colon cancer stem-like cells in HT-29 adenocarcinoma cell line. METHODS The anti-proliferative effect of FOLFOX and CINN was determined using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Flow cytometry analysis was used for the identification of side population (SP), CD44, and CD133 positive cells. The expression of OCT4, NANOG, ABCB1, and ALDH1A was assessed by RT-PCR. RESULTS The FOLFOX and CINN decreased cell viability in certain drug concentrations: IC50 = 5,40 μM oxaliplatin +220 μM 5-fluorouracil, and 13,50 mM for CINN. The CSC-associated markers (OCT4, NANOG, ABCB1, and ALDH1A) and the proportion of cancer stem-like cells (SP cells, CD44, and CD133 positive cells) were downregulated following the treatment of HT-29 adenocarcinoma cell line with IC50 concentrations of FOLFOX and CINN. CONCLUSION Our data suggests that CINN, a naturally occurring component, could be more effective than FOLFOX treatment in reducing the cancer stem-like cells and expression of CSC markers from HT-29 colon cancer cells. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Helia Riahirad
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Athareh Pabarja
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Behjat Kalantari Khandani
- Department of Internal Medicine, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
30
|
Cui G, Xu G, Zhu L, Pang Z, Zheng W, Li Z, Yuan A. Temporal and spatial changes of cells positive for stem-like markers in different compartments and stages of human colorectal adenoma-carcinoma sequence. Oncotarget 2018; 8:45311-45322. [PMID: 28484082 PMCID: PMC5542188 DOI: 10.18632/oncotarget.17330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
Considerable evidence supports the idea that stem-like cells may play an essential role during the development of colorectal cancer (CRC). To accomplish this aim, we use immunohistochemistry (IHC) and double IHC with different potential stem-like markers, anti-musashi (Msi), anti-CD133, anti- LGR5 and anti-ALDH1 to examine the presentation of stem-like cells in different compartments including adenoma/CRC epithelium, transitional crypts and tumor stroma in colorectal adenoma and CRC. The results showed that cells positive for stem-like markers were remarkably increased in number and frequently observed in the adenoma/CRC epithelium, transitional crypts and tumor stroma. Notably, the population of cells positive for stem-liker markers was expanded from the base to the middle part of the transitional crypt in both adenoma and CRC tissues, reflecting that stem-like cells are likely involved in the process of colorectal tumorigenesis. Counting results showed that the grading scores of cells positive for LGR5 and ALDH1 in the adenoma/CRC epithelium were significantly increased relative with the control epithelium, and associated with the degree of dysplasia in the adenoma and node involvement in the CRC (all P < 0.05). In addition, the density of cells positive for stem-like markers in the adenomatous/cancerous stroma was also increased and paralleled an increase in the density of proliferative stromal cells labeled by PCNA, which were primarily identified as vimentin positive fibroblasts. Our results have revealed a changed temporal and spatial presentation of stem-like markers in different stages of human colorectal adenoma-carcinoma sequence, which might be a hallmark of the adenoma-carcinoma transition.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Faculty of Health, Nord University, Levanger, Norway
| | - Gang Xu
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Zhu
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhigang Pang
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Zheng
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenfeng Li
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Aping Yuan
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Hon KW, Abu N, Ab Mutalib NS, Jamal R. Exosomes As Potential Biomarkers and Targeted Therapy in Colorectal Cancer: A Mini-Review. Front Pharmacol 2017; 8:583. [PMID: 28894420 PMCID: PMC5581359 DOI: 10.3389/fphar.2017.00583] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/11/2017] [Indexed: 01/05/2023] Open
Abstract
The number of colorectal cancer (CRC) cases have increased gradually year by year. In fact, CRC is one of the most widely diagnosed cancer in men and women today. This disease is usually diagnosed at a later stage of the development, and by then, the chance of survival has declined significantly. Even though substantial progress has been made in understanding the basic molecular mechanism of CRC, there is still a lack of understanding in using the available information for diagnosing CRC effectively. Liquid biopsies are minimally invasive and have become the epitome of a good screening source for stage-specific diagnosis, measuring drug response and severity of the disease. There are various circulating entities that can be found in biological fluids, and among them, exosomes, have been gaining considerable attention. Exosomes can be found in almost all biological fluids including serum, urine, saliva, and breast milk. Furthermore, exosomes carry valuable molecular information such as proteins and nucleic acids that directly reflects the source of the cells. Nevertheless, the inconsistent yield and isolation process and the difficulty in obtaining pure exosomes have become major obstacles that need to be addressed. The potential usage of exosomes as biomarkers have not been fully validated and explored yet. This review attempts to uncover the potential molecules that can be derived from CRC-exosomes as promising biomarkers or molecular targets for effective diagnosing of CRC.
Collapse
Affiliation(s)
- Kha Wai Hon
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| |
Collapse
|
32
|
Zaiden M, Feinshtein V, David A. Inhibition of CD44v3 and CD44v6 function blocks tumor invasion and metastatic colonization. J Control Release 2017; 257:10-20. [PMID: 28093296 DOI: 10.1016/j.jconrel.2017.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
The prevention of cancer cell dissemination and secondary tumor formation are major goals of cancer therapy. Here, we report on the development of a new CD44-targeted copolymer carrying multiple copies of the A5G27 peptide, known for its ability to bind specifically to CD44v3 and CD44v6 on cancer cells and inhibit tumor cell migration, invasion, and angiogenesis. We hypothesized that conjugation of A5G27 to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer would enhance tumor tissue accumulation, promote selective binding to cancer cells, with concomitant increased inhibition of cancer cell invasiveness and migration. Fluorescein-5-isothiocyanate or the near-infrared fluorophore IR783 were attached to the copolymer backbone through a non-cleavable linkage to assess in vitro binding to cancer cells and biodistribution of the polymer in 4T1 murine mammary adenocarcinoma-bearing mice, respectively. The anti-migratory activity was evaluated both in vitro and in vivo. The binding of the targeted copolymer to cancer cells correlated well with the level of CD44 expression, with the polymer being internalized more efficiently by cancer cells. Pre-treatment of mice with polymer-bound A5G27 significantly inhibited lung colonization of migrating 4T1 cells in vivo, with the targeted copolymer accumulating preferentially in subcutaneous 4T1 tumors, when compared to a non-targeted system. As such, the HPMA copolymer-A5G27 conjugate is a promising candidate for inhibiting cancer cell migration and can also be used as a drug or imaging probe carrier for detection and treatment of cancer.
Collapse
Affiliation(s)
- Michal Zaiden
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Valeria Feinshtein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
33
|
Konrad CV, Murali R, Varghese BA, Nair R. The role of cancer stem cells in tumor heterogeneity and resistance to therapy. Can J Physiol Pharmacol 2017; 95:1-15. [DOI: 10.1139/cjpp-2016-0079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is a heterogenous disease displaying marked inter- and intra-tumoral diversity. The existence of cancer stem cells (CSCs) has been experimentally demonstrated in a number of cancer types as a subpopulation of tumor cells that drives the tumorigenic and metastatic properties of the entire cancer. Thus, eradication of the CSC population is critical for the complete ablation of a tumor. This is, however, confounded by the inherent resistance of CSCs to standard anticancer therapies, eventually leading to the outgrowth of resistant tumor cells and relapse in patients. The cellular mechanisms of therapy resistance in CSCs are ascribed to several factors including a state of quiescence, an enhanced DNA damage response and active repair mechanisms, up-regulated expression of drug efflux transporters, as well as the activation of pro-survival signaling pathways and inactivation of apoptotic signaling. Understanding the mechanisms underlying the acquisition of resistance to therapy may hold the key to targeting the CSC population.
Collapse
Affiliation(s)
- Christina Valbirk Konrad
- Cancer Research Division & Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Reshma Murali
- Cancer Research Program, Rajiv Gandhi Center for Biotechnology, Kerala, India
| | | | - Radhika Nair
- Cancer Research Program, Rajiv Gandhi Center for Biotechnology, Kerala, India
| |
Collapse
|
34
|
Ismaiel NEHS, Sharaf WM, Helmy DO, Zaki MM, Badawi MA, Soliman ASA. Detection of Cancer Stem Cells in Colorectal Cancer: Histopathological and Immunohistochemical Study. Open Access Maced J Med Sci 2016; 4:543-547. [PMID: 28028388 PMCID: PMC5175496 DOI: 10.3889/oamjms.2016.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Growing evidence supports the notion that the onset of tumorigenesis could occur through cancer stem cells (CSCs). These tumour cells show low proliferative rates, high self-renewal capacity, propensity to differentiate into active proliferating tumour cells & resistance to chemoradiotherapy thus, possibly causing local recurrences & metastasis formation. CD44 has been used as a marker to isolate CSCs from colorectal carcinoma (CRC). AIM To investigate the immunohistochemical expression of cancer stem cells marker (CD44) in CRC and correlate its expression with the clinicopathological aspects, TNM staging and modified Dukes' classification. MATERIALS AND METHODS Tumour biopsies from colectomy specimens of 60 patients with CRC were stained with hematoxylin-eosin for histological evaluation then immunostained with monoclonal antibodies against CD44 which was detected in term of negative or positive expression. RESULTS CD44 was demonstrated in 58.3% (35/60) of cases and showed statistically significant correlation with tumour site and histological type (p-value < 0.05). However, CD44 showed statistically insignificant inverse correlation with tumour invasiveness (T), lymph node status (N), grade, TNM stage grouping and modified Dukes' classification, while it was directly correlated with distant metastasis (M) (p-value > 0.05). Chi-square /Fisher exact test proportion independence and the p-value are set significant at 0.05 level. CONCLUSION the CD44 rate of expression is higher in the colon than rectum and in adenocarcinoma than mucinous and undifferentiated carcinoma. CD44 showed statistically insignificant relation with T, N, M, grade, TNM stage grouping and modified Dukes' classification.
Collapse
Affiliation(s)
| | - Walid M Sharaf
- Pathology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Dina O Helmy
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona M Zaki
- Pathology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Manal A Badawi
- Pathology Department, National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
35
|
Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds. Int J Mol Sci 2016; 17:ijms17060893. [PMID: 27338343 PMCID: PMC4926427 DOI: 10.3390/ijms17060893] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 12/27/2022] Open
Abstract
The pivotal role of cancer stem cells (CSCs) in the initiation and progression of malignancies has been rigorously validated, and the specific methods for identifying and isolating the CSCs from the parental cancer population have also been rapidly developed in recent years. This review aims to provide an overview of recent research progress of Chinese medicines (CMs) and their active compounds in inhibiting tumor progression by targeting CSCs. A great deal of CMs and their active compounds, such as Antrodia camphorate, berberine, resveratrol, and curcumin have been shown to regress CSCs, in terms of reversing drug resistance, inducing cell death and inhibiting cell proliferation as well as metastasis. Furthermore, one of the active compounds in coptis, berbamine may inhibit tumor progression by modulating microRNAs to regulate CSCs. The underlying molecular mechanisms and related signaling pathways involved in these processes were also discussed and concluded in this paper. Overall, the use of CMs and their active compounds may be a promising therapeutic strategy to eradicate cancer by targeting CSCs. However, further studies are needed to clarify the potential of clinical application of CMs and their active compounds as complementary and alternative therapy in this field.
Collapse
|
36
|
LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging. Biomaterials 2015; 71:84-99. [PMID: 26318819 DOI: 10.1016/j.biomaterials.2015.07.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 12/28/2022]
Abstract
This is the first ever attempt to combine anti-cancer therapeutic effects of emerging anticancer biodrug bovine lactoferrin (bLf), and multimodal imaging efficacy of Fe3O4 nanoparticles (NPs) together, as a saturated Fe3O4-bLf. For cancer stem cell specific uptake of nanocapsules/nanocarriers (NCs), Fe3O4-bLf was encapsulated in alginate enclosed chitosan coated calcium phosphate (AEC-CP) NCs targeted (Tar) with locked nucleic acid (LNA) modified aptamers against epithelial cell adhesion molecule (EpCAM) and nucleolin markers. The nanoformulation was fed orally to mice injected with triple positive (EpCAM, CD133, CD44) sorted colon cancer stem cells in the xenograft cancer stem cell mice model. The complete regression of tumor was observed in 70% of mice fed on non-targeted (NT) NCs, with 30% mice showing tumor recurrence after 30 days, while only 10% mice fed with Tar NCs showed tumor recurrence indicating a significantly higher survival rate. From tumor tissue analyses of 35 apoptotic markers, 55 angiogenesis markers, 40 cytokines, 15 stem cell markers and gene expression studies of important signaling molecules, it was revealed that the anti-cancer mechanism of Fe3O4-bLf was intervened through TRAIL, Fas, Fas-associated protein with death domain (FADD) mediated phosphorylation of p53, to induce activation of second mitochondria-derived activator of caspases (SMAC)/DIABLO (inhibiting survivin) and mitochondrial depolarization leading to release of cytochrome C. Induction of apoptosis was observed by inhibition of the Akt pathway and activation of cytokines released from monocytes/macrophages and dendritic cells (interleukin (IL) 27, keratinocyte chemoattractant (KC)). On the other hand, the recurrence of tumor in AEC-CP-Fe3O4-bLf NCs fed mice mainly occurred due to activation of alternative pathways such as mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK) and Wnt signaling leading to an increase in expression of survivin, survivin splice variant (survivin 2B) and other anti-apoptotic proteins Bad, Bcl-2 and XIAP. Apart from the promising anti-cancer efficacy and the exceptional tumor targeting ability observed by multimodal imaging using near-infrared (NIR) imaging, magnetic resonance imaging (MRI) and computerized tomographic (CT) techniques, these NCs also maintained the immunomodulatory benefits of bLf as they were able to increase the RBC, hemoglobin, iron calcium and zinc levels in mice.
Collapse
|
37
|
Núñez de Villavicencio-Díaz T, Ramos Gómez Y, Oliva Argüelles B, Fernández Masso JR, Rodríguez-Ulloa A, Cruz García Y, Guirola-Cruz O, Perez-Riverol Y, Javier González L, Tiscornia I, Victoria S, Bollati-Fogolín M, Besada Pérez V, Guerra Vallespi M. Comparative proteomics analysis of the antitumor effect of CIGB-552 peptide in HT-29 colon adenocarcinoma cells. J Proteomics 2015; 126:163-71. [DOI: 10.1016/j.jprot.2015.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/06/2015] [Accepted: 05/19/2015] [Indexed: 10/25/2022]
|
38
|
Nam K, Oh S, Lee KM, Yoo SA, Shin I. CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell Signal 2015; 27:1882-94. [PMID: 25979842 DOI: 10.1016/j.cellsig.2015.05.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
CD44 was recently identified as a cancer initiation marker on the cell membrane. The cytoplasmic tail of CD44 is known to bind ERM (ezrin, radixin, moesin) proteins, cytoskeletal proteins like ankyrin, and the non-receptor tyrosine kinase c-Src. CD44 transmits its oncogenic signaling via c-Src and its downstream effectors. To investigate the role of CD44 in breast cancer cells, we generated CD44 knock-down cells via retroviral delivery of shRNA against CD44. We found that silencing of CD44 decreased the proliferation, migration, and invasion of breast cancer cells. The expression and activity of cell migration-related proteins, including c-Src, paxillin, and FAK were decreased by CD44 silencing. We also found that the c-Jun protein level was negatively regulated via induction of a GSK-3β-dependent degradation pathway in CD44 knock-down cells. The expression level of Sp1, a target gene product of c-Jun, was also decreased in these cells. Finally, CD44 knock-down suppressed both mRNA and protein levels of c-Src and its downstream MAPK pathway as a result of down-regulation of Sp1 as a transcription factor for c-Src. Collectively, these results indicate that biological changes induced by CD44 silencing are mediated by cumulative down-regulation of c-Jun, Sp1, and c-Src in human breast cancer cells.
Collapse
Affiliation(s)
- KeeSoo Nam
- Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Sunhwa Oh
- Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Kyung-min Lee
- Deparment of Hematology/Oncology, Vanderbilt University, Nashville, TN 37209, USA
| | - Seung-ah Yoo
- Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea; Natural Science Institute, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
39
|
Kim DH, Surh YJ. Chemopreventive and Therapeutic Potential of Phytochemicals Targeting Cancer Stem Cells. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40495-015-0035-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
McDougall ARA, Tolcos M, Hooper SB, Cole TJ, Wallace MJ. Trop2: from development to disease. Dev Dyn 2015; 244:99-109. [PMID: 25523132 DOI: 10.1002/dvdy.24242] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Trop2 was first discovered as a biomarker of invasive trophoblast cells. Since then most research has focused on its role in tumourigenesis because it is highly expressed in the vast majority of human tumours and animal models of cancer. It is also highly expressed in stem cells and in many organs during development. RESULTS We review the multifaceted role of Trop2 during development and tumourigenesis, including its role in regulating cell proliferation and migration, self-renewal, and maintenance of basement membrane integrity. We discuss the evolution of Trop2 and its related protein Epcam (Trop1), including their distinct roles. Mutation of Trop2 leads to gelatinous drop-like corneal dystrophy, whereas over-expression of Trop2 in human tumours promotes tumour aggressiveness and increases mortality. Although Trop2 expression is sufficient to promote tumour growth, the surprising discovery that Trop2-null mice have an increased risk of tumour development has highlighted the complexity of Trop2 signaling. Recently, studies have begun to identify the mechanisms underlying TROP2’s functions, including regulated intramembrane proteolysis or specific interactions with integrin b1 and claudin proteins. CONCLUSIONS Understanding the mechanisms underlying TROP2 signaling will clarify its role during development, aid in the development of better cancer treatments and unlock a promising new direction in regenerative medicine.
Collapse
|
41
|
Kanwar JR, Mahidhara G, Roy K, Sasidharan S, Krishnakumar S, Prasad N, Sehgal R, Kanwar RK. Fe-bLf nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc. Nanomedicine (Lond) 2015; 10:35-55. [DOI: 10.2217/nnm.14.132] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: To validate the anticancer efficacy of alginate-enclosed, chitosan-conjugated, calcium phosphate, iron-saturated bovine lactoferrin (Fe-bLf) nanocarriers/nanocapsules (NCs) with improved sustained release and ability to induce apoptosis by downregulating survivin, as well as cancer stem cells. Materials & methods: The stability, nanotoxicity of the modified nanoformulation was evaluated and their anticancer efficacy was re-examined. Their mechanism of internalization was studied and we identified the role of various miRNAs in absorption of these NCs/iron in various body parts of mice. We determined the effect of these NCs on survivin, stem cell markers, red blood cell count, iron, calcium and zinc concentration in mice, determined the antiangiogenic properties of these NCs and studied their effect on cancer stem-like cells. Results: Spherical NCs (396.1 ± 27.2 nm) exceedingly reduced viability of Caco-2 cells (32 ± 2.83%). The NCs also showed effective internalization and reduction of cancer stem cell markers in triple-positive CD133, survivin and CD44 cancer stem-like cells. Mice treated with the NCs showed no nanotoxicity and did not develop any tumors in xenograft colon cancer models. We found that the serum iron, zinc and calcium absorption were increased. DMT1, LRP, transferrin and lactoferrin receptors were responsible for internalization of the NCs. Different miRNAs were responsible for iron regulation in different organs. Interestingly, NCs inhibited survivin and its different isoforms. Conclusion: Our results confirmed that NCs internalized and changed the expression of selected miRNAs that further enhanced their uptake. The NCs activated both extrinsic, as well as intrinsic apoptotic pathways to induce apoptosis by targeting survivin in cancer cells and cancer stem cells, without inducing any nonspecific nanotoxicity. Apart from inhibiting angiogenesis and stem cell markers, NCs also maintained iron and calcium levels. Original submitted 4 May 2014; Revised submitted 25 June 2014
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Ganesh Mahidhara
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Kislay Roy
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Subramanian Krishnakumar
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision & Ophthalmology, Chennai, India
| | - Neerati Prasad
- Department of Pharmacology, Drug Metabolism & Pharmacokinetics Division (DMPK), University College of Pharmaceutical Science, Kakatiya University, Warangal, Andhra Pradesh, 506009, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Rupinder K Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|