1
|
Pan Y, Wu M, Cai H. Role of ABCC5 in cancer drug resistance and its potential as a therapeutic target. Front Cell Dev Biol 2024; 12:1446418. [PMID: 39563862 PMCID: PMC11573773 DOI: 10.3389/fcell.2024.1446418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Over 90% of treatment failures in cancer therapy can be attributed to multidrug resistance (MDR), which can develop intracellularly or through various routes. Numerous pathways contribute to treatment resistance in cancer, but one of the most significant pathways is intracellular drug efflux and reduced drug concentrations within cells, which are controlled by overexpressed drug efflux pumps. As a member of the family of ABC transporter proteins, ABCC5 (ATP Binding Cassette Subfamily C Member 5) reduces the intracellular concentration of a drug and its subsequent effectiveness using an ATP-dependent method to pump the drug out of the cell. Numerous studies have demonstrated that ABCC5 is strongly linked to both poor prognosis and poor treatment response. In addition, elevated ABCC5 expression is noted in a wide variety of malignancies. Given that ABCC5 is regulated by several pathways in a broad range of cancer types, it is a prospective target for cancer treatment. This review examined the expression, structure, function, and role of ABCC5 in various cancer types.
Collapse
Affiliation(s)
- Yinlong Pan
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengmeng Wu
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huazhong Cai
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Karim MR, Iqbal S, Mohammad S, Morshed MN, Haque MA, Mathiyalagan R, Yang DC, Kim YJ, Song JH, Yang DU. Butyrate's (a short-chain fatty acid) microbial synthesis, absorption, and preventive roles against colorectal and lung cancer. Arch Microbiol 2024; 206:137. [PMID: 38436734 DOI: 10.1007/s00203-024-03834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 03/05/2024]
Abstract
Butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, is a source of energy for colonocytes. Butyrate is essential for improving gastrointestinal (GI) health since it helps colonocyte function, reduces inflammation, preserves the gut barrier, and fosters a balanced microbiome. Human colonic butyrate producers are Gram-positive firmicutes, which are phylogenetically varied. The two most prevalent subgroups are associated with Eubacterium rectale/Roseburia spp. and Faecalibacterium prausnitzii. Now, the mechanism for the production of butyrate from microbes is a very vital topic to know. In the present study, we discuss the genes encoding the core of the butyrate synthesis pathway and also discuss the butyryl-CoA:acetate CoA-transferase, instead of butyrate kinase, which usually appears to be the enzyme that completes the process. Recently, butyrate-producing microbes have been genetically modified by researchers to increase butyrate synthesis from microbes. The activity of butyrate as a histone deacetylase inhibitor (HDACi) has led to several clinical trials to assess its effectiveness as a potential cancer treatment. Among various significant roles, butyrate is the main energy source for intestinal epithelial cells, which helps maintain colonic homeostasis. Moreover, people with non-small-cell lung cancer (NSCLC) have distinct gut microbiota from healthy adults and frequently have dysbiosis of the butyrate-producing bacteria in their guts. So, with an emphasis on colon and lung cancer, this review also discusses how the microbiome is crucial in preventing the progression of certain cancers through butyrate production. Further studies should be performed to investigate the underlying mechanisms of how these specific butyrate-producing bacteria can control both colon and lung cancer progression and prognosis.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
- Department of Microbiology, Varendra Institute of Biosciences, Affiliated University of Rajshahi, Natore, 6400, Rajshahi, Bangladesh
| | - Shahnawaz Mohammad
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Md Niaj Morshed
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Md Anwarul Haque
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Deok Chun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
- Hanbangbio Inc., Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea
| | - Yeon Ju Kim
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Joong Hyun Song
- Department of Veterinary International Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| | - Dong Uk Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea.
- AIBIOME, 6, Jeonmin-Ro 30Beon-Gil, Yuseong-Gu, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Luan Y, Li X, Luan Y, Luo J, Dong Q, Ye S, Li Y, Li Y, Jia L, Yang J, Yang DH. Therapeutic challenges in peripheral T-cell lymphoma. Mol Cancer 2024; 23:2. [PMID: 38178117 PMCID: PMC10765866 DOI: 10.1186/s12943-023-01904-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of hematological malignancies. Compared to our knowledge of B-cell tumors, our understanding of T-cell leukemia and lymphoma remains less advanced, and a significant number of patients are diagnosed with advanced stages of the disease. Unfortunately, the development of drug resistance in tumors leads to relapsed or refractory peripheral T-Cell Lymphomas (r/r PTCL), resulting in highly unsatisfactory treatment outcomes for these patients. This review provides an overview of potential mechanisms contributing to PTCL treatment resistance, encompassing aspects such as tumor heterogeneity, tumor microenvironment, and abnormal signaling pathways in PTCL development. The existing drugs aimed at overcoming PTCL resistance and their potential resistance mechanisms are also discussed. Furthermore, a summary of ongoing clinical trials related to PTCL is presented, with the aim of aiding clinicians in making informed treatment decisions.
Collapse
Affiliation(s)
- Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| | - Xiang Li
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Yunqi Luan
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drugs, Beijing Key Laboratory of Analysis and Evaluation On Chinese Medicine, Beijing Institute for Drug Control, Beijing, 102206, China
| | - Junyu Luo
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Qinzuo Dong
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Shili Ye
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Yuejin Li
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yanmei Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Lu Jia
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Jun Yang
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, 200 Old Country Rd, Suite 500, Mineola, NY, 11501, USA.
| |
Collapse
|
4
|
Zeng Y, Yin L, Zhou J, Zeng R, Xiao Y, Black AR, Hu T, Singh PK, Yin F, Batra SK, Yu F, Chen Y, Dong J. MARK2 regulates chemotherapeutic responses through class IIa HDAC-YAP axis in pancreatic cancer. Oncogene 2022; 41:3859-3875. [PMID: 35780183 PMCID: PMC9339507 DOI: 10.1038/s41388-022-02399-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 01/04/2023]
Abstract
Despite paclitaxel's wide use in cancer treatment, patient response rate is still low and drug resistance is a major clinical obstacle. Through a Phos-tag-based kinome-wide screen, we identified MARK2 as a critical regulator for paclitaxel chemosensitivity in PDAC. We show that MARK2 is phosphorylated by CDK1 in response to antitubulin chemotherapeutics and in unperturbed mitosis. Phosphorylation is essential for MARK2 in regulating mitotic progression and paclitaxel cytotoxicity in PDAC cells. Mechanistically, our findings also suggest that MARK2 controls paclitaxel chemosensitivity by regulating class IIa HDACs. MARK2 directly phosphorylates HDAC4 specifically during antitubulin treatment. Phosphorylated HDAC4 promotes YAP activation and controls expression of YAP target genes induced by paclitaxel. Importantly, combination of HDAC inhibition and paclitaxel overcomes chemoresistance in organoid culture and preclinical PDAC animal models. The expression levels of MARK2, HDACs, and YAP are upregulated and positively correlated in PDAC patients. Inhibition of MARK2 or class IIa HDACs potentiates paclitaxel cytotoxicity by inducing mitotic abnormalities in PDAC cells. Together, our findings identify the MARK2-HDAC axis as a druggable target for overcoming chemoresistance in PDAC.
Collapse
Affiliation(s)
- Yongji Zeng
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ling Yin
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jiuli Zhou
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Renya Zeng
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yi Xiao
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tuo Hu
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Feng Yin
- Department of Pathology and Anatomic Sciences, University of Missouri, Columbia, MO, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Yu
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Xun T, Lin Z, Zhang M, Mo L, Chen Y, Wang X, Zhao J, Ye C, Feng H, Yang X. Advanced oxidation protein products upregulate ABCB1 expression and activity via HDAC2-Foxo3α-mediated signaling in vitro and in vivo. Toxicol Appl Pharmacol 2022; 449:116140. [PMID: 35753429 DOI: 10.1016/j.taap.2022.116140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
The unpredictable pharmacokinetics of non-renal cleared drugs in chronic kidney disease (CKD) patients is associated with the activity of drug transporters. However, the mechanisms underlying regulation of drug transporters are yet to be established. In this study, we demonstrated the involvement of a HDAC2-Foxo3α pathway in advanced oxidation protein products (AOPPs)-induced ATP-binding cassette subfamily B member 1 (ABCB1) expression and activity. The correlation of AOPPs accumulation with concentration of cyclosporine in plasma was evaluated in 194 patients with transplantation. Molecular changes in acetylation of various histones and related regulatory molecules were examined in HepG2 cell cultures treated with AOPPs. Accumulation of AOPPs in serum in relation to molecular changes in HDAC2-Foxo3α in vivo were evaluated in 5/6 nephrectomy (5/6 nx) and oral adenine (Adenine) CKD rat models. Interestingly, the cyclosporine level was negatively correlated with AOPPs in plasma. In addition, AOPPs markedly suppressed the expression of histone deacetylase 2 (HDAC2), inducing ABCB1 expression and activity in vitro and in vivo. Importantly, AOPPs modulated phosphorylation of Foxo3α and the upstream Akt protein. Our findings indicate that AOPPs regulate the expression and activity of ABCB1 via reducing HDAC2 expression and activating Foxo3α-dependent signaling. The collective results support the utility of AOPPs as a potential target for drug and/or dosage adjustment in CKD patients. Targeting of AOPPs presents a novel approach to regulate non-renal clearance.
Collapse
Affiliation(s)
- Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhufen Lin
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Mimi Zhang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Liqian Mo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Chen
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chunxiao Ye
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Haixing Feng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
6
|
Kamaraju S, Mohan M, Zaharova S, Wallace B, McGraw J, Lokken J, Tierney J, Weil E, Fatunde O, Brown SA. Interactions between cardiology and oncology drugs in precision cardio-oncology. Clin Sci (Lond) 2021; 135:1333-1351. [PMID: 34076246 PMCID: PMC8984624 DOI: 10.1042/cs20200309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in treatment have transformed the management of cancer. Despite these advances, cardiovascular disease remains a leading cause of death in cancer survivors. Cardio-oncology has recently evolved as a subspecialty to prevent, diagnose, and manage cardiovascular side effects of antineoplastic therapy. An emphasis on optimal management of comorbidities and close attention to drug interactions are important in cardio-oncologic care. With interdisciplinary collaboration among oncologists, cardiologists, and pharmacists, there is potential to prevent and reduce drug-related toxicities of treatments. The cytochrome P450 (CYP450) family of enzymes and the P-glycoprotein (P-g) transporter play a crucial role in drug metabolism and drug resistance. Here we discuss the role of CYP450 and P-g in drug interactions in the field of cardio-oncology, provide an overview of the cardiotoxicity of a spectrum of cancer agents, highlight the role of precision medicine, and encourage a multidisciplinary treatment approach for patients with cancer.
Collapse
Affiliation(s)
- Sailaja Kamaraju
- Division of Hematology and Oncology, Department of
Medicine, Medical College of Wisconsin, WI, U.S.A
| | - Meera Mohan
- Division of Hematology and Oncology, Department of
Medicine, Medical College of Wisconsin, WI, U.S.A
| | - Svetlana Zaharova
- Cardio-Oncology Program, Division of Cardiovascular
Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | | | - Joseph McGraw
- Department of Pharmacy, Concordia University, Milwaukee,
WI, U.S.A
| | - James Lokken
- Department of Pharmacy, Concordia University, Milwaukee,
WI, U.S.A
| | - John Tierney
- School of Pharmacy, Medical College of Wisconsin, WI,
U.S.A
| | - Elizabeth Weil
- Department of Pharmacy, Medical College of Wisconsin, WI,
U.S.A
| | - Olubadewa Fatunde
- Division of Cardiology, Department of Medicine, Mayo Clinic
Arizona, Scottsdale, AZ, U.S.A
| | - Sherry-Ann Brown
- Cardio-Oncology Program, Division of Cardiovascular
Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| |
Collapse
|
7
|
Rana Z, Tyndall JDA, Hanif M, Hartinger CG, Rosengren RJ. Cytostatic Action of Novel Histone Deacetylase Inhibitors in Androgen Receptor-Null Prostate Cancer Cells. Pharmaceuticals (Basel) 2021; 14:103. [PMID: 33572730 PMCID: PMC7912319 DOI: 10.3390/ph14020103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/04/2023] Open
Abstract
Androgen receptor (AR)-null prostate tumors have been observed in 11-24% of patients. Histone deacetylases (HDACs) are overexpressed in prostate tumors. Therefore, HDAC inhibitors (Jazz90 and Jazz167) were examined in AR-null prostate cancer cell lines (PC3 and DU145). Both Jazz90 and Jazz167 inhibited the growth of PC3 and DU145 cells. Jazz90 and Jazz167 were more active in PC3 cells and DU145 cells in comparison to normal prostate cells (PNT1A) and showed a 2.45- and 1.30-fold selectivity and higher cytotoxicity toward DU145 cells, respectively. Jazz90 and Jazz167 reduced HDAC activity by ~60% at 50 nM in PC3 lysates. At 4 μM, Jazz90 and Jazz167 increased acetylation in PC3 cells by 6- to 8-fold. Flow cytometry studies on the cell phase distribution demonstrated that Jazz90 causes a G0/G1 arrest in AR-null cells, whereas Jazz167 leads to a G0/G1 arrest in DU145 cells. However, apoptosis only occurred at a maximum of 7% of the total cell population following compound treatments in PC3 and DU145 cells. There was a reduction in cyclin D1 and no significant changes in bcl-2 in DU145 and PC3 cells. Overall, the results showed that Jazz90 and Jazz167 function as cytostatic HDAC inhibitors in AR-null prostate cancer cells.
Collapse
Affiliation(s)
- Zohaib Rana
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand;
| | | | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand; (M.H.); (C.G.H.)
| | - Christian G. Hartinger
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand; (M.H.); (C.G.H.)
| | - Rhonda J. Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
8
|
Latency-Reversing Agents Induce Differential Responses in Distinct Memory CD4 T Cell Subsets in Individuals on Antiretroviral Therapy. Cell Rep 2020; 29:2783-2795.e5. [PMID: 31775045 DOI: 10.1016/j.celrep.2019.10.101] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/11/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Latent proviruses persist in central (TCM), transitional (TTM), and effector (TEM) memory cells. We measured the levels of cellular factors involved in HIV gene expression in these subsets. The highest levels of acetylated H4, active nuclear factor κB (NF-κB), and active positive transcription elongation factor b (P-TEFb) were measured in TEM, TCM, and TTM cells, respectively. Vorinostat and romidepsin display opposite abilities to induce H4 acetylation across subsets. Protein kinase C (PKC) agonists are more efficient at inducing NF-κB phosphorylation in TCM cells but more potent at activating PTEF-b in the TEM subset. We selected the most efficient latency-reversing agents (LRAs) and measured their ability to reverse latency in each subset. While ingenol alone has modest activities in the three subsets, its combination with a histone deacetylase inhibitor (HDACi) dramatically increases latency reversal in TCM cells. Altogether, these results indicate that cellular HIV reservoirs are differentially responsive to common LRAs and suggest that combination of compounds will be required to achieve latency reversal in all subsets.
Collapse
|
9
|
Vorinostat and fenretinide synergize in preclinical models of T-cell lymphoid malignancies. Anticancer Drugs 2020; 32:34-43. [PMID: 33079733 DOI: 10.1097/cad.0000000000001008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell lymphoid malignancies (TCLMs) are in need of novel and more effective therapies. The histone deacetylase (HDAC) inhibitors and the synthetic cytotoxic retinoid fenretinide have achieved durable clinical responses in T-cell lymphomas as single agents, and patients who failed prior HDAC inhibitor treatment have responded to fenretinide. We have previously shown fenretinide synergized with the class I HDAC inhibitor romidepsin in preclinical models of TCLMs. There exist some key differences between HDAC inhibitors. Therefore, we determined if the pan-HDAC inhibitor vorinostat synergizes with fenretinide. We demonstrated cytotoxic synergy between vorinostat and fenretinide in nine TCLM cell lines at clinically achievable concentrations that lacked cytotoxicity for non-malignant cells (fibroblasts and blood mononuclear cells). In vivo, vorinostat + fenretinide + ketoconazole (enhances fenretinide exposures by inhibiting fenretinide metabolism) showed greater activity in subcutaneous TCLM xenograft models than other groups. Fenretinide + vorinostat increased reactive oxygen species (ROS, measured by 2',7'-dichlorodihydrofluorescein diacetate dye), resulting in increased apoptosis (via transferase dUTP nick end labeling assay) and histone acetylation (by immunoblotting). The synergistic cytotoxicity, apoptosis, and histone acetylation of fenretinide + vorinostat was abrogated by the antioxidant vitamin C. Like romidepsin, vorinostat combined with fenretinide achieved synergistic cytotoxic activity and increased histone acetylation in preclinical models of TCLMs, but not in non-malignant cells. As vorinostat is an oral agent and not a P-glycoprotein substrate it may have advantages in such combination therapy. These data support conducting a clinical trial of vorinostat combined with fenretinide in relapsed and refractory TCLMs.
Collapse
|
10
|
Novel Intrinsic Mechanisms of Active Drug Extrusion at the Blood-Brain Barrier: Potential Targets for Enhancing Drug Delivery to the Brain? Pharmaceutics 2020; 12:pharmaceutics12100966. [PMID: 33066604 PMCID: PMC7602420 DOI: 10.3390/pharmaceutics12100966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) limits the pharmacotherapy of several brain disorders. In addition to the structural and metabolic characteristics of the BBB, the ATP-driven, drug efflux transporter P-glycoprotein (Pgp) is a selective gatekeeper of the BBB; thus, it is a primary hindrance to drug delivery into the brain. Here, we review the complex regulation of Pgp expression and functional activity at the BBB with an emphasis on recent studies from our laboratory. In addition to traditional processes such as transcriptional regulation and posttranscriptional or posttranslational modification of Pgp expression and functionality, novel mechanisms such as intra- and intercellular Pgp trafficking and intracellular Pgp-mediated lysosomal sequestration in BBB endothelial cells with subsequent disposal by blood neutrophils are discussed. These intrinsic mechanisms of active drug extrusion at the BBB are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the treatment of brain diseases and enhance drug delivery to the brain.
Collapse
|
11
|
Anticonvulsant valproic acid and other short-chain fatty acids as novel anticancer therapeutics: Possibilities and challenges. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:291-301. [PMID: 32074065 DOI: 10.2478/acph-2020-0021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 01/19/2023]
Abstract
Results from numerous pre-clinical studies suggest that a well known anticonvulsant drug valproic acid (VPA) and other short-chain fatty acids (SCFAs) cause significant inhibition of cancer cell proliferation by modulating multiple signaling pathways. First of all, they act as histone deacetylase (HDAC) inhibitors (HDIs), being involved in the epigenetic regulation of gene expression. Afterward, VPA is shown to induce apoptosis and cell differentiation, as well as regulate Notch signaling. Moreover, it up-regulates the expression of certain G protein-coupled receptors (GPCRs), which are involved in various signaling pathways associated with cancer. As a consequence, some pre-clinical and clinical trials were carried out to estimate anticancer effectiveness of VPA, in monotherapy and in new drug combinations, while other SCFAs were tested in pre-clinical studies. The present manuscript summarizes the most important information from the literature about their potent anticancer activities to show some future perspectives related to epigenetic therapy.
Collapse
|
12
|
Shi B, Xu FF, Xiang CP, Jia R, Yan CH, Ma SQ, Wang N, Wang AJ, Fan P. Effect of sodium butyrate on ABC transporters in lung cancer A549 and colorectal cancer HCT116 cells. Oncol Lett 2020; 20:148. [PMID: 32934716 PMCID: PMC7471751 DOI: 10.3892/ol.2020.12011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors and DNA alkylators are effective components of combination chemotherapy. The aim of the present study was to investigate the possible mechanism of their synergism by detecting the effect of HDAC inhibitors on the expression levels of drug transporters that export DNA alkylators. It was demonstrated that the HDAC inhibitor sodium butyrate (NaB) induced the differential expression of multidrug resistant ATP-binding cassette (ABC) transporters in lung cancer and colorectal cancer cells. Specifically, NaB increased the mRNA expression levels of ABC subfamily B member 1 (ABCB1), ABCC10 and ABCC12, and protein expression levels of multidrug resistance-1 (MDR1), multidrug resistance-associated protein 7 (MRP7) and MRP9. Moreover, NaB decreased the expression levels of ABCC1, ABCC2 and ABCC3 mRNAs, as well as those of MRP1, MRP2 and MRP3 proteins. The molecular mechanism underlying this process was subsequently investigated. NaB decreased the expression of HDAC4, but not HDAC1, HDAC2 or HDAC3. In addition, NaB promoted histone H3 acetylation and methylation at lysine 9, as well as MDR1 acetylation, suggesting that acetylation and methylation may be involved in NaB-mediated ABC transporter expression. Thus, the present results indicated that the synergism of the HDAC inhibitors with the DNA alkylating agents may due to the inhibitory effect of MRPs by HDAC inhibitors. The findings also suggested the possibility of antagonistic effects following the combined treatment of HDAC inhibitors with MDR1 ligands.
Collapse
Affiliation(s)
- Bin Shi
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - Fang-Fang Xu
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - Cai-Ping Xiang
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - Ru Jia
- Department of Anorectal Surgery, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230000, P.R. China
| | - Chun-Hong Yan
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - Se-Qing Ma
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - Ning Wang
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - An-Jiao Wang
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| | - Ping Fan
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, P.R. China
| |
Collapse
|
13
|
Rangasamy L, Ortín I, Zapico JM, Coderch C, Ramos A, de Pascual-Teresa B. New Dual CK2/HDAC1 Inhibitors with Nanomolar Inhibitory Activity against Both Enzymes. ACS Med Chem Lett 2020; 11:713-719. [PMID: 32435375 DOI: 10.1021/acsmedchemlett.9b00561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/07/2020] [Indexed: 12/27/2022] Open
Abstract
Four potent CK2 inhibitors derived from CX-4945 are described. They also provided nanomolar activity against HDAC1, therefore having promising utility as dual-target agents for cancer. The linker length between the hydroxamic acid and the CX-4945 scaffold plays an important role in dictating balanced activity against the targeted enzymes. The seven-carbon linker (compound 15c) was optimal for inhibition of both CK2 and HDAC1. Remarkably, 15c showed 3.0 and 3.5 times higher inhibitory activity than the reference compounds CX-4945 (against CK2) and SAHA (against HDAC1), respectively. Compound 15c exhibited micromolar activity in cell-based cytotoxic assays against multiple cell lines.
Collapse
Affiliation(s)
- Loganathan Rangasamy
- Departamento de Quı́mica y Bioquı́mica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Monteprı́ncipe, 28925 Alcorcón, Madrid, Spain
| | - Irene Ortín
- Departamento de Quı́mica y Bioquı́mica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Monteprı́ncipe, 28925 Alcorcón, Madrid, Spain
| | - José María Zapico
- Departamento de Quı́mica y Bioquı́mica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Monteprı́ncipe, 28925 Alcorcón, Madrid, Spain
| | - Claire Coderch
- Departamento de Quı́mica y Bioquı́mica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Monteprı́ncipe, 28925 Alcorcón, Madrid, Spain
| | - Ana Ramos
- Departamento de Quı́mica y Bioquı́mica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Monteprı́ncipe, 28925 Alcorcón, Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Quı́mica y Bioquı́mica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Monteprı́ncipe, 28925 Alcorcón, Madrid, Spain
| |
Collapse
|
14
|
Luo W, Yang G, Qiu J, Luan J, Zhang Y, You L, Feng M, Zhao F, Liu Y, Cao Z, Zheng L, Zhang T, Zhao Y. Novel discoveries targeting gemcitabine-based chemoresistance and new therapies in pancreatic cancer: How far are we from the destination? Cancer Med 2019; 8:6403-6413. [PMID: 31475468 PMCID: PMC6797580 DOI: 10.1002/cam4.2384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer (PC) remains one of the deadliest malignancies worldwide. Chemoresistance is a significant clinical problem in pancreatic ductal adenocarcinoma (PDAC) and numerous potential mechanisms have been demonstrated but much remains to be understood. To overcome the existing limitations in PC treatment, newer approaches targeting intrinsic or acquired mechanisms have been found to improve drug therapeutic effectiveness in PC patients. Here, we provide an update of the most recent findings and their implications for clinicians, and attempt to summarize the various aspects of different individualized novel therapies for PC that could most benefit metastatic PDAC patients.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyang Luan
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Oncology, The Second Xiangya Hospital, Center South University, Changsha, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Wang H, Chi CH, Zhang Y, Shi B, Jia R, Wang BJ. Effects of histone deacetylase inhibitors on ATP-binding cassette transporters in lung cancer A549 and colorectal cancer HCT116 cells. Oncol Lett 2019; 18:63-71. [PMID: 31289473 PMCID: PMC6540461 DOI: 10.3892/ol.2019.10319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors and DNA alkylators are effective components used in combination chemotherapy. In the present study, the effects of HDAC inhibitors on the expression of ATP-binding cassette (ABC) transporters were investigated. It was observed that HDAC inhibitors induced the expression of multidrug-resistant ABC transporters differently in lung cancer A549 cells than in colorectal cancer HCT116 cells. In these two cell lines, the HDAC inhibitors suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) significantly increased ABCB1 expression at the mRNA and protein levels, whereas they had no evident effect on ABCG2 protein expression. SAHA and TSA decreased ABCG2 mRNA expression in A549 cells and had no evident effect on ABCG2 mRNA expression in HCT116 cells. Notably, SAHA and TSA increased the mRNA expression levels of ABCC5, ABCC6, ABCC10, ABCC11 and ABCC12, as well as the protein expression levels of ABCC2, ABCC10 and ABCC12. By contrast, these inhibitors decreased the mRNA expression levels of ABCC1, ABCC2, ABCC3 and ABCC4, as well as the expression of ABCC1 and ABCC3 proteins. Furthermore, SAHA and TSA were found to downregulate HDAC3 and HDAC4, but not HDAC1 and HDAC2. Taken together, the results suggested that HDAC inhibitors work synergistically with DNA alkylators, in part, due to the inhibitory effect of these inhibitors on ABCC1 expression, which translocates these alkylators from inside to outside of cancer cells. These results further suggested the possibility of antagonism when HDAC inhibitors are combined with anthracyclines and other ABCB1 drug ligands in chemotherapy.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Chun-Hua Chi
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Ying Zhang
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Bin Shi
- Anorectal Department of Traditional Chinese Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Ru Jia
- Department of Anorectal Surgery, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230001, P.R. China
| | - Ben-Jun Wang
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
16
|
Increased MDR1 Transporter Expression in Human Brain Endothelial Cells Through Enhanced Histone Acetylation and Activation of Aryl Hydrocarbon Receptor Signaling. Mol Neurobiol 2019; 56:6986-7002. [PMID: 30963442 DOI: 10.1007/s12035-019-1565-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
Multidrug resistance protein 1 (MDR1, ABCB1, P-glycoprotein) is a critical efflux transporter that extrudes chemicals from the blood-brain barrier (BBB) and limits neuronal exposure to xenobiotics. Prior studies in malignant cells demonstrated that MDR1 expression can be altered by inhibition of histone deacetylases (HDAC), enzymes that modify histone structure and influence transcription factor binding to DNA. Here, we sought to identify the mechanisms responsible for the up-regulation of MDR1 by HDAC inhibitors in human BBB cells. Immortalized human brain capillary endothelial (hCMEC/D3) cells were treated with HDAC inhibitors and assessed for MDR1 expression and function. Of the HDAC inhibitors profiled, valproic acid (VPA), apicidin, and suberoylanilide hydroxamic acid (SAHA) increased MDR1 mRNA and protein levels by 30-200%, which corresponded with reduced intracellular accumulation of the MDR1 substrate rhodamine 123. Interestingly, induction of MDR1 mRNA by HDAC inhibitors mirrored increases in the expression of the aryl hydrocarbon receptor (AHR) and its target gene cytochrome P450 1A1. To explore the role of AHR in HDAC inhibitor-mediated regulation of MDR1, a pharmacological activator (β-naphthoflavone, βNF) and inhibitor (CH-223191, CH) of AHR were tested. The induction of MDR1 in cells treated with SAHA was amplified by βNF and attenuated by CH. Furthermore, SAHA increased the binding of acetylated histone H3K9/K14 and AHR proteins to regions of the MDR1 promoter that contain AHR response elements. In conclusion, HDAC inhibitors up-regulate the expression and activity of the MDR1 transporter in human brain endothelial cells by increasing histone acetylation and facilitating AHR binding at the MDR1 promoter.
Collapse
|
17
|
Alam MM, Hassan AH, Lee KW, Cho MC, Yang JS, Song J, Min KH, Hong J, Kim DH, Lee YS. Design, synthesis and cytotoxicity of chimeric erlotinib-alkylphospholipid hybrids. Bioorg Chem 2019; 84:51-62. [DOI: 10.1016/j.bioorg.2018.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/03/2018] [Accepted: 11/17/2018] [Indexed: 11/25/2022]
|
18
|
Park JK, Seo JS, Lee SK, Chan KK, Kuh HJ. Combinatorial Antitumor Activity of Oxaliplatin with Epigenetic Modifying Agents, 5-Aza-CdR and FK228, in Human Gastric Cancer Cells. Biomol Ther (Seoul) 2018; 26:591-598. [PMID: 30173503 PMCID: PMC6254647 DOI: 10.4062/biomolther.2018.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/13/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Epigenetic silencing is considered to be a major mechanism for loss of activity in tumor suppressors. Reversal of epigenetic silencing by using inhibitors of DNA methyltransferase (DNMT) or histone deacetylases (HDACs) such as 5-Aza-CdR and FK228 has shown to enhance cytotoxic activities of several anticancer agents. This study aims to assess the combinatorial effects of gene-silencing reversal agents (5-Aza-CdR and FK228) and oxaliplatin in gastric cancer cells, i.e., Epstein-Barr virus (EBV)-negative SNU-638 and EBV-positive SNU-719 cells. The doublet combinatorial treatment of 5-Aza-CdR and FK228 exhibited synergistic effects in both cell lines, and this was further corroborated by Zta expression induction in SNU-719 cells. Three drug combinations as 5-Aza-CdR/FK228 followed by oxaliplatin, however, resulted in antagonistic effects in both cell lines. Simultaneous treatment with FK228 and oxaliplatin induced synergistic and additive effects in SNU-638 and SNU-719 cells, respectively. Three drug combinations as 5-Aza-CdR prior to FK228/oxaliplatin, however, again resulted in antagonistic effects in both cell lines. This work demonstrated that efficacy of doublet synergistic combination using DNMT or HDACs inhibitors can be compromised by adding the third drug in pre- or post-treatment approach in gastric cancer cells. This implies that the development of clinical trial protocols for triplet combinations using gene-silencing reversal agents should be carefully evaluated in light of their potential antagonistic effects.
Collapse
Affiliation(s)
- Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jung Seon Seo
- Department of Biomedicine & Health Science, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Suk Kyeong Lee
- Department of Biomedicine & Health Science, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kenneth K Chan
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Science, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
19
|
Histone deacetylase inhibitor SAHA-induced epithelial-mesenchymal transition by upregulating Slug in lung cancer cells. Anticancer Drugs 2018; 29:80-88. [PMID: 29176396 DOI: 10.1097/cad.0000000000000573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
SAHA, a member of histone deacetylase inhibitors (HDACIs), which emerged as a class of novel antitumor drug, has been used in clinical treatment of cancers. However, clinical experience of SAHA in solid tumors has been disappointing. Nevertheless, the underlying mechanism of this deficiency is not clearly understood. In the present study, we found that SAHA could induce epithelial-mesenchymal transitions (EMT) in lung cancer A549 cells, which was associated with increased migration capability and cellular morphology changes. We showed that SAHA decreased epithelial marker E-cadherin's expression and increased the expression of mesenchymal marker vimentin. SAHA upregulated the protein and mRNA expression of transcription factor Slug in a time-dependent manner and promoted its nuclear translocation. We further demonstrated that SAHA upregulated Slug expression by promoting Slug acetylation but not influencing the phosphorylation of GSK-3β, a main kinase-controlled Slug expression. Finally, silencing of Slug by siRNA reversed EMT marker expressions and cellular morphology change induced by SAHA, suggesting that Slug plays a crucial role in SAHA-mediated EMT in A549 cells. Our research study provided a better understanding of treatment failure of SAHA in patients with solid tumors. Therefore, more attention should be paid to cancer treatment using SAHA and strategies for reversing EMT before using SAHA would be better if the value of SAHA in the treatment of solid tumors, especially lung cancer, is realized.
Collapse
|
20
|
Sodium butyrate increases P-gp expression in lung cancer by upregulation of STAT3 and mRNA stabilization of ABCB1. Anticancer Drugs 2018; 29:227-233. [PMID: 29293118 DOI: 10.1097/cad.0000000000000588] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As a new type of anticancer drug, the effect of histone deacetylase inhibitors (HDACIs) in cancer clinical therapy is disappointing owing to drug resistance. P-glycoprotein (P-gp) is clearly recognized as a multidrug resistance protein. However, the relationship between P-gp and sodium butyrate (SB), a kind of HDACIs, has not been investigated. In this study, we found that SB increased mRNA and protein expression of P-gp in lung cancer cells and the underlying mechanisms were elucidated. We found that SB treatment enhanced the mRNA and protein expression of STAT3 rather than that of β-catenin, Foxo3a, PXR, or CAR, which were reported to directly regulate the transcription of ABCB1, a P-gp-encoding gene. Interestingly, inhibition of STAT3 expression obviously attenuated SB-increased P-gp expression in lung cancer cells, indicating that STAT3 played an important role in SB-mediated P-gp upregulation. Furthermore, we found that SB increased the mRNA stability of ABCB1. In summary, this study showed that SB increased P-gp expression by facilitating transcriptional activation and improving ABCB1 mRNA stability. This study indicated that we should pay more attention to HDACIs during cancer clinical therapy.
Collapse
|
21
|
Duan HY, Ma D, Zhou KY, Wang T, Zhang Y, Li YF, Wu JL, Hua YM, Wang C. Effect of Histone Deacetylase Inhibition on the Expression of Multidrug Resistance-associated Protein 2 in a Human Placental Trophoblast Cell Line. Chin Med J (Engl) 2018; 130:1352-1360. [PMID: 28524836 PMCID: PMC5455046 DOI: 10.4103/0366-6999.206352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Placental multidrug resistance-associated protein 2 (MRP2), encoded by ABCC2 gene in human, plays a significant role in regulating drugs' transplacental transfer rates. Studies on placental MRP2 regulation could provide more therapeutic targets for individualized and safe pharmacotherapy during pregnancy. Currently, the roles of epigenetic mechanisms in regulating placental drug transporters are still unclear. This study aimed to investigate the effect of histone deacetylases (HDACs) inhibition on MRP2 expression in the placental trophoblast cell line and to explore whether HDAC1/2/3 are preliminarily involved in this process. METHODS The human choriocarcinoma-derived trophoblast cell line (Bewo cells) was treated with the HDAC inhibitors-trichostatin A (TSA) at different concentration gradients of 0.5, 1.0, 3.0, and 5.0 μmol/L. Cells were harvested after 24 and 48 h treatment. Small interfering RNA (siRNA) specific for HDAC1/HDAC2/HDAC3 or control siRNA was transfected into cells. Total HDAC activity was detected by colorimetric assay kits. HDAC1/2/3/ABCC2 messenger RNA (mRNA) and protein expressions were determined by real-time quantitative polymerase chain reaction and Western-blot analysis, respectively. Immunofluorescence for MRP2 protein expression was visualized and assessed using an immunofluorescence microscopy and ImageJ software, respectively. RESULTS TSA could inhibit total HDAC activity and HDAC1/2/3 expression in company with increase of MRP2 expression in Bewo cells. Reduction of HDAC1 protein level was noted after 24 h of TSA incubation at 1.0, 3.0, and 5.0 μmol/L (vs. vehicle group, all P < 0.001), accompanied with dose-dependent induction of MRP2 expression (P = 0.045 for 1.0 μmol/L, P = 0.001 for 3.0 μmol/L, and P < 0.001 for 5.0 μmol/L), whereas no significant differences in MRP2 expression were noted after HDAC2/3 silencing. Fluorescent micrograph images of MRP2 protein were expressed on the cell membrane. The fluorescent intensities of MRP2 in the control, HDAC2, and HDAC3 siRNA-transfected cells were week, and no significant differences were noticed among these three groups (all P > 0.05). However, MRP2 expression was remarkably elevated in HDAC1 siRNA-transfected cells, which displayed an almost 3.19-fold changes in comparison with the control siRNA-transfected cells (P < 0.001). CONCLUSIONS HDACs inhibition could up-regulate placental MRP2 expression in vitro, and HDAC1 was probably to be involved in this process.
Collapse
Affiliation(s)
- Hong-Yu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dan Ma
- Department of Pediatric Rehabilitation, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai-Yu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan 610041; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan 610041; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Fei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin-Lin Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Min Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan 610041; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
22
|
Addressing intra-tumoral heterogeneity and therapy resistance. Oncotarget 2018; 7:72322-72342. [PMID: 27608848 PMCID: PMC5342165 DOI: 10.18632/oncotarget.11875] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
In the last several years, our appreciation of intra-tumoral heterogeneity has greatly increased due to accumulating evidence for the co-existence of genetically and epigenetically divergent cancer cells residing in different microenvironments within a tumor. Herein, we review recent literature discussing intra-tumoral heterogeneity in the context of therapy resistance mechanisms at the genetic, epigenetic and microenvironmental levels. We illustrate the influence of tumor microenvironment on therapy resistance and epigenetic states of cancer cells by highlighting the role of cancer stem cells in therapy resistance. We also summarize different strategies that have been employed to address various resistance mechanisms at genetic, epigenetic, and microenvironmental levels in preclinical and clinical studies. We propose that future personalized cancer therapy design needs to incorporate dynamic and comprehensive analyses of tumor heterogeneity landscape and multi-dimensional mechanisms of therapy resistance.
Collapse
|
23
|
Wang H, Huang C, Zhao L, Zhang H, Yang JM, Luo P, Zhan BX, Pan Q, Li J, Wang BL. Histone deacetylase inhibitors regulate P-gp expression in colorectal cancer via transcriptional activation and mRNA stabilization. Oncotarget 2018; 7:49848-49858. [PMID: 27409663 PMCID: PMC5226552 DOI: 10.18632/oncotarget.10488] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/12/2016] [Indexed: 01/08/2023] Open
Abstract
Histone deacetylase inhibitors (HDACIs) are emerging as a novel class of anti-tumor drugs. But the effect of HDACIs in tumors treatment has been disappointing, which mainly due to the acquisition of resistance to HDACIs. However, the underlying mechanisms have not been clearly understood. In this study, it was found that HDACIs SAHA and TSA increased P-gp expression in CRC cells, which has been well known to contribute to drug resistant. The mechanisms underlying these effects were investigated. We showed that HDACIs enhanced transcriptional activity of P-gp protein encoding gene ABCB1. HDACIs treatment also increased the protein and mRNA expression of STAT3, but not PXR, CAR, Foxo3a or β-catenin, which are known to be involved in ABCB transcription regulation. Interestingly, knockdown of STAT3 significantly attenuated HDACIs-induced P-gp up-regulation in colorectal cancer cells, suggesting that STAT3 plays a crucial role in HDACIs-up-regulated P-gp. Furthermore, this study revealed for the first time that HDACIs enhanced the stability of ABCB1 at post-transcriptional level. Taken together, these results proved that HDACIs induced P-gp expression by two distinct ways, transcriptional activation and mRNA stabilization. Our results suggested that more attention should be paid to the cancer treatment using HDACIs since they will induce multidrug resistance in cancer cells.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Liang Zhao
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Huan Zhang
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Jing Mo Yang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, West Branch of Anhui Provincial Hospital, Hefei, China
| | - Peng Luo
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Bing-Xiang Zhan
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Qing Pan
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Bao-Long Wang
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Valproic Acid as a Promising Co-Treatment With Paclitaxel and Doxorubicin in Different Ovarian Carcinoma Cell Lines. Int J Gynecol Cancer 2016; 26:1546-1556. [DOI: 10.1097/igc.0000000000000814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
ObjectiveThe current preferred treatment of ovarian cancer is combination chemotherapy, usually a platinum-based drug coupled with paclitaxel (PTX). Here, we investigated whether co-treatment with valproic acid (VPA) could increase the efficiency of various ovarian cancer drugs—PTX, doxorubicin (DOX), carboplatin (CBP), and cyclophosphamide (CP)—in different ovarian cancer cell lines.MethodsThree different ovarian cancer cell lines (OVCAR-3, TOV-21G, and TOV-112D) were treated with chemotherapeutic drugs, alone or in combination with VPA. Cell viability (XTT assay), caspase-3 activity, and the expression of cell cycle– and apoptosis-related genes and proteins were assessed. Furthermore, the effects of these drugs on α-tubulin acetylation and DNA fragmentation were investigated.ResultsPaclitaxel and DOX decreased cell viability and increased caspase-3 activity, and co-treatment with VPA enhanced this effect. Carboplatin and CP had no effect. Responses to treatment with PAX and DOX together with VPA on gene expression profile were highly variable and depended on the cell line investigated. However, a common feature in all cell lines was an increased expression ofCDKN1A,CCNE1,PARP1, andPARP3. Co-treatment with VPA enhanced the effect of DOX and PAX on most protein expressions investigated in TOV-21G and TOV-112D cell lines, whereas in OVCAR-3, the most effect was seen with DOX with VPA. Valproic acid did not increase PTX-induced α-tubulin acetylation. An additive effect of DOX with VPA on DNA fragmentation was observed in TOV-21G and TOV-112D cell lines but not in the OVCAR-3.ConclusionsOur results indicate that VPA could be a promising agent in combined anticancer therapy for ovarian cancer, with the combination of VPA and DOX being the most effective. Certainly, additional in vivo and ex vivo experiments are necessary to investigate the molecular mechanisms of action underlying the cellular effects reported here and to study possible clinically relevant effects in ovarian cancer explants.
Collapse
|
25
|
Zhao H, Yu Z, Zhao L, He M, Ren J, Wu H, Chen Q, Yao W, Wei M. HDAC2 overexpression is a poor prognostic factor of breast cancer patients with increased multidrug resistance-associated protein expression who received anthracyclines therapy. Jpn J Clin Oncol 2016; 46:893-902. [PMID: 27432453 DOI: 10.1093/jjco/hyw096] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 06/21/2016] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVE Previous studies have revealed the association of multidrug resistance with histone deacetylases inhibitors treatment in cancer cells. But little data were available for the correlation of histone deacetylases and drug-resistant-related proteins in breast cancer tissue. This study aimed to exploring the association of histone deacetylases expression with clinicopathological features, drug-resistant-related proteins, prognosis and therapeutic responses in breast cancer patients. METHODS We performed immunohistochemistry to study the expression of HDAC1 and HDAC2 in 226 breast cancer and 34 breast fibroadenoma patients, and the expression of breast cancer resistance protein, P-glycoprotein, lung resistance protein and multidrug resistance protein in 226 breast cancer. RESULTS In breast cancer, HDAC2 expression was significantly increased than in fibroadenoma (P = 0.015), and correlated with lymph node metastasis (P = 0.002), advanced clinical stages (P = 0.016) and high histological grade (P = 0.001). Significant positive correlations were found between HDAC2 and Ki67, HDAC1 and multidrug resistance protein, HDAC2 and breast cancer resistance protein, HDAC2 and multidrug resistance protein. HDAC2 positive expression was associated with shorter overall survival (P = 0.035) of breast cancer patients. In addition, HDAC2-positive expression was significantly associated with shorter overall survival in multidrug resistance protein-positive patients (P = 0.034), but not in multidrug resistance protein-negative patients (P = 0.530). HDAC2-positive expression was associated with shorter survival in patients who received chemotherapy containing anthracyclines (overall survival, P = 0.041; disease-free survival, P = 0.084), but not in patients who received chemotherapy without anthracyclines (overall survival, P = 0.679; disease-free survival, P = 0.708). CONCLUSIONS HDAC2 overexpression correlated with the metastasis, progression and the increased Ki67, multidrug resistance protein expression in breast cancer, and HDAC2 could be a prognostic factor of breast cancer patients, especially the patients who received anthracyclines therapy.
Collapse
Affiliation(s)
- Haishan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China
| | - Jie Ren
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China
| | - Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China
| |
Collapse
|
26
|
Intercellular transfer of P-glycoprotein in human blood-brain barrier endothelial cells is increased by histone deacetylase inhibitors. Sci Rep 2016; 6:29253. [PMID: 27375084 PMCID: PMC4931680 DOI: 10.1038/srep29253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/14/2016] [Indexed: 12/14/2022] Open
Abstract
The blood–brain barrier (BBB) controls the entry of compounds into the brain, thereby regulating brain homeostasis. Efflux transporters such as P-glycoprotein (Pgp) significantly contribute to BBB function. Multiple signaling pathways modulate the expression and activity of Pgp in response to xenobiotics and disease. A non-genetic way of intercellular transfer of Pgp occurs in cancer cells, but whether this also occurs in non-cancer cells such as endothelial cells that form the BBB is not known. A human brain endothelial cell line (hCMEC/D3) was used to study whether cell-to-cell Pgp transfer occurs during co-culturing with Pgp-EGFP expressing hCMEC/D3 cells. The Pgp-EGFP fusion protein was transferred from donor to recipient cells by cell-to-cell contact and Pgp-EGFP enriched vesicles, which were exocytosed by donor cells and endocytosed by adherent recipient cells. Flow cytometry experiments with the Pgp substrate eFLUXX-ID Gold demonstrated that the transferred Pgp is functional in the recipient cells. Exposure of the donor cells with inhibitors of histone deacetylases (HDACs) resulted in an enhanced intercellular Pgp transfer. Non-genetic transfer of a resistance phenotype and its regulation by HDACs is a novel mechanism of altering BBB functionality. This mechanism may have important implications for understanding drug-induced alterations in Pgp expression and activity.
Collapse
|
27
|
Prakash C, Zuniga B, Song CS, Jiang S, Cropper J, Park S, Chatterjee B. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions. NUCLEAR RECEPTOR RESEARCH 2015; 2:101178. [PMID: 27478824 PMCID: PMC4963026 DOI: 10.11131/2015/101178] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug's impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and microfluidic organs-on-chips, which mimic the physiology of a multicellular environment, will likely replace the current cell-based workflow.
Collapse
Affiliation(s)
- Chandra Prakash
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- William Carey University College of Osteopathic Medicine, 498 Tucsan Ave, Hattiesburg, Mississipi 39401
| | - Baltazar Zuniga
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- University of Texas at Austin, 2100 Comal Street, Austin, Texas 78712
| | - Chung Seog Song
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Shoulei Jiang
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Jodie Cropper
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Sulgi Park
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Bandana Chatterjee
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- South Texas Veterans Health Care System, Audie L Murphy VA Hospital, 7400 Merton Minter Boulevard, San Antonio, Texas 78229
| |
Collapse
|