1
|
Han S, Xu Y, Chen D, Yang F, Wang M, Zhou Q, Wang G, Li L, Xu C, Wang W, Cai S, Xing N. Notch activation defines immune-suppressive subsets of ccRCCs with unfavorable benefits from immunotherapy over VEGFR/mTOR inhibitors. iScience 2024; 27:108290. [PMID: 38179060 PMCID: PMC10765066 DOI: 10.1016/j.isci.2023.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/06/2024] Open
Abstract
The evolutionarily conserved Notch pathway, involved in cancer stem cell capacity and cancer immunity, may predict the benefit from immune checkpoint inhibitors (ICIs) in clear cell renal cell carcinoma (ccRCC). In the TCGA dataset, mRNA expression of Notch pathway genes identified three clusters with different prognoses and molecular characteristics. Based on the differentially expressed Notch pathway genes between clusters, we constructed the Notch-score, correlated with Notch activation, angiogenesis, PI3K-AKT-mTOR activity, and sensitivities to VEGFR/mTOR inhibitors. A high Notch-score was linked with more "resting"/"anti-inflammatory" rather than "activated"/"pro-inflammatory" tumor-infiltrating immune cells, inactivated immune pathways, and scarce any benefits from ICI-based therapies over VEGFR/mTOR inhibitors in the JAVELIN Renal 101 (avelumab plus axitinib vs. sunitinib) and the CheckMate-009/010/025 trials (nivolumab vs. everolimus). For the Notch-activated ccRCCs, ICIs provide limited advantages and might not be strongly recommended, by which the cost-effectiveness of treatments in ccRCCs may be potentially improved.
Collapse
Affiliation(s)
- Sujun Han
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Xu
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingshuai Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiaoxia Zhou
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | | | - Leo Li
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Mathur P, Bhatt S, Kumar S, Kamboj S, Kamboj R, Rana A, Kumar H, Verma R. Deciphering the Therapeutic Applications of Nanomedicine in Ovarian Cancer Therapy: An Overview. Curr Drug Deliv 2024; 21:1180-1196. [PMID: 37818568 DOI: 10.2174/0115672018253815230922070558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023]
Abstract
The majority of deadly cancers that afflict the female reproductive system occur in the ovary. Around 1,40,000 women worldwide die from ovarian cancer each year, making it the sixth most common cancer-associated deceases among females in the United States. Modern, cutting-edge treatments like chemotherapy and surgery frequently produce full remissions, but the recurrence rate is still very high. When this crippling condition is diagnosed, there are frequently few therapeutic choices available because of how quietly it manifests. Healthcare practitioners must have a fundamental grasp of the warning signs and symptoms of ovarian cancer, as well as the imaging techniques and treatment choices available, to give the patient the best care possible. The discipline of medical nanotechnology has gained a lot of momentum in recent years in resolving issues and enhancing the detection and treatment of different illnesses, including cancer. This article gives a brief summary of types, risk factors and approaches to ovarian cancer treatment. We subsequently discussed the pathophysiology of ovarian cancer with the risk factors. This review also emphasizes the various signalling pathways involved in ovarian cancer. Our comprehensive integration of recent findings in fundamental research in the nano arena reveals the strong interest in these nanomedicines in ovarian cancer treatment. However, these nanomedicines still require more research, as indicated by the comparatively small number of clinical trials ongoing. This article will provide a reference for ovarian cancer treatment.
Collapse
Affiliation(s)
- Pooja Mathur
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram-122103, India
| | - Shailendra Bhatt
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram-122103, India
| | - Suresh Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram-122103, India
| | - Sweta Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Rohit Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Arpana Rana
- Advanced Institute of Pharmacy, Delhi Mathura Road, Palwal-121105, India
| | - Harish Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, India
| |
Collapse
|
3
|
Scicchitano S, Faniello MC, Mesuraca M. Zinc Finger 521 Modulates the Nrf2-Notch Signaling Pathway in Human Ovarian Carcinoma. Int J Mol Sci 2023; 24:14755. [PMID: 37834202 PMCID: PMC10572470 DOI: 10.3390/ijms241914755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The human zinc finger protein 521 (ZNF521) is a co-transcriptional factor with multiple recognized regulatory functions in a range of normal, cancer and stem cell compartments. ZNF521 regulates proliferation, progression and CSC (cancer stem cell) compartments in human ovarian cancer (hOC), which is a very aggressive and late-diagnosed female tumor. Two other important regulators of hOC are the NRF2 and NOTCH signaling pathways. In the present paper, the mRNA and protein levels of ZNF521 were correlated with those of the NRF2-NOTCH signaling components in two different hOC cell lines and in a public dataset of 381 hOC patients. The data show that high levels of ZNF521 significantly increase NRF2-NOTCH signaling expression; conversely, the silencing of ZNF521 impairs NRF2-NOTCH signaling. This experimental work shows that, in hOC, different levels of ZNF521 modulate the NRF2-NOTCH signaling pathway and also influences hOC CSC properties.
Collapse
Affiliation(s)
- Stefania Scicchitano
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy;
| | - Maria Concetta Faniello
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy;
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Insights into the Role of Oxidative Stress in Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8388258. [PMID: 34659640 PMCID: PMC8516553 DOI: 10.1155/2021/8388258] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Oxidative stress (OS) arises when the body is subjected to harmful endogenous or exogenous factors that overwhelm the antioxidant system. There is increasing evidence that OS is involved in a number of diseases, including ovarian cancer (OC). OC is the most lethal gynecological malignancy, and risk factors include genetic factors, age, infertility, nulliparity, microbial infections, obesity, smoking, etc. OS can promote the proliferation, metastasis, and therapy resistance of OC, while high levels of OS have cytotoxic effects and induce apoptosis in OC cells. This review focuses on the relationship between OS and the development of OC from four aspects: genetic alterations, signaling pathways, transcription factors, and the tumor microenvironment. Furthermore, strategies to target aberrant OS in OC are summarized and discussed, with a view to providing new ideas for clinical treatment.
Collapse
|
5
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
6
|
Nigam K, Srivastav RK. Notch signaling in oral pre-cancer and oral cancer. Med Oncol 2021; 38:139. [PMID: 34633549 DOI: 10.1007/s12032-021-01593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Notch signaling involves cell to cell contact. It is an ancient signaling mechanism that is conserved throughout the animal kingdom. The basic function of Notch signaling is to decide cell fate and execute asymmetrical division. Notch signaling is indispensable for embryo growth. Aberrant Notch signaling involves in cancer progression by altering cell proliferation rate, tumor micro-environment, stem cell activities. The role of Notch signaling in cancer progression is context-dependent. In breast cancer and T cell lymphoma Notch signaling is highly active, whereas in squamous cell carcinoma (SCC) as oral and skin cancer, the signaling is suppressed. It is believed that in SCC, Notch-mediated tumor growth is due to the cell non-autonomous function. Oral cancer is the 6th most risky cancer worldwide. In many patients, oral cancer is preceded by pre-cancer conditions. In this review, we have summarized the research knowledge related to the role of Notch signaling in oral cancer and pre-cancer conditions and the therapeutic options available targeting different components of Notch pathways.
Collapse
Affiliation(s)
- Kumud Nigam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, Uttar Pradesh, India
| | - Ratnesh Kumar Srivastav
- Department of Oral Pathology & Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| |
Collapse
|
7
|
Zhou Y, Jin Z, Wang C. Glycogen phosphorylase B promotes ovarian cancer progression via Wnt/β-catenin signaling and is regulated by miR-133a-3p. Biomed Pharmacother 2019; 120:109449. [PMID: 31627092 DOI: 10.1016/j.biopha.2019.109449] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ovarian cancer is one of the most common gynecologic cancers with high morbidity and mortality in women. Glycogen metabolism plays a critical role in cancer development and glycogen phosphorylase B (PYGB) has reported to be involved in various tumors. Here, we explored the role of PYGB in ovarian cancer. METHODS PYGB mRNA expression were examined in ovarian cancer tissue and also analyzed using the dataset from The Cancer Genome Atlas cohort. Correlations between PYGB expression and prognosis of ovarian cancer patients were analyzed. PYGB was silenced to evaluate the ovarian cell proliferation, invasion and migration in vitro and tumorigenesis in vivo. MiR-133a-3p targeting PYGB was identified using online tools and confirmed with luciferase reporter experiment. MiR-133a-3p overexpression using miRNA mimics was conducted to evaluate its function on ovarian cancer cells. RESULTS We showed that PYGB was upregulated in ovarian cancer tissue and high level of PYGB expression is markedly correlated with poor prognosis of ovarian cancer patients. PYGB knockdown significantly suppressed ovarian cancer cell proliferation, invasion and migration. Xenograft tumor formation further demonstrated that knockdown PYGB inhibited ovarian tumor development. Bioinformatics analysis revealed that PYGB regulated Wnt/β-catenin signaling pathway in ovarian cancer cells. Mechanistically, miR-133a-3p directly bound to 3'-untranslated region of PYGB and overexpression miR-133a-3p suppressed proliferation, invasion and migration in ovarian cancer cells. CONCLUSION Our data suggest that miR-133a-3p/PYGB/Wnt-β-catenin axis plays a critical role in human ovarian cancer, which might serve as a promising therapeutic target of ovarian cancer treatment in the future.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Gynecology and Obstetrics, Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Gynecological Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhijun Jin
- Department of Gynaecology and Obstetrics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Chengcai Wang
- Department of Anesthesia, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|