1
|
Yang P, Huang G, Li Y, Yu L, Yin Z, Li Q. Identification of PANoptosis-related biomarkers and analysis of prognostic values in head and neck squamous cell carcinoma. Sci Rep 2024; 14:9824. [PMID: 38684755 PMCID: PMC11058810 DOI: 10.1038/s41598-024-60441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
PANoptosis plays a crucial role in cancer initiation and progression. However, the roles of PANoptosis-related genes (PARGs) in the prognosis and immune landscape of head and neck squamous cell carcinoma (HNSCC) remain unclear. Integrated bioinformatics analyses based on the data of HNSCC patients in the TCGA database were conducted. We extracted 48 PARGs expression profile and then conducted differentially expressed analysis, following building a Cox model to predict the survival of HNSCC patients. Subsequently, the relationships between the risk score, immune landscape, chemo-, and immune-therapy responses were analyzed, respectively. Moreover, we investigated the prognostic value, and further predicted the pathways influenced by PARGs. Finally, we identified the biological function of crucial PARGs. A total of 18 differentially expressed PARGs were identified in HNSCC, and a Cox model including CASP8, FADD, NLRP1, TNF, and ZBP1 was constructed, which showed that the risk score was associated with the prognosis as well as immune infiltration of HNSCC patients, and the risk score could be regarded as an independent biomarker. Additionally, patients with high-risk score might be an indicator of lymph node metastasis and advanced clinical stage. High-risk scores also contributed to the chemotherapy resistance and immune escape of HNSCC patients. In addition, FADD and ZBP1 played a crucial role in various cancer-related pathways, such as the MAPK, WNT, and MTOR signaling pathways. On the other hand, we suggested that FADD facilitated the progression and 5-fluorouracil (5-FU) resistance of HNSCC cells. A signature based on PANoptosis showed great predictive power for lymph node metastasis and advanced stage, suggesting that the risk score might be an independent prognostic biomarker for HNSCC. Meanwhile, FADD, identified as a prognostic biomarker, may represent an effective therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Ping Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Anesthesiology, Chongqing University Three Gorges Hospital, Chongqing, 404100, China
| | - Guangzhao Huang
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Yulin Li
- Department of stomatology, Zigong Third People's Hospital, Zigong, 643020, China
| | - Lang Yu
- Department of Stomatology, Yunyang County People's Hospital, Chongqing, 404500, China
| | - Zili Yin
- Department of Stomatology, Yunyang County People's Hospital, Chongqing, 404500, China
| | - Qian Li
- Department of Anesthesiology, West China Hospital, Sichuan University, 37 Guo Xue Alley, Wuhou District, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Liu Y, Li X, Zhou X, Wang J, Ao X. FADD as a key molecular player in cancer progression. Mol Med 2022; 28:132. [DOI: 10.1186/s10020-022-00560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractCancer is a leading disease-related cause of death worldwide. Despite advances in therapeutic interventions, cancer remains a major global public health problem. Cancer pathogenesis is extremely intricate and largely unknown. Fas-associated protein with death domain (FADD) was initially identified as an adaptor protein for death receptor-mediated extrinsic apoptosis. Recent evidence suggests that FADD plays a vital role in non-apoptotic cellular processes, such as proliferation, autophagy, and necroptosis. FADD expression and activity of are modulated by a complicated network of processes, such as DNA methylation, non-coding RNA, and post-translational modification. FADD dysregulation has been shown to be closely associated with the pathogenesis of numerous types of cancer. However, the detailed mechanisms of FADD dysregulation involved in cancer progression are still not fully understood. This review mainly summarizes recent findings on the structure, functions, and regulatory mechanisms of FADD and focuses on its role in cancer progression. The clinical implications of FADD as a biomarker and therapeutic target for cancer patients are also discussed. The information reviewed herein may expand researchers’ understanding of FADD and contribute to the development of FADD-based therapeutic strategies for cancer patients.
Collapse
|
3
|
Wang C, Huang B, Sun L, Wang X, Zhou B, Tang H, Geng W. MK8722, an AMPK activator, inhibiting carcinoma proliferation, invasion and migration in human pancreatic cancer cells. Biomed Pharmacother 2021; 144:112325. [PMID: 34656065 DOI: 10.1016/j.biopha.2021.112325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND MK8722 is a potent and systemic pan-AMPK activator. It is an effective, direct, allosteric activator of AMPK complex in many mammals. This study tried to explore the underlying anti-cancer molecular mechanism of MK8722 in human pancreatic cancer cells (PCCs). METHODS The anti-proliferation, invasion and migration functions of MK8722 in human pancreatic cancer analyzed by real time cellular analysis, colony formation assay, cell migration assay, transwell assay and flow cytometery analysis. Moreover, the potential targeted signaling pathway was tested via RNA-seq and pathway enrichment analysis. RESULTS In the present study, we investigated the anti-PCCs effects of MK8722 on two different human pancreatic cancer cell lines (PANC-1 and Patu8988). The results showed that MK8722 significantly inhibited human tumor cells proliferation and migration/invasion in a dose-dependent manner. Additionally, the influence of MK8722 was examined by analyzing the expression of potential key genes and pathways, which may provide novel insights to the mechanism of MK8722. CONCLUSION The inhibition of pancreatic cancer by MK8722 through a number of pathways that inhibit carcinoma proliferation, invasion and migration. The potential effect of MK8722 might be determined by regulating the expression of AL162151, IER2, REPIN1, KRT80 to inhibit cycle arrest and migration.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| | - Baojun Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| | - Linxiao Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| | - Xi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| | - Baofeng Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| | - Hongli Tang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; Wenzhou Key Laboratory of perioperative medicine (NO. 2021HZSY0037).
| |
Collapse
|
4
|
Li R, Li P, Xing W, Qiu H. Heterogeneous genomic aberrations in esophageal squamous cell carcinoma: a review. Am J Transl Res 2020; 12:1553-1568. [PMID: 32509161 PMCID: PMC7269976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Esophageal cancer (EC) causes hundreds of thousands of deaths a year worldwide, especially the major subtype esophageal squamous cell carcinoma (ESCC). With the advent of next-generation sequencing and the availability of commercial microarrays, abnormities in genetic levels have been revealed in various independent researches. High frequencies of structure variations (SVs), single nucleotide variations (SNVs) and copy-number alterations (CNAs) in ESCCs are uncovered, and ESCC shows high levels of inter- and intratumor heterogeneity, implying diverse evolutionary trajectories. This review tries to explain the pathogenesis of ESCC on the scope of most often mutated genes based on prior studies, hopes to offer some hints for diagnosis and therapy in clinic.
Collapse
Affiliation(s)
- Renling Li
- Quality and Standards Academy, Shenzhen Technology UniversityShenzhen 518060, China
| | - Peng Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhou 450008, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhou 450008, China
| | - Huiling Qiu
- Quality and Standards Academy, Shenzhen Technology UniversityShenzhen 518060, China
| |
Collapse
|
5
|
Alhamdow A, Tinnerberg H, Lindh C, Albin M, Broberg K. Cancer-related proteins in serum are altered in workers occupationally exposed to polycyclic aromatic hydrocarbons: a cross-sectional study. Carcinogenesis 2020; 40:771-781. [PMID: 30753342 PMCID: PMC6612054 DOI: 10.1093/carcin/bgz022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/04/2019] [Accepted: 02/07/2019] [Indexed: 01/06/2023] Open
Abstract
Exposure to some polycyclic aromatic hydrocarbons (PAH) increases the risk of cancer and is common particularly for workers in occupations such as chimney sweeping. In exposed workers, screening of early cancer-related markers provides important information to identify individuals at risk. Here, we aimed to elucidate the associations between PAH exposure and serum levels of cancer-related proteins in 118 chimney sweeps and 126 occupationally unexposed controls, all non-smoking males from Sweden. Monoydroxylated metabolites of pyrene, phenanthrene, benzo[a]pyrene and benzo[a]anthracene were measured in urine using liquid chromatography coupled to tandem mass spectrometry and 90 cancer-related proteins were measured in serum using a proximity extension assay. Linear regression analysis adjusted for age and body mass index, and false discovery rate (FDR) identified 17 serum proteins that were differentially expressed (16 upregulated and 1 downregulated) in chimney sweeps compared with controls (FDR < 0.05). Concentrations of the peptidase kallikrein 13 (KLK13) showed significant positive associations with urinary concentrations of the PAH metabolites 3-hydroxybenzo[a]pyrene (3-OH-BaP) [B, 95% confidence interval (CI): 0.042, 0.008–0.076] and 3-hydroxybenzo[a]anthracene (3-OH-BaA) (B, 95% CI: 0.068, 0.002–0.134). Moreover, dose–response relationships were observed between KLK13 and 3-OH-BaP (trend test P = 0.027) and 3-OH-BaA (P = 0.035). Pathway and gene ontology analyses showed that cell movement, cell adhesion and cell migration were the predominant molecular functions associated with the top differentially expressed proteins. In conclusion, we found a number of putative cancer-related proteins differentially expressed in workers exposed to PAH. This warrants effective measure to reduce PAH exposure among workers as well as further investigation to confirm these findings.
Collapse
Affiliation(s)
- Ayman Alhamdow
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Tinnerberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Maria Albin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Centre for Occupational and Environmental Medicine (CAMM), Stockholm County Council, Stockholm, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Hollomon MG, Patterson L, Santiago-O'Farrill J, Kleinerman ES, Gordon N. Knock down of Fas-Associated Protein with Death Domain (FADD) Sensitizes Osteosarcoma to TNFα-induced Cell Death. J Cancer 2020; 11:1657-1667. [PMID: 32194778 PMCID: PMC7052864 DOI: 10.7150/jca.38721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/14/2019] [Indexed: 11/05/2022] Open
Abstract
Fas-associated protein with death domain (FADD) was first identified for its role in linking death receptors to the apoptotic signaling pathway with subsequent cell death. Later studies reported non-apoptotic functions for FADD in normal cells and cancer cells. Non-apoptotic functions for FADD in osteosarcoma (OS) have not been reported. In this study, FADD protein expression was knocked down in human CCHOSD, LM7, and SaOS2 OS cell lines followed by assessment of sensitivity to TNFα- or TRAIL-induced cell death. Knock down of FADD significantly increased TNFα-induced cell death in LM7 and SaOS2 cell lines. The mode of TNFα-induced cell death was apoptosis and not necroptosis. Inhibition of nuclear factor kappa B (NFκB) in wildtype cells increased TNFα-induced cell death to similar levels observed in FADD knockdown cells, suggesting a role for FADD in NFκB pro-survival cell signaling. In addition, knock down of FADD increased SMAC mimetic-mediated TNFα-induced cell death in all cell lines studied. The results of this study indicate that FADD has a pro-survival function in OS following TNFα treatment that involves NFκB signaling. The results also indicate that the pro-survival function of FADD is associated with XIAP activity.
Collapse
Affiliation(s)
- Mario G Hollomon
- Department of Biology, Texas Southern University, Houston, TX 77004
| | - LaNisha Patterson
- Department of Neuroscience, Cell Biology and Anatomy, The University of Texas Medical Branch, Galveston, TX 77555
| | - Janice Santiago-O'Farrill
- Division of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054
| | - Eugenie S Kleinerman
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054
| | - Nancy Gordon
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054
| |
Collapse
|
7
|
Association between ANGPTL-4 and the proinflammatory process in cancer cachexia patients. Oncotarget 2019; 10:6444-6455. [PMID: 31741709 PMCID: PMC6849656 DOI: 10.18632/oncotarget.27269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
Background Contradictory results are reported for the role of angiopoietin-like 4 (ANGPTL-4) in the development of cancer-cachexia and inflammation, given its importance in angiogenesis and inflammatory signaling. Our aim was to analyze the levels of ANGPTL-4 in colorectal cancer patients with a stable weight and those with cachexia in order to establish a relationship between ANGPTL-4 and the inflammatory process. Results Plasma and tumor levels of ANGPTL-4 were higher in CC in comparison to other groups. A positive association was verified between plasmatic ANGPTL-4 and NFκB levels in tumor from CC. In WSC, we identified an association between the plasmatic ANGPTL-4, IL-15, and IL-10 in tumor and IL-15 in MES. Increased levels of NFκB and TNF-R1 in MES were detected in CC in comparison to WSC. Specifically in CC-group, a positive correlation was found between ANGPTL-4 levels and those of IL-1β, TNF-α, and NFκB in tumor, along with an association between ANGPTL-4 levels with IL-1β and MCP-1 levels in tumor; and ANGPTL-4 and IL-1β levels in MES. Methods We studied 102 patients, who were divided into three groups: control patients (C, n=37), cancer patients with a stable weight (WSC, n=23), and cancer-cachexia patients (CC, n=42). Samples of plasma, tumor, mesenteric (MES) and subcutaneous adipose tissue were removed for the determination of ANGPTL-4 levels and other proinflammatory factors. Conclusions ANGPTL-4 levels were higher in plasma and tumor of CC-group, and positively associated with pro-inflammatory and pro-tumorigenic factors. Our results suggest an opposite effect of ANGPTL-4 depending on the concentration and presence of cachexia.
Collapse
|
8
|
FADD in Cancer: Mechanisms of Altered Expression and Function, and Clinical Implications. Cancers (Basel) 2019; 11:cancers11101462. [PMID: 31569512 PMCID: PMC6826683 DOI: 10.3390/cancers11101462] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
FADD was initially described as an adaptor molecule for death receptor-mediated apoptosis, but subsequently it has been implicated in nonapoptotic cellular processes such as proliferation and cell cycle control. During the last decade, FADD has been shown to play a pivotal role in most of the signalosome complexes, such as the necroptosome and the inflammasome. Interestingly, various mechanisms involved in regulating FADD functions have been identified, essentially posttranslational modifications and secretion. All these aspects have been thoroughly addressed in previous reviews. However, FADD implication in cancer is complex, due to pleiotropic effects. It has been reported either as anti- or protumorigenic, depending on the cell type. Regulation of FADD expression in cancer is a complex issue since both overexpression and downregulation have been reported, but the mechanisms underlying such alterations have not been fully unveiled. Posttranslational modifications also constitute a relevant mechanism controlling FADD levels and functions in tumor cells. In this review, we aim to provide detailed, updated information on alterations leading to changes in FADD expression and function in cancer. The participation of FADD in various biological processes is recapitulated, with a mention of interesting novel functions recently proposed for FADD, such as regulation of gene expression and control of metabolic pathways. Finally, we gather all the available evidence regarding the clinical implications of FADD alterations in cancer, especially as it has been proposed as a potential biomarker with prognostic value.
Collapse
|
9
|
Marín-Rubio JL, Pérez-Gómez E, Fernández-Piqueras J, Villa-Morales M. S194-P-FADD as a marker of aggressiveness and poor prognosis in human T-cell lymphoblastic lymphoma. Carcinogenesis 2019; 40:1260-1268. [DOI: 10.1093/carcin/bgz041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 11/13/2022] Open
Abstract
AbstractT-cell lymphoblastic lymphoma is a haematological disease with an urgent need for reliable prognostic biomarkers that allow therapeutic stratification and dose adjustment. The scarcity of human samples is responsible for the delayed progress in the study and the clinical management of this disease, especially compared with T-cell acute lymphoblastic leukaemia, its leukemic counterpart. In the present work, we have determined by immunohistochemistry that S194-P-FADD protein is significantly reduced in a cohort of 22 samples from human T-cell lymphoblastic lymphoma. Notably, the extent of such reduction varies significantly among samples and has revealed determinant for the outcome of the tumour. We demonstrate that Fas-associated protein with death domain (FADD) phosphorylation status affects protein stability, subcellular localization and non-apoptotic functions, specifically cell proliferation. Phosphorylated FADD would be more stable and preferentially localized to the cell nucleus; there, it would favour cell proliferation. We show that patients with higher levels of S194-P-FADD exhibit more proliferative tumours and that they present worse clinical characteristics and a significant enrichment to an oncogenic signature. This supports that FADD phosphorylation may serve as a predictor for T-cell lymphoblastic lymphoma aggressiveness and clinical status. In summary, we propose FADD phosphorylation as a new biomarker with prognostic value in T-cell lymphoblastic lymphoma.
Collapse
Affiliation(s)
- José L Marín-Rubio
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Madrid, Spain
- IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Eduardo Pérez-Gómez
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - José Fernández-Piqueras
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Madrid, Spain
- IIS-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - María Villa-Morales
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Madrid, Spain
- IIS-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
10
|
Neto NIP, Murari ASDP, Oyama LM, Otoch JP, Alcântara PSM, Tokeshi F, Figuerêdo RG, Alves MJ, Lima JDCC, Matos-Neto EMD, Seelaender M, Oller do Nascimento CM. Peritumoural adipose tissue pro-inflammatory cytokines are associated with tumoural growth factors in cancer cachexia patients. J Cachexia Sarcopenia Muscle 2018; 9:1101-1108. [PMID: 30284380 PMCID: PMC6240753 DOI: 10.1002/jcsm.12345] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/24/2018] [Accepted: 08/19/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cancer cachexia (CC) is a multifactorial syndrome, often irreversible, that affects patients with cancer influenced, in part, by the inflammatory condition. Peritumoural adipose tissue produces adipokines and angiogenic, apoptotic, and growth factors; given the possible crosstalk between the peritumoural adipose tissue and tumour, these may play an important role in cancer biology and carcinogenesis. METHODS The aim of this study was to evaluate the factors produced by peritumoural adipose tissue in a cohort of 16 colorectal cancer patients with either weight-stable cancer (WSC; n = 7) or CC (n = 9). The study was approved by the Ethics Research Committee (972.914). Samples of peritumoural adipose tissue were analysed for concentrations of TNF-α, IL-1β, STAT-1, STAT-3, RANTES, IL-1Ra, IP-10, IL-15, MCP-1, IFN-α, GCSF, FADD, and TGF-β. The cytokines and proteins were measured using Multiplex. Correlations between the proteins and cytokines were evaluated. RESULTS TNF-α, STAT-1, and FADD, a factor involved in apoptosis, were significantly higher in CC group than in the WSC group. In the peritumoural adipose tissue of the CC group, RANTES showed a significant positive correlation with IL-1Ra and IP-10 and a negative correlation with IFN-α; and GCSF showed significant negative correlations with IL-1Ra, IP-10, IL-15, and MCP-1 and a positive correlation with IFN-α. In the peritumoural adipose tissue of the WSC group, no significant correlations were detected between RANTES, GCSF, IL-3, FADD, and STAT-1 and the cytokines/chemokines analysed. CONCLUSIONS These results indicated that inflammatory and tumorigenic pathways were altered in peritumoural adipose tissue in CC. Furthermore, inflammatory cytokines were correlated with growth factors in the peritumoural adipose tissue of cachectic patients, suggesting that inflammatory cytokines modulated the proliferative environment closely linked to the tumour.
Collapse
Affiliation(s)
- Nelson Inácio Pinto Neto
- Escola Paulista de Medicina, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Lila Missae Oyama
- Escola Paulista de Medicina, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José Pinhata Otoch
- Department of Clinical Surgery, University of São Paulo, São Paulo, Brazil
| | | | - Flavio Tokeshi
- Department of Clinical Surgery, University of São Paulo, São Paulo, Brazil
| | - Raquel Galvão Figuerêdo
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Michele Joana Alves
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Marilia Seelaender
- Department of Clinical Surgery, University of São Paulo, São Paulo, Brazil.,Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
11
|
Qiu W, Chen R, Chen X, Zhang H, Song L, Cui W, Zhang J, Ye D, Zhang Y, Wang Z. Oridonin-loaded and GPC1-targeted gold nanoparticles for multimodal imaging and therapy in pancreatic cancer. Int J Nanomedicine 2018; 13:6809-6827. [PMID: 30425490 PMCID: PMC6205542 DOI: 10.2147/ijn.s177993] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose Early diagnosis and therapy are critical to improve the prognosis of patients with pancreatic cancer. However, conventional imaging does not significantly increase the capability to detect early stage disease. In this study, we developed a multifunctional theranostic nanoplatform for accurate diagnosis and effective treatment of pancreatic cancer. Methods We developed a theranostic nanoparticle (NP) based on gold nanocages (AuNCs) modified with hyaluronic acid (HA) and conjugated with anti-Glypican-1 (anti-GPC1) antibody, oridonin (ORI), gadolinium (Gd), and Cy7 dye. We assessed the characteristics of GPC1-Gd-ORI@HAuNCs-Cy7 NPs (ORI-GPC1-NPs) including morphology, hydrodynamic size, stability, and surface chemicals. We measured the drug loading and release efficiency in vitro. Near-infrared fluorescence (NIRF)/magnetic resonance imaging (MRI) and therapeutic capabilities were tested in vitro and in vivo. Results ORI-GPC1-NPs demonstrated long-time stability and fluorescent/MRI properties. Bio-transmission electron microscopy (bio-TEM) imaging showed that ORI-GPC1-NPs were endocytosed into PANC-1 and BXPC-3 (overexpression GPC1) but not in 293 T cells (GPC1- negative). Compared with ORI and ORI-NPs, ORI-GPC1-NPs significantly inhibited the viability and enhanced the apoptosis of pancreatic cancer cells in vitro. Moreover, blood tests suggested that ORI-GPC1-NPs showed negligible toxicity. In vivo studies showed that ORI-GPC1-NPs enabled multimodal imaging and targeted therapy in pancreatic tumor xenografted mice. Conclusion ORI-GPC1-NP is a promising theranostic platform for the simultaneous diagnosis and effective treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenli Qiu
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| | - Huifeng Zhang
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Lina Song
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| | - Wenjing Cui
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| | - Jingjing Zhang
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Dandan Ye
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yifen Zhang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China,
| |
Collapse
|
12
|
SPOP promotes FADD degradation and inhibits NF-κB activity in non-small cell lung cancer. Biochem Biophys Res Commun 2018; 504:289-294. [PMID: 30190126 DOI: 10.1016/j.bbrc.2018.08.176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022]
Abstract
FAS-associated protein with death domain (FADD) is the pivotal adaptor protein, which transmits apoptotic signals mediated by the death receptors. Here we report that high FADD protein level predicts poor prognosis of non-small cell lung cancer (NSCLC) patients and its protein level is mainly regulated by the 26S proteasome. We also found that ubiquitin ligase SPOP (speckle-type POZ protein) binds to FADD and mediates its degradation, which can be blocked by MG132 treatment. Notably, SPOP inhibits NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity and its target genes expression via FADD. These results reveal the function of SPOP-FADDNFκB axis in NSCLC cells, which is associated with prognosis of NSCLC patients.
Collapse
|
13
|
Song X, Zhang M, Chen L, Lin Q. Bioinformatic Prediction of Possible Targets and Mechanisms of Action of the Green Tea Compound Epigallocatechin-3-Gallate Against Breast Cancer. Front Mol Biosci 2017; 4:43. [PMID: 28713815 PMCID: PMC5492114 DOI: 10.3389/fmolb.2017.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 01/13/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a bioactive compound in green tea, is the most abundant and biologically active catechin, and it exerts multiple effects in humans through mechanisms that remain to be clarified. The present study used bioinformatics to identify possible mechanisms by which EGCG reduces risk of breast cancer. Possible human protein targets of EGCG were identified in the PubChem database, possible human gene targets were identified in the NCBI database, and then both sets of targets were analyzed using Ingenuity Pathway Analysis to predict molecular networks affected by EGCG in breast cancer. The results suggest that signaling proteins affected by EGCG in breast cancer, which include JUN, FADD, NFKB1, Bcl-2, GNAO1, and MMP14, are involved primarily in cell death and survival; DNA replication, recombination and repair; and the cell cycle. The main networks affected by EGCG are predicted to involve the cell cycle; cellular assembly and organization; DNA replication, recombination and repair; and cell death and survival. These results identify several specific proteins and pathways that may be affected by EGCG in breast cancer, and they illustrate the power of integrative bioinformatics and chemical fragment analysis for focusing mechanistic studies.
Collapse
Affiliation(s)
- Xinqiang Song
- Department of Biological Sciences, Xinyang Normal UniversityHenan, China.,Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Mu Zhang
- Hospital Attached to Xinyang Normal UniversityXinyang, China
| | - Lei Chen
- Department of Biological Sciences, Xinyang Normal UniversityHenan, China
| | - Qingsong Lin
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| |
Collapse
|