1
|
Abdellatif AAH, Alshubrumi AS, Younis MA. Targeted Nanoparticles: the Smart Way for the Treatment of Colorectal Cancer. AAPS PharmSciTech 2024; 25:23. [PMID: 38267656 DOI: 10.1208/s12249-024-02734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Colorectal cancer (CRC) is a widespread cancer that starts in the digestive tract. It is the third most common cause of cancer deaths around the world. The World Health Organization (WHO) estimates an expected death toll of over 1 million cases annually. The limited therapeutic options as well as the drawbacks of the existing therapies necessitate the development of non-classic treatment approaches. Nanotechnology has led the evolution of valuable drug delivery systems thanks to their ability to control drug release and precisely target a wide variety of cancers. This has also been extended to the treatment of CRC. Herein, we shed light on the pertinent research that has been performed on the potential applications of nanoparticles in the treatment of CRC. The various types of nanoparticles in addition to their properties, applications, targeting approaches, merits, and demerits are discussed. Furthermore, innovative therapies for CRC, including gene therapies and immunotherapies, are also highlighted. Eventually, the research gaps, the clinical potential of such delivery systems, and a future outlook on their development are inspired.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452, Buraydah, Al Qassim, Saudi Arabia.
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| | | | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
2
|
Oh JW, Shin J, Chun S, Muthu M, Gopal J. Evaluating the Anticarcinogenic Activity of Surface Modified/Functionalized Nanochitosan: The Emerging Trends and Endeavors. Polymers (Basel) 2021; 13:3138. [PMID: 34578039 PMCID: PMC8471611 DOI: 10.3390/polym13183138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan begins its humble journey from marine food shell wastes and ends up as a versatile nutraceutical. This review focuses on briefly discussing the antioxidant activity of chitosan and retrospecting the accomplishments of chitosan nanoparticles as an anticarcinogen. The various modified/functionalized/encapsulated chitosan nanoparticles and nanoforms have been listed and their biomedical deliverables presented. The anticancer accomplishments of chitosan and its modified composites have been reviewed and presented. The future of surface modified chitosan and the lacunae in the current research focus have been discussed as future perspective. This review puts forth the urge to expand the scientific curiosity towards attempting a variety of functionalization and surface modifications to chitosan. There are few well known modifications and functionalization that benefit biomedical applications that have been proven for other systems. Being a biodegradable, biocompatible polymer, chitosan-based nanomaterials are an attractive option for medical applications. Therefore, maximizing expansion of its bioactive properties are explored. The need for applying the ideal functionalization that will significantly promote the anticancer contributions of chitosan nanomaterials has also been stressed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.-W.O.); (J.S.)
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.-W.O.); (J.S.)
| | - Sechul Chun
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| | - Judy Gopal
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| |
Collapse
|
3
|
Sharifi-Rad J, Quispe C, Butnariu M, Rotariu LS, Sytar O, Sestito S, Rapposelli S, Akram M, Iqbal M, Krishna A, Kumar NVA, Braga SS, Cardoso SM, Jafernik K, Ekiert H, Cruz-Martins N, Szopa A, Villagran M, Mardones L, Martorell M, Docea AO, Calina D. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int 2021; 21:318. [PMID: 34167552 PMCID: PMC8223345 DOI: 10.1186/s12935-021-02025-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The study describes the current state of knowledge on nanotechnology and its utilization in medicine. The focus in this manuscript was on the properties, usage safety, and potentially valuable applications of chitosan-based nanomaterials. Chitosan nanoparticles have high importance in nanomedicine, biomedical engineering, discovery and development of new drugs. The manuscript reviewed the new studies regarding the use of chitosan-based nanoparticles for creating new release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity of drugs. Nowadays, effective cancer treatment is a global problem, and recent advances in nanomedicine are of great importance. Special attention was put on the application of chitosan nanoparticles in developing new system for anticancer drug delivery. Pre-clinical and clinical studies support the use of chitosan-based nanoparticles in nanomedicine. This manuscript overviews the last progresses regarding the utilization, stability, and bioavailability of drug nanoencapsulation with chitosan and their safety.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Monica Butnariu
- Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” From Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Lia Sanda Rotariu
- Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” From Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv, 01033 Ukraine
| | - Simona Sestito
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, 94976 Slovak Republic
- Department of Pharmacy, University of Pisa, Via bonanno 6, 56126 Pisa, Italy
| | - Simona Rapposelli
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, 94976 Slovak Republic
- Department of Pharmacy, University of Pisa, Via bonanno 6, 56126 Pisa, Italy
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, GC University Faisalabad, Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Akash Krishna
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| | | | - Susana S. Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Karolina Jafernik
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal
| | - Agnieszka Szopa
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Marcelo Villagran
- Biomedical Science Research Laboratory and Scientific-Technological Center for the Sustainable Development of the Coastline, Universidad Catolica de La Santisima Concepcion, Concepcion, Chile
| | - Lorena Mardones
- Biomedical Science Research Laboratory and Scientific-Technological Center for the Sustainable Development of the Coastline, Universidad Catolica de La Santisima Concepcion, Concepcion, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
4
|
Lertpatipanpong P, Janpaijit S, Park EY, Kim CT, Baek SJ. Potential Anti-Diabetic Activity of Pueraria lobata Flower (Flos Puerariae) Extracts. Molecules 2020; 25:molecules25173970. [PMID: 32878147 PMCID: PMC7504745 DOI: 10.3390/molecules25173970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/29/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022] Open
Abstract
Pueraria lobata (Wild.) Ohwi. (P. lobata) flowers known as ‘Kudzu flower’ contain isoflavonoids and essential oil components. They have a wide range of biological and pharmacological activities, including protective effects against non-alcoholic fatty liver disease, hyperglycemia, and hypolipidemia, anti-mutagenic effects, and benefits for weight loss. However, the molecular mechanism of these effects remains unclear. Our study aimed to systematically examine the effects of flos puerariae crude extract (FPE) as an anti-diabetic agent using in vitro assays. The cytotoxicity of FPE was evaluated using MTS assay in L6 rat myocyte and 3T3-L1 murine fibroblast cell lines. PPARγ binding activity and adipogenesis were examined using dual-luciferase and differentiation assays, respectively. For investigating the anti-diabetic activity, glucose utilization, including GLUT4 protein expression, glucose uptake assay, and GLUT4 translocation using immunofluorescence microscopy were conducted in L6 cells. Furthermore, we assessed the antioxidant and anti-inflammatory activities of FPE. Our results demonstrated the ability to augment glucose uptake in L6 cells and enhance glucose utilization activity by increasing the expression of glucose transporter type 4 (GLUT4). In summary, our findings suggest that FPE may be a potential anti-diabetic substance for the treatment of diabetic patients and can prevent inflammatory or oxidation-related diseases.
Collapse
Affiliation(s)
- Pattawika Lertpatipanpong
- Laboratory of Signal transduction, Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (P.L.); (S.J.)
| | - Sakawrat Janpaijit
- Laboratory of Signal transduction, Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (P.L.); (S.J.)
- Laboratory of Clinical Biochemistry and Molecular Medicine, Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eul-Yong Park
- R&D Center, EastHill Co. 33, Omokcheon-ro 132 beon-gil, Gwonseon-gu, Suwon-si, Gyeonggi-do 16642, Korea; (E.-Y.P.); (C.-T.K.)
| | - Chong-Tai Kim
- R&D Center, EastHill Co. 33, Omokcheon-ro 132 beon-gil, Gwonseon-gu, Suwon-si, Gyeonggi-do 16642, Korea; (E.-Y.P.); (C.-T.K.)
| | - Seung Joon Baek
- Laboratory of Signal transduction, Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (P.L.); (S.J.)
- Correspondence: ; Tel.: +82-2-880-1195
| |
Collapse
|