1
|
Thakur M, Verma R, Kumar D, Das PP, Dhalaria R, Kumar A, Kuca K, Azizov S, Kumar D. Revisiting the ethnomedicinal, ethnopharmacological, phytoconstituents and phytoremediation of the plant Solanum viarum Dunal. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5513-5531. [PMID: 38498057 DOI: 10.1007/s00210-024-03034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
Solanum viarum, a perennial shrub, belongs to the family Solanaceae known for its therapeutic value worldwide. As a beneficial remedial plant, it is used for treating several disorders like dysentery, diabetes, inflammation, and respiratory disorders. Phytochemistry studies of this plant have shown the presence of steroidal glycoside alkaloids, including solasonine, solasodine, and solamargine. It also has flavonoids, saponins, minerals, and other substances. S. viarum extracts and compounds possess a variety of pharmacological effects, including antipyretic, antioxidant, antibacterial, insecticidal, analgesic, and anticancer activity. Most of the heavy metals accumulate in the aerial sections of the plant which is considered a potential phytoremediation, a highly effective method for the treatment of metal-polluted soils. We emphasize the forgoing outline of S. viarum, as well as its ethnomedicinal and ethnopharmacological applications, the chemistry of its secondary metabolites, and heavy metal toxicity. In addition to describing the antitumor activity of compounds and their mechanisms of action isolated from S. viarum, liabilities are also explained and illustrated, including any significant chemical or metabolic stability and toxicity risks. A comprehensive list of information was compiled from Science Direct, PubMed, Google Scholar, and Web of Science using different key phrases (traditional use, ethnomedicinal plants, western Himalaya, Himachal Pradesh, S viarum, and biological activity). According to the findings of this study, we hope that this review will inspire further studies along the drug discovery pathway of the chemicals extracted from the plant of S. viarum. Further, this review shows that ethnopharmacological information from ethnomedicinal plants can be a promising approach to drug discovery for cancer and diabetes.
Collapse
Affiliation(s)
- Mehak Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Priyanku Pradip Das
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Ajay Kumar
- ICFRE-Himalayan Forest Research Institute, Shimla, Himachal Pradesh, 171013, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Shavkatjon Azizov
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
2
|
Jan S, Iram S, Bashir O, Shah SN, Kamal MA, Rahman S, Kim J, Jan AT. Unleashed Treasures of Solanaceae: Mechanistic Insights into Phytochemicals with Therapeutic Potential for Combatting Human Diseases. PLANTS (BASEL, SWITZERLAND) 2024; 13:724. [PMID: 38475570 DOI: 10.3390/plants13050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 03/14/2024]
Abstract
Plants that possess a diverse range of bioactive compounds are essential for maintaining human health and survival. The diversity of bioactive compounds with distinct therapeutic potential contributes to their role in health systems, in addition to their function as a source of nutrients. Studies on the genetic makeup and composition of bioactive compounds have revealed them to be rich in steroidal alkaloids, saponins, terpenes, flavonoids, and phenolics. The Solanaceae family, having a rich abundance of bioactive compounds with varying degrees of pharmacological activities, holds significant promise in the management of different diseases. Investigation into Solanum species has revealed them to exhibit a wide range of pharmacological properties, including antioxidant, hepatoprotective, cardioprotective, nephroprotective, anti-inflammatory, and anti-ulcerogenic effects. Phytochemical analysis of isolated compounds such as diosgenin, solamargine, solanine, apigenin, and lupeol has shown them to be cytotoxic in different cancer cell lines, including liver cancer (HepG2, Hep3B, SMMC-772), lung cancer (A549, H441, H520), human breast cancer (HBL-100), and prostate cancer (PC3). Since analysis of their phytochemical constituents has shown them to have a notable effect on several signaling pathways, a great deal of attention has been paid to identifying the biological targets and cellular mechanisms involved therein. Considering the promising aspects of bioactive constituents of different Solanum members, the main emphasis was on finding and reporting notable cultivars, their phytochemical contents, and their pharmacological properties. This review offers mechanistic insights into the bioactive ingredients intended to treat different ailments with the least harmful effects for potential applications in the advancement of medical research.
Collapse
Affiliation(s)
- Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| | - Sana Iram
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Ommer Bashir
- Department of School Education, Srinagar 190001, Jammu and Kashmir, India
| | - Sheezma Nazir Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin AbdulAziz University, Alkharj 11942, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| |
Collapse
|
3
|
Zhang H, Lv JL, Zheng QS, Li J. Active components of Solanum nigrum and their antitumor effects: a literature review. Front Oncol 2023; 13:1329957. [PMID: 38192621 PMCID: PMC10773844 DOI: 10.3389/fonc.2023.1329957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Cancer poses a serious threat to human health and overall well-being. Conventional cancer treatments predominantly encompass surgical procedures and radiotherapy. Nevertheless, the substantial side effects and the emergence of drug resistance in patients significantly diminish their quality of life and overall prognosis. There is an acute need for innovative, efficient therapeutic agents to address these challenges. Plant-based herbal medicines and their derived compounds offer promising potential for cancer research and treatment due to their numerous advantages. Solanum nigrum (S. nigrum), a traditional Chinese medicine, finds extensive use in clinical settings. The steroidal compounds within S. nigrum, particularly steroidal alkaloids, exhibit robust antitumor properties either independently or when combined with other drugs. Many researchers have delved into unraveling the antitumor mechanisms of the active components present in S. nigrum, yielding notable progress. This literature review provides a comprehensive analysis of the research advancements concerning the active constituents of S. nigrum. Furthermore, it outlines the action mechanisms of select monomeric anticancer ingredients. Overall, the insights derived from this review offer a new perspective on the development of clinical anticancer drugs.
Collapse
Affiliation(s)
- Han Zhang
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- College of Pharmacy, Shihezi University, Shihezi, China
| | - Jun-lin Lv
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Qiu-sheng Zheng
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- College of Pharmacy, Shihezi University, Shihezi, China
| | - Jie Li
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Huang S, Sun M, Ren Y, Luo T, Wang X, Weng G, Cen D. Solamargine induces apoptosis of human renal carcinoma cells via downregulating phosphorylated STAT3 expression. Oncol Lett 2023; 26:493. [PMID: 37854861 PMCID: PMC10579987 DOI: 10.3892/ol.2023.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/01/2023] [Indexed: 10/20/2023] Open
Abstract
Solamargine (SM), an active compound derived from Solanum nigrum, triggers apoptosis and inhibits the metastatic and oxidative activities of various types of tumor cells. However, the effect of SM on human renal carcinoma cells remains unknown. In the present study, the molecular mechanisms underlying the antitumor effects of SM on ACHN and 786-O cells were elucidated. Specifically, MTT and colony formation assays were conducted to evaluate the impact of SM treatment on the proliferation of ACHN and 786-O cells, and flow cytometry was conducted to determine the influence of SM on the apoptosis rates of these cells. In addition, the expression of target proteins was determined by western blotting. The results revealed that SM not only inhibited cell viability but also promoted the apoptosis of ACHN and 786-O cells in a time- and dose-dependent manner. Moreover, treatment of ACHN and 786-O cells with SM significantly enhanced the caspase-3, caspase-8 and caspase-9 activities. Furthermore, SM downregulated the expression of phosphorylated signal transducer and activator of transcription-3 (p-STAT3) and Bcl-2 but increased the expression of cleaved caspase-3, -8, -9 and Bax. BAY2353, a p-STAT3 inhibitor, inhibited the viability of ACHN and 786-O cells, increased the expression of cleaved caspase-9 and Bax and decreased the expression of p-STAT3 and Bcl-2. Further experiments demonstrated that SM inhibited tumor growth in xenograft nude mice without causing specific toxicity to the major organs. Collectively, these findings indicated that SM not only inhibited the viability but also promoted the apoptosis of ACHN and 786-O cells, through a mechanism involving downregulation of p-STAT3 expression.
Collapse
Affiliation(s)
- Shuaishuai Huang
- Laboratory of Renal Carcinoma, Ningbo Yinzhou No. 2 Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Minyi Sun
- Laboratory of Renal Carcinoma, Ningbo Yinzhou No. 2 Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Yu Ren
- Laboratory of Renal Carcinoma, Ningbo Yinzhou No. 2 Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Ting Luo
- Department of Medical Laboratory, Ningbo Yinzhou No. 2 Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Xue Wang
- Laboratory of Renal Carcinoma, Ningbo Yinzhou No. 2 Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Guobin Weng
- Laboratory of Renal Carcinoma, Ningbo Yinzhou No. 2 Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Dong Cen
- Department of Medical Laboratory, Ningbo Yinzhou No. 2 Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| |
Collapse
|
5
|
Delbrouck JA, Desgagné M, Comeau C, Bouarab K, Malouin F, Boudreault PL. The Therapeutic Value of Solanum Steroidal (Glyco)Alkaloids: A 10-Year Comprehensive Review. Molecules 2023; 28:4957. [PMID: 37446619 DOI: 10.3390/molecules28134957] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.
Collapse
Affiliation(s)
- Julien A Delbrouck
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Christian Comeau
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Kamal Bouarab
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
6
|
Winkiel MJ, Chowański S, Słocińska M. Anticancer activity of glycoalkaloids from Solanum plants: A review. Front Pharmacol 2022; 13:979451. [PMID: 36569285 PMCID: PMC9767987 DOI: 10.3389/fphar.2022.979451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is still one of the main causes of death worldwide. For this reason, new compounds that have chemotherapeutic potential have been identified. One such group of substances is Solanaceae glycoalkaloids (GAs). They are natural compounds produced by plants widely used in traditional medicine for healing many disorders. Among others, GAs exhibit significant antitumor properties, for example, a strong inhibitory effect on cancer cell growth. This activity can result in the induction of tumor cell apoptosis, which can occur via different molecular pathways. The molecular mechanisms of the action of GAs are the subject of intensive research, as improved understanding could lead to the development of new cancer therapies. The genetic basis for the formation of neoplasms are mutations in protooncogenes, suppressors, and apoptosis-controlling and repair genes; therefore, substances with antineoplastic properties may affect the levels of their expression or the levels of their expression products. Therapeutic compounds can be applied separately or in combination with other drugs to increase the efficiency of cancer therapy; they can act on the cell through various mechanisms at different stages of carcinogenesis, inducing the process of apoptosis, blocking cell proliferation and migration, and inhibiting angiogenesis. This review summarizes the newest studies on the anticancer properties of solanine (SN), chaconine (CH), solasonine (SS), solamargine (SM), tomatine (TT) and their extracts from Solanum plants.
Collapse
|
7
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
8
|
Han Y, Shi J, Xu Z, Zhang Y, Cao X, Yu J, Li J, Xu S. Identification of solamargine as a cisplatin sensitizer through phenotypical screening in cisplatin-resistant NSCLC organoids. Front Pharmacol 2022; 13:802168. [PMID: 36034794 PMCID: PMC9399411 DOI: 10.3389/fphar.2022.802168] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Although Cisplatin (DDP) is a widely used first-line chemotherapy medication, DDP resistance is one of the main causes of treatment failure in advanced lung cancer. Therefore, it is urgent to identify DDP sensitizers and investigate the underlying molecular mechanisms. Here we utilized DDP-resistant organoids established from tumor biopsies of patients with relapsed lung cancers. In this study, we identified Solamargine as a potential DDP sensitizer through screening a natural product library. Mechanically, Solamargine induced G0/G1-phase arrest and apoptosis in DDP-resistant lung cancer cell lines. Gene expression analysis and KEGG pathway analysis indicated that the hedgehog pathway was suppressed by Solamargine. Moreover, Gli responsive element (GRE) reporter gene assay and BODIPY-cyclopamine binding assay showed that Solamargine inhibited the hedgehog pathway via direct binding to SMO protein. Interestingly, Solamargine and DDP showed a synergetic effect in inhibiting DDP-resistant lung cancer cell lines. Taken together, our work herein revealed Solamargine as a hedgehog pathway inhibitor and DDP-sensitizer, which might provide a new direction for further treatment of advanced DDP-resistant lung cancer patients.
Collapse
Affiliation(s)
- Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jianquan Shi
- Department of Critical Care Medicine, Beijing Chest Hospital, Capital Medical University and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ziwei Xu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yushan Zhang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoqing Cao
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jianhua Yu
- Department of Oncology, Wang Jing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Department of Oncology, Beijing Chest Hospital, Capital Medical University and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Jie Li, ; Shaofa Xu,
| | - Shaofa Xu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Jie Li, ; Shaofa Xu,
| |
Collapse
|
9
|
Li JH, Li SY, Shen MX, Qiu RZ, Fan HW, Li YB. Anti-tumor effects of Solanum nigrum L. extraction on C6 high-grade glioma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114034. [PMID: 33746002 DOI: 10.1016/j.jep.2021.114034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum nigrum L. (SN) is a traditional Chinese medicine with anti-tumor effects, has been used in cancer for centuries, but the role on high-grade gliomas (HGG) is not clear. AIM OF THE STUDY This work was to investigate the anti-tumor effects of SN extract on rat C6 glioma in vitro and in vivo, providing a new medium for the treatment of HGG. MATERIALS AND METHODS After identification and quality inspection of SN medicinal materials by HPLC-MS/MS and HPLC, CCK8 and colony formation assay were conducted to study the effects of SN on vitality and proliferation of C6 cells. Cell morphology was evaluated by HE staining, and flow cytometry was used for apoptosis analysis. The effects on cell migration and invasion were determined by transwell and wound healing assay. Western blot was used to further investigate the influence of SN on migration, invasion and apoptosis of tumor cells. In addition, the rat intracranial transplanted tumor model was used to evaluate the effects of SN on growth and infiltration of tumor and proliferation of transplanted tumor cells. RESULTS SN extract suppressed the viability of C6 cells in a dose-dependent manner. The extract attenuated cell cloning, migration and invasion, and induced cell Annexin V+ PI+ late-stage apoptosis. Besides, SN induced the expression of apoptotic proteins including Bax and Cleaved Caspase-3, downregulated anti-apoptotic protein Bcl-2, and decreased the level of migratory proteins MMP-2 and MMP-9. Moreover, SN reduced the growth and infiltration of C6 glioma tissue and suppressed the proliferation of tumor cells in rat brain. CONCLUSIONS SN extract has significant inhibitory activity on the growth and invasion of C6 HGG in vivo and in vitro.
Collapse
Affiliation(s)
- Jia-Hui Li
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Song-Ya Li
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Ming-Xue Shen
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Run-Ze Qiu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Hong-Wei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China.
| | - Ying-Bin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China.
| |
Collapse
|
10
|
Miranda MA, Marcato PD, Mondal A, Chowdhury N, Gebeyehu A, Surapaneni SK, Bentley MVLB, Amaral R, Pan CX, Singh M. Cytotoxic and chemosensitizing effects of glycoalkaloidic extract on 2D and 3D models using RT4 and patient derived xenografts bladder cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111460. [PMID: 33321591 PMCID: PMC8694857 DOI: 10.1016/j.msec.2020.111460] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 01/06/2023]
Abstract
Glycoalkaloids have been widely demonstrated as potential anticancer agents. However, the chemosensitizing effect of these compounds with traditional chemotherapeutic agents has not been explored yet. In a quest for novel effective therapies to treat bladder cancer (BC), we evaluated the chemosensitizing potential of glycoalkaloidic extract (GE) with cisplatin (cDDP) in RT4 and PDX cells using 2D and 3D cell culture models. Additionally, we also investigated the underlying molecular mechanism behind this effect in RT4 cells. Herein, we observed that PDX cells were highly resistant to cisplatin when compared to RT4 cells. IC50 values showed at least 2.16-folds and 1.4-folds higher in 3D cultures when compared to 2D monolayers in RT4 cells and PDX cells, respectively. GE + cDDP inhibited colony formation (40%) and migration (28.38%) and induced apoptosis (57%) in RT4 cells. Combination therapy induced apoptosis by down-regulating the expression of Bcl-2 (p < 0.001), Bcl-xL (p < 0.001) and survivin (p < 0.01), and activating the caspase cascade in RT4 cells. Moreover, decreased expression of MMP-2 and 9 (p < 0.01) were observed with combination therapy, implying its effect on cell invasion/migration. Furthermore, we used 3D bioprinting to grow RT4 spheroids using sodium alginate-gelatin as a bioink and evaluated the effect of GE + cDDP on this system. Cell viability assay showed the chemosensitizing effect of GE with cDDP on bio-printed spheroids. In summary, we showed the cytotoxicity effect of GE on BC cells and also demonstrated that GE could sensitize BC cells to chemotherapy.
Collapse
Affiliation(s)
- Mariza Abreu Miranda
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Priscyla Daniely Marcato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| | - Arindam Mondal
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Nusrat Chowdhury
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Aragaw Gebeyehu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | - Robson Amaral
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Chong-Xian Pan
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
11
|
Ramu AK, Ali D, Alarifi S, Syed Abuthakir MH, Ahmed Abdul BA. Reserpine inhibits DNA repair, cell proliferation, invasion and induces apoptosis in oral carcinogenesis via modulation of TGF-β signaling. Life Sci 2020; 264:118730. [PMID: 33160994 DOI: 10.1016/j.lfs.2020.118730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/06/2023]
Abstract
Reserpine is a natural indole alkaloid isolated from Rauwolfia serpentina and has potent antioxidant, antimicrobial, and anti-mutagenic properties. Accordingly, this study aimed to investigate the effect of reserpine on DNA repair, cell proliferation, invasion and apoptosis in 7,12-dimethylbenz[a]anthracene(DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. Transforming growth factor-β (TGF-β) was found to induce Smad2, 3 and 4 phosphorylation triggering Smad3/Snail mediated DNA repair proteins and Smad2/4 nuclear translocation. In contrast, reserpine inhibits TGF-β dependent Smad2/3/4 phosphorylation, thereby blockage Smad3/Snail activation and Smad2/4 nuclear translocation. Interruption of these oncogenic signaling pathways leads to downregulating ERCC1, XPF, Ku70, DNA-PKcs, PCNA, cyclin D1, HIF-1α, IL-6, Mcl-1 and stimulates Bax, cytochrome C, Apaf-1, caspase-9, caspase-3 and PARP protein expressions. This study provides therapeutic potential of reserpine in inhibiting DNA repair, cell proliferation, and invasion while simultaneously inducing apoptosis via modulation TGF-β signals.
Collapse
Affiliation(s)
- Arun Kumar Ramu
- Department of Biochemistry and Biotechnology, Centre for Research and Development, PRIST Deemed University, Vallam, Thanjavur, Tamil Nadu, India.
| | - Daoud Ali
- Department of Zoology, College of Science King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Bakrudeen Ali Ahmed Abdul
- Department of Biochemistry and Biotechnology, Centre for Research and Development, PRIST Deemed University, Vallam, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
12
|
Miranda MA, Marcato PD, Carvalho IPS, Silva LB, Ribeiro DL, Amaral R, Swiech K, Bastos JK, Paschoal JAR, Dos Reis RB, Bentley MVLB. Assessing the cytotoxic potential of glycoalkaloidic extract in nanoparticles against bladder cancer cells. ACTA ACUST UNITED AC 2019; 71:1520-1531. [PMID: 31385306 DOI: 10.1111/jphp.13145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study proposed to use the nanotechnology to deliver glycoalkaloidic extract (AE) to bladder cancer cells, evaluating their activity in 2D and 3D models and the biological mechanism of cell death. METHODS NPs were prepared by nanoprecipitation method using polylactic acid (PLA) and characterized considering their size, charge, particle concentration and stability. The cytotoxicity was evaluated in 2D and 3D model, and the apoptosis and cell cycle were investigated using flow cytometry. KEY FINDINGS NPs loading AE (NP-AE) had diameter around 125 ± 6 nm (PdI <0.1) and negative charge. The encapsulation efficiency of SM and SS was higher than 85% for both compounds. The obtained formulation showed a significant in-vitro cytotoxic effect against RT4 cells in a dose-dependent manner with IC50 two fold lower than the free AE. The cytotoxic effect of NP-AE was mediated by apoptosis and cell cycle arrested in the S phase. RT4 cells cultured under 3D conditions exhibited a higher resistance to the treatments (IC50 ~ three fold higher than in 2D cell culture). CONCLUSION The NP-AE might be a promising nanocarrier to load and deliver glycoalkaloids against bladder cancer.
Collapse
Affiliation(s)
- Mariza A Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Priscyla D Marcato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ivana P S Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Letícia B Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Diego L Ribeiro
- Division of Urology, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Robson Amaral
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Kamilla Swiech
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Jonas A R Paschoal
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Rodolfo B Dos Reis
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Maria V L B Bentley
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
An W, Lai H, Zhang Y, Liu M, Lin X, Cao S. Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Front Pharmacol 2019; 10:758. [PMID: 31354479 PMCID: PMC6639427 DOI: 10.3389/fphar.2019.00758] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Apoptosis is a process of programmed cell death and it plays a vital role in human development and tissue homeostasis. Mounting evidence indicates that apoptosis is closely related to the survival of cancer and it has emerged as a key target for the discovery and development of novel anticancer drugs. Various studies indicate that targeting the apoptotic signaling pathway by anticancer drugs is an important mechanism in cancer therapy. Therefore, numerous novel anticancer agents have been discovered and developed from traditional Chinese medicines (TCMs) by targeting the cellular apoptotic pathway of cancer cells and shown clinically beneficial effects in cancer therapy. This review aims to provide a comprehensive discussion for the role, pharmacology, related biology, and possible mechanism(s) of a number of important anticancer TCMs and their derivatives mainly targeting the cellular apoptotic pathway. It may have important clinical implications in cancer therapy.
Collapse
Affiliation(s)
- Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Nanchong Central Hospital, Nanchong, China
| | - Honglin Lai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Liu J, Wang Z, Xu C, Qi Y, Zhang Q. Solamargine inhibits proliferation and promotes apoptosis of CM-319 human chordoma cells through suppression of notch pathway. Transl Cancer Res 2019; 8:509-519. [PMID: 35116783 PMCID: PMC8798112 DOI: 10.21037/tcr.2019.03.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
Background Solamargine (SM), which represents a natural steroid alkaloid glycoside compound and a cytotoxic agent, has been proved to enhance the sensitivity of lung cancer cells to tumor necrosis factors (TNFs). In this study, we aimed to investigate the roles and mechanisms of SM in chordoma. Methods Cell viability, proliferation, apoptosis and cell cycle were measured by cell counting Kit-8 (CCK-8) assay, 5(6)-carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling and flow cytometry (FCM), respectively. Western blot and quantitative real-time reverse transcription PCR (qRT-PCR) assays were performed to detect the expressions of related mRNAs and proteins. Results The results revealed that SM distinctly suppressed the proliferation of CM-319 cells. SM significantly induced the CM-319 cells apoptosis through up-regulating the expression levels of Caspase-3/8/9. The cell cycle of CM-319 cells was blocked by SM in G1 phase. Moreover, SM could significantly suppress the Notch pathway in CM-319 cells. Conclusions In conclusion, SM suppressed the proliferation and enhanced the apoptosis ability of CM-319 cells via suppressing the Notch pathway. The results suggested that SM might be a novel therapeutic agent and supported the utilization of SM in chordoma.
Collapse
Affiliation(s)
- Junqi Liu
- Department of Otolaryngology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Zhenlin Wang
- Department of Otolaryngology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Cong Xu
- Department of Otolaryngology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yan Qi
- Department of Otolaryngology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Qiuhang Zhang
- Department of Otolaryngology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| |
Collapse
|
15
|
Fu R, Wang X, Hu Y, Du H, Dong B, Ao S, Zhang L, Sun Z, Zhang L, Lv G, Ji J. Solamargine inhibits gastric cancer progression by regulating the expression of lncNEAT1_2 via the MAPK signaling pathway. Int J Oncol 2019; 54:1545-1554. [PMID: 30864686 PMCID: PMC6438418 DOI: 10.3892/ijo.2019.4744] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Solamargine, a derivative from the steroidal solasodine in Solanum species, has exhibited anticancer activities in numerous types of cancer; however, its role in gastric cancer (GC) remains unknown. In the present study, it was demonstrated that Solamargine suppressed the viability of five gastric cancer cell lines in a dose‑dependent manner and induced notable alterations in morphology. Treatment with Solamargine promoted cell apoptosis (P<0.01). Solamargine increased the expression of long noncoding RNA (lnc) p53 induced transcript and lnc nuclear paraspeckle assembly transcript 1 (NEAT1)_2 (P<0.01) in GC by reducing the phosphorylation of extracellular signal‑regulated kinase (Erk)1/2 mitogen‑activated protein kinase (MAPK). To gain insight into the potential mechanism, an Erk1/2 inhibitor (U0126) was applied. The results revealed that lncNEAT1_2 expression levels increased, which was consistent with the effects of Solamargine. Downregulation of lncNEAT1_2 in GC cells revealed no effect on the expression levels of total Erk1/2 and, and counteracted the effect of Solamargine. Solamargine was observed to increase the expression of lncNEAT1_2 via the Erk1/2 MAPK signaling pathway. Of note, the knockdown of lncNEAT1_2 reduced the inhibitory effect of Solamargine (P<0.05). Additionally, experiments in vivo and in primary GC cells from patients demonstrated that Solamargine significantly suppressed tumor growth (P<0.05). In vivo analysis of a xenograft mouse model further supported that Solamargine could induce the apoptosis of cancer cells in tumor tissue as observed by a terminal deoxynucleotidyl transferase‑mediated dUTP‑biotin nick end labeling and H&E staining (P<0.05). Experiments in primary GC cells from patients verified the anti‑tumor effect of Solamargine. In summary, the findings of the present study indicated that Solamargine inhibited the progression of GC by regulating lncNeat1_2 via the MAPK pathway.
Collapse
Affiliation(s)
- Runjia Fu
- Department of Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Xiaohong Wang
- Department of Central Biobank, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Ying Hu
- Department of Central Biobank, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Hong Du
- Department of Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Bin Dong
- Department of Pathology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Sheng Ao
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Li Zhang
- Department of Pathology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Zhijian Sun
- K2 Oncology Co., Ltd., Beijing 100061, P.R. China
| | - Lianhai Zhang
- Department of Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Guoqing Lv
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jiafu Ji
- Department of Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
16
|
Xie X, Zhang X, Chen J, Tang X, Wang M, Zhang L, Guo Z, Shen W. Fe3O4-solamargine induces apoptosis and inhibits metastasis of pancreatic cancer cells. Int J Oncol 2019; 54:905-915. [PMID: 30483763 PMCID: PMC6365027 DOI: 10.3892/ijo.2018.4637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 11/06/2022] Open
Abstract
Fe3O4-magnetic liposome (MLP) can deliver drugs to target tissues and can increase drug efficacy. The present study aimed to investigate the effects of solamargine (SM) and Fe3O4-SM in pancreatic cancer (PC). Cell viability was detected using a Cell Counting kit‑8 assay. Apoptosis and cell cycle progression was tested using a flow cytometry assay. A scratch assay was used to examine cell metastasis. Quantitative polymerase chain reaction, western blot analysis or immunohistochemical analysis were performed to determine the expression of target factors. Magnetic resonance imagining (MRI) and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labelling were conducted to detect tumor growth and apoptosis in vivo, respectively. It was demonstrated that Fe3O4-SM inhibited cancer cell growth via a slow release of SM over an extended period of time. SM was revealed to induce apoptosis and cell cycle arrest. Furthermore, SM decreased the expression of X-linked inhibitor of apoptosis, Survivin, Ki‑67, proliferating cell nuclear antigen and cyclin D1, but increased the activity of caspase-3. It was also observed that SM inhibited tumor cell metastasis by modulating the expression of matrix metalloproteinase (MMP)-2 and TIMP metallopeptidase inhibitor-2. Furthermore, the phosphorylation of protein kinase B and mechanistic target of rapamycin was suppressed by SM. Notably, the effect of SM was enhanced by Fe3O4-SM. The malignant growth of PC was decreased by SM in vivo. Furthermore, the expression of Ki‑67 was decreased by SM and Fe3O4-SM. Additionally, cell apoptosis was increased in the Fe3O4-SM group, compared with the SM group. The present study illustrated the antitumor effect and action mec-hanism produced by SM. Additionally, it was demonstrated that Fe3O4-SM was more effective than SM in protecting against PC.
Collapse
Affiliation(s)
| | | | | | - Xun Tang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | | | | | | | | |
Collapse
|
17
|
Pham MQ, Tran THV, Pham QL, Gairin JE. In silico analysis of the binding properties of solasonine to mortalin and p53, and in vitro pharmacological studies of its apoptotic and cytotoxic effects on human HepG2 and Hep3b hepatocellular carcinoma cells. Fundam Clin Pharmacol 2019; 33:385-396. [DOI: 10.1111/fcp.12447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/30/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Minh Quan Pham
- UPS UMR 152 Pharma‐DEV Université Toulouse 3 Faculté des Sciences Pharmaceutiques Université de Toulouse 35 Chemin des Maraîchers F‐31062 Toulouse France
- Institute of Natural Products Chemistry Vietnam Academy of Science and Technology Building 1H, 18 Hoang Quoc Viet Hanoi Vietnam
| | - Thi Hoai Van Tran
- Institute of Natural Products Chemistry Vietnam Academy of Science and Technology Building 1H, 18 Hoang Quoc Viet Hanoi Vietnam
- Vietnam Academy of Science and Technology Graduate University of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
- Vietnam University of Traditional Medicine Ministry of Health 2 Tran Phu Hanoi Vietnam
| | - Quoc Long Pham
- Institute of Natural Products Chemistry Vietnam Academy of Science and Technology Building 1H, 18 Hoang Quoc Viet Hanoi Vietnam
| | - Jean Edouard Gairin
- UPS UMR 152 Pharma‐DEV Université Toulouse 3 Faculté des Sciences Pharmaceutiques Université de Toulouse 35 Chemin des Maraîchers F‐31062 Toulouse France
| |
Collapse
|
18
|
Joshi RS, Tamhankar SA, Upadhye AS. Chemoprofiling and solamargine estimation from a Few Solanum species used as ‘Brihati’ and its market samples using a validated high-performance thin-layer chromatography method. JPC-J PLANAR CHROMAT 2018. [DOI: 10.1556/1006.2018.31.6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Renuka S. Joshi
- Biodiversity and Palaeobiology (Plant) Group, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, India
- Savitribai Phule Pune University, Pune 411007, India
| | | | - Anuradha S. Upadhye
- Biodiversity and Palaeobiology (Plant) Group, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, India
- Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
19
|
Chen X, Zhang L, Jiang Y, Song L, Liu Y, Cheng F, Fan X, Cao X, Gong A, Wang D, Zhu H. Radiotherapy-induced cell death activates paracrine HMGB1-TLR2 signaling and accelerates pancreatic carcinoma metastasis. J Exp Clin Cancer Res 2018; 37:77. [PMID: 29615080 PMCID: PMC5883315 DOI: 10.1186/s13046-018-0726-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Dying cells after irradiation could promote the repopulation of surviving cancer cells leading to tumor recurrence. We aim to define the role of dying cells in promoting pancreatic cancer cells metastasis following radiotherapy. METHODS Using the transwell system as the in vitro co-culture model, a small number of untreated pancreatic cancer cells were seeded in the upper chamber, while a larger number of lethally treated pancreatic cancer cells were seeded in the lower chamber. A series of experiments were conducted to investigate the role of dying-cell-derived HMGB1 on the invasion of pancreatic cancer in vitro and cancer metastasis in vivo. We then designed shRNA knockdown and Western blot assays to detect signaling activity. RESULTS We found that dying pancreatic cancer cells significantly promote the invasion of pancreatic cancer cells in vitro and cancer metastasis in vivo. HMGB1 gene knockdown attenuated the migration-stimulating effect of irradiated, dying cells on living pancreatic cancer cells. Finally, we showed that dying-cell-derived HMGB1 functions in a paracrine manner to affect cancer-cell migration dependent on acquiring an epithelial-mesenchymal transition (EMT) phenotype and PI3K/pAkt activation. This process is mediated by the receptor for TLR2. CONCLUSION Our study indicates that, during radiotherapy, dying pancreatic cancer cells activate paracrine signaling events that promote the mobility of surviving tumor cells. We suggest a strategy to inhibit HMGB1 for preventing pancreatic carcinoma relapse and metastasis.
Collapse
Affiliation(s)
- Xuelian Chen
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Lirong Zhang
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yujie Jiang
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Lian Song
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yanfang Liu
- The First People's Hospital of Zhenjiang, Zhenjiang, 212001, China
| | - Fang Cheng
- Faculty of Science and Engineering, Åbo Akademi University and Turku Centre for Biotechnology, -20520, Turku, FI, Finland
| | - Xin Fan
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xiongfeng Cao
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Dongqing Wang
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu Province, 212013, China.
| | - Haitao Zhu
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
20
|
Al-Emam A, Al-Shraim M, Eid R, Alfaifi M, Al-Shehri M, Moustafa MF, Radad K. Ultrastructural changes induced by Solanum incanum aqueous extract on HCT 116 colon cancer cells. Ultrastruct Pathol 2018; 42:255-261. [PMID: 29565703 DOI: 10.1080/01913123.2018.1447623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medicinal plants have recently gained increasing scientific interest as an important source of molecules with different therapeutic potentials. Accordingly, the present study was carried out to investigate ultrastructural changes induced by the aqueous extract of Solanum incanum (SI) fruit on human colorectal carcinoma cell line (HCT 116 cells). Examination of SI-treated HCT 116 cells with transmission electron microscopy (TEM) demonstrated numerous ultrastructural changes in the form of loss of the surface microvilli, mitochondrial damage and dilatation of cristae, and formation of autophagic vacuoles and increasing numbers of lipid droplets. Also, majority of the treated cells showed nuclear shrinkage with chromatin condensation and nucleolar changes. Moreover, some cells showed focal areas of cytoplasmic degeneration associating with formation of myelin figures and fatty globules. In conclusion, TEM was able to verify cytotoxicity of SI aqueous extract against HCT 116 colon cancer cells.
Collapse
Affiliation(s)
- Ahmed Al-Emam
- a Department of Pathology, College of Medicine , King Khalid University , Abha , Saudi Arabia.,b Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine , Mansoura, University , Mansoura , Egypt
| | - Mubarak Al-Shraim
- a Department of Pathology, College of Medicine , King Khalid University , Abha , Saudi Arabia
| | - Refaat Eid
- a Department of Pathology, College of Medicine , King Khalid University , Abha , Saudi Arabia
| | - Mohamed Alfaifi
- c Department of Biology, College of Science , King Khalid University , Abha , Saudi Arabia
| | - Mohamed Al-Shehri
- c Department of Biology, College of Science , King Khalid University , Abha , Saudi Arabia
| | - Mahmoud Fawzy Moustafa
- c Department of Biology, College of Science , King Khalid University , Abha , Saudi Arabia.,d Department of Botany, Faculty of Science , South Vally University , Qena , Egypt
| | - Khaled Radad
- a Department of Pathology, College of Medicine , King Khalid University , Abha , Saudi Arabia
| |
Collapse
|
21
|
Zhang X, Yan Z, Xu T, An Z, Chen W, Wang X, Huang M, Zhu F. Solamargine derived from Solanum nigrum induces apoptosis of human cholangiocarcinoma QBC939 cells. Oncol Lett 2018; 15:6329-6335. [PMID: 29731848 PMCID: PMC5920861 DOI: 10.3892/ol.2018.8171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/07/2017] [Indexed: 01/03/2023] Open
Abstract
Solamargine, an active ingredient of Solanum nigrum, has been previously revealed to inhibit the proliferation of cancer cells. However, the effect of solamargine on human cholangiocarcinoma cells and the underlying molecular mechanism remain unknown. In the present study, the molecular mechanism underlying the anti-cancer effect of solamargine was assessed in human cholangiocarcinoma QBC939 cells. The results of the present study revealed that solamargine inhibited the viability of QBC939 cells in a dose-dependent manner. Furthermore, solamargine significantly induced the apoptosis of QBC939 cells and altered the mitochondrial membrane potential of cells. Quantitative polymerase chain reaction analysis revealed that solamargine decreased the mRNA level of B-cell lymphoma-2 (Bcl-2), Bcl-extra-large and X-linked inhibitor of apoptosis protein but increased the mRNA level of Bcl-2-associated X protein (Bax). In addition, western blot analysis demonstrated that solamargine inhibited the protein expression of Bcl-2 and poly ADP ribose polymerase (PARP), and promoted the protein expression of Bax, cleaved PARP, caspase 3, cleaved caspase 3 and caspase 7. Therefore, the results of the present study revealed that solamargine may induce apoptosis via the mitochondrial pathway and alter the level of apoptosis-associated proteins in human cholangiocarcinoma QBC939 cells. This in vitro study demonstrated that solamargine may be an effective chemotherapeutic agent against cholangiocarcinoma in clinical practice.
Collapse
Affiliation(s)
- Xiuhua Zhang
- Clinical Research Department of Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China.,Department of Gastroenterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Zhanpeng Yan
- Clinical Research Department of Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China.,Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Tingting Xu
- Clinical Research Department of Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China.,Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Zhentao An
- Clinical Research Department of Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Wanzhen Chen
- Clinical Research Department of Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Xiaosong Wang
- Department of Gastroenterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Mengmeng Huang
- Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Fangshi Zhu
- Clinical Research Department of Chinese and Western Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China.,Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| |
Collapse
|
22
|
Xie X, Zhu H, Zhang J, Wang M, Zhu L, Guo Z, Shen W, Wang D. Solamargine inhibits the migration and invasion of HepG2 cells by blocking epithelial-to-mesenchymal transition. Oncol Lett 2017; 14:447-452. [PMID: 28693190 DOI: 10.3892/ol.2017.6147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/30/2017] [Indexed: 02/03/2023] Open
Abstract
Solamargine (SM), a steroidal alkaloid glycoside purified from the Chinese traditional herb Solanum incanum, is known to possess various biological activities. However, only a few previous studies have reported the anti-metastatic activity of SM. In the present study, the inhibitory effects of SM on metastatic action were investigated in human HepG2 cells. The proliferation effects of SM on the HepG2 cells was evaluated by MTT and colony formation assays. Wound-healing and Transwell assays were performed to examine the migration and invasion effects on SM-treated HepG2 cells. The epithelial-to-mesenchymal transition (EMT)-associated markers (E-cadherin, Vimentin and N-cadherin) were detected by western blotting analysis. In the present study, MTT and colony formation assays indicated that SM suppressed HepG2 cell viability in a dose-dependent manner. The wound-healing and Transwell assays revealed that the migration and invasion activities were significantly inhibited following exposure to SM. EMT has been demonstrated to be essential for promoting migration and invasion in tumor cells and has often been characterized with a loss of epithelial markers (E-cadherin) and an increase of mesenchymal markers (Vimentin and N-cadherin). In the western blotting analysis, the expression level of E-cadherin was significantly upregulated compared with that in the control group, whereas the expression levels of N-cadherin and Vimentin were downregulated. Thus, it was suggested that the underlying mechanism of SM inhibits migration and invasion in HepG2 cells and is associated with suppression of EMT.
Collapse
Affiliation(s)
- Xiaodong Xie
- Department of Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Haitao Zhu
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jia Zhang
- Department of Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Meiqin Wang
- Department of Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Li Zhu
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhen Guo
- Department of Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Wenrong Shen
- Department of Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Dongqing Wang
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
23
|
Kalalinia F, Karimi-Sani I. Anticancer Properties of Solamargine: A Systematic Review. Phytother Res 2017; 31:858-870. [DOI: 10.1002/ptr.5809] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Fatemeh Kalalinia
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Iman Karimi-Sani
- Department of Biotechnology; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
24
|
Cham BE. Solasodine, Solamargine and Mixtures of Solasodine Rhamnosides: Pathway to Expansive Clinical Anticancer Therapies. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ijcm.2017.812064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Activation of AMPKα mediates additive effects of solamargine and metformin on suppressing MUC1 expression in castration-resistant prostate cancer cells. Sci Rep 2016; 6:36721. [PMID: 27830724 PMCID: PMC5103223 DOI: 10.1038/srep36721] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the second most common cause of cancer-related deaths worldwide. The mucin 1 (MUC1) oncoprotein is highly expressed in human prostate cancers with aggressive features. However, the role for MUC1 in occurrence and progression of castration-resistant prostate cancer (CRPC) remained elusive. In this study, we showed that solamargine, a major steroidal alkaloid glycoside, inhibited the growth of CRPC cells, which was enhanced in the presence of metformin. Furthermore, we found that solamargine increased phosphorylation of AMPKα, whereas reducing the protein expression and promoter activity of MUC1. A greater effect was observed in the presence of metformin. In addition, solamargine reduced NF-κB subunit p65 protein expression. Exogenously expressed p65 resisted solamargine-reduced MUC1 protein and promoter activity. Interestingly, exogenously expressed MUC1 attenuated solamargine-stimulated phosphorylation of AMPKα and, more importantly reversed solamargine-inhibited cell growth. Finally, solamargine increased phosphorylation of AMPKα, while inhibiting MUC1, p65 and tumor growth were observed in vivo. Overall, our results show that solamargine inhibits the growth of CRPC cells through AMPKα-mediated inhibition of p65, followed by reduction of MUC1 expression in vitro and in vivo. More importantly, metformin facilitates the antitumor effect of solamargine on CRPC cells.
Collapse
|
26
|
Zhang Z, Li C, Shang L, Zhang Y, Zou R, Zhan Y, Bi B. Sulforaphane induces apoptosis and inhibits invasion in U251MG glioblastoma cells. SPRINGERPLUS 2016; 5:235. [PMID: 27026929 PMCID: PMC4771656 DOI: 10.1186/s40064-016-1910-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
In recent studies, sulforaphane (SFN) has been seen to demonstrate antioxidant and anti-tumor activities. In the present study, the viability inhibition effects of SFN in U251MG glioblastoma cells were analyzed by MTS. Morphology changes were observed by microscope. Apoptotic effects of SFN were evaluated by annexin V binding capacity with flow cytometric analysis. Invasion inhibition effects of SFN were tested by the invasion assay. The molecular mechanisms of apoptotic effects and invasion inhibition effects of SFN were detected by western blot and gelatin zymography. The results indicated that SFN has potent apoptotic effects and invasion inhibition effects against U251MG glioblastoma cells. These effects are both dose dependent. Taken together, SFN possessed apoptotic activity on U251MG cells indicated by increased annexin V-binding capacity, Bad, Bax, cytochrome C expression, and decreased Bcl-2 and survivin expressions. SFN inhibited invasion in U251MG cells via upregulation of E-cadherin and downregulation of MMP-2, MMP-9 and Galectin-3.
Collapse
Affiliation(s)
- Zhen Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100 China
| | - Chunliu Li
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100 China
| | - Li Shang
- Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | | | - Rong Zou
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100 China
| | - Yan Zhan
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100 China
| | | |
Collapse
|
27
|
Chen Y, Tang Q, Wu J, Zheng F, Yang L, Hann SS. Inactivation of PI3-K/Akt and reduction of SP1 and p65 expression increase the effect of solamargine on suppressing EP4 expression in human lung cancer cells. J Exp Clin Cancer Res 2015; 34:154. [PMID: 26689593 PMCID: PMC4687355 DOI: 10.1186/s13046-015-0272-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Lung cancer is the most common cause of cancer-related deaths worldwide. Natural phytochemicals from traditional medicinal plants such as solamargine have been shown to have anticancer properties. The prostaglandin E2 receptor EP4 is highly expressed in human cancer, however, the functional role of EP4 in the occurrence and progression of non small cell lung cancer (NSCLC) remained to be elucidated. METHODS Cell viability was measured by MTT assays. Western blot was performed to measure the phosphorylation and protein expression of PI3-K downstream effector Akt, transcription factors SP1, p65, and EP4. Quantitative real-time PCR (qRT-PCR) was used to examine the mRNA levels of EP4 gene. Exogenous expression of SP1, p65, and EP4 genes was carried out by transient transfection assays. EP4 promoter activity was measured by Dual Luciferase Reporter Kit. RESULTS We showed that solamargine inhibited the growth of lung cancer cells. Mechanistically, we found that solamargine decreased the phosphorylation of Akt, the protein, mRNA expression, and promoter activity of EP4. Moreover, solamargine inhibited protein expression of SP1 and NF-κB subunit p65, all of which were abrogated in cells transfected with exogenous expressed Akt. Intriguingly, exogenous expressed SP1 overcame the effect of solamargine on inhibition of p65 protein expression, and EP4 protein expression and promoter activity. Finally, exogenous expressed EP4 feedback reversed the effect of solamargine on phosphorylation of Akt and cell growth inhibition. CONCLUSION Our results show that solamargine inhibits the growth of human lung cancer cells through inactivation of Akt signaling, followed by reduction of SP1 and p65 protein expression. This results in the inhibition of EP4 gene expression. The cross-talk between SP1 and p65, and the positive feedback regulatory loop of PI3-K/Akt signaling by EP4 contribute to the overall responses of solamargine in this process. This study unveils a novel mechanism by which solamargine inhibits growth of human lung cancer cells.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Oncogene Protein v-akt/biosynthesis
- Oncogene Protein v-akt/genetics
- Phosphatidylinositol 3-Kinases/biosynthesis
- Phosphatidylinositol 3-Kinases/genetics
- Phosphorylation/drug effects
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Receptors, Prostaglandin E, EP4 Subtype/biosynthesis
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Signal Transduction/drug effects
- Solanaceous Alkaloids/administration & dosage
- Sp1 Transcription Factor/biosynthesis
- Sp1 Transcription Factor/genetics
- Transcription Factor RelA/biosynthesis
- Transcription Factor RelA/genetics
Collapse
Affiliation(s)
- YuQing Chen
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Qing Tang
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - JingJing Wu
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Fang Zheng
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - LiJun Yang
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
- Higher Education Mega Center, No. 55, Neihuan West Road, Panyu District, Guangzhou, Guangdong Province, 510006, PR China.
| |
Collapse
|