1
|
Madani F, Morovvati H, Webster TJ, Najaf Asaadi S, Rezayat SM, Hadjighassem M, Khosravani M, Adabi M. Combination chemotherapy via poloxamer 188 surface-modified PLGA nanoparticles that traverse the blood-brain-barrier in a glioblastoma model. Sci Rep 2024; 14:19516. [PMID: 39174603 PMCID: PMC11341868 DOI: 10.1038/s41598-024-69888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
The effect of chemotherapy for anti-glioblastoma is limited due to insufficient drug delivery across the blood-brain-barrier. Poloxamer 188-coated nanoparticles can enhance the delivery of nanoparticles across the blood-brain-barrier. This study presents the design, preparation, and evaluation of a combination of PLGA nanoparticles (PLGA NPs) loaded with methotrexate (P-MTX NPs) and PLGA nanoparticles loaded with paclitaxel (P-PTX NPs), both of which were surface-modified with poloxamer188. Cranial tumors were induced by implanting C6 cells in a rat model and MRI demonstrated that the tumors were indistinguishable in the two rats with P-MTX NPs + P-PTX NPs treated groups. Brain PET scans exhibited a decreased brain-to-background ratio which could be attributed to the diminished metabolic tumor volume. The expression of Ki-67 as a poor prognosis factor, was significantly lower in P-MTX NPs + P-PTX NPs compared to the control. Furthermore, the biodistribution of PLGA NPs was determined by carbon quantum dots loaded into PLGA NPs (P-CQD NPs), and quantitative analysis of ex-vivo imaging of the dissected organs demonstrated that 17.2 ± 0.6% of the NPs were concentrated in the brain after 48 h. The findings highlight the efficacy of combination nanochemotherapy in glioblastoma treatment, indicating the need for further preclinical studies.
Collapse
Affiliation(s)
- Fatemeh Madani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Morovvati
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Program in Materials Science, UFPI, Teresina, Brazil
| | - Sareh Najaf Asaadi
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Xue P, Zheng J, Li R, Yan L, Wang Z, Jia Q, Zhang L, Li X. High Expression of KIFC1 in Glioma Correlates with Poor Prognosis. J Korean Neurosurg Soc 2024; 67:364-375. [PMID: 38720546 PMCID: PMC11079566 DOI: 10.3340/jkns.2023.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 10/19/2023] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Kinesin family member C1 (KIFC1), a non-essential kinesin-like motor protein, has been found to serve a crucial role in supernumerary centrosome clustering and the progression of several human cancer types. However, the role of KIFC1 in glioma has been rarely reported. Thus, the present study aimed to investigate the role of KIFC1 in glioma progression. METHODS Online bioinformatics analysis was performed to determine the association between KIFC1 expression and clinical outcomes in glioma. Immunohistochemical staining was conducted to analyze the expression levels of KIFC1 in glioma and normal brain tissues. Furthermore, KIFC1 expression was knocked in the glioma cell lines, U251 and U87MG, and the functional roles of KIFC1 in cell proliferation, invasion and migration were analyzed using cell multiplication, wound healing and Transwell invasion assays, respectively. The autophagic flux and expression levels matrix metalloproteinase-2 (MMP2) were also determined using imaging flow cytometry, western blotting and a gelation zymography assay. RESULTS The results revealed that KIFC1 expression levels were significantly upregulated in glioma tissues compared with normal brain tissues, and the expression levels were positively associated with tumor grade. Patients with glioma with low KIFC1 expression levels had a more favorable prognosis compared with patients with high KIFC1 expression levels. In vitro, KIFC1 knockdown not only inhibited the proliferation, migration and invasion of glioma cells, but also increased the autophagic flux and downregulated the expression levels of MMP2. CONCLUSION Upregulation of KIFC1 expression may promote glioma progression and KIFC1 may serve as a potential prognostic biomarker and possible therapeutic target for glioma.
Collapse
Affiliation(s)
- Pengfei Xue
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Rongrong Li
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Lili Yan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Zhaohao Wang
- Department of Neurosurgery, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, China
| | - Qingbin Jia
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Lianqun Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Xin Li
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
3
|
Zhang W, Callmann CE, Meckes B, Mirkin CA. Tumor-Associated Enzyme-Activatable Spherical Nucleic Acids. ACS NANO 2022; 16:10931-10942. [PMID: 35849553 PMCID: PMC10440806 DOI: 10.1021/acsnano.2c03323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maximizing the tissue-targeting efficiency of nanomaterials while also protecting them from rapid clearance from the bloodstream and limiting their immunogenicity remains a central problem in the field of systemic-administered nanomedicine. Herein, we introduce a generalizable strategy to simultaneously increase tumor accumulation, prolong blood circulation, and limit nonspecific immune activation of nanomaterials via peptide-based, tumor-responsive, "sheddable" coatings. Spherical nucleic acids (SNAs) were designed and synthesized to contain an exterior coating composed of zwitterionic polypeptides with recognition sequences for tumor-associated proteases. In the presence of matrix metalloproteinases (MMPs), the polypetide coating is rapidly cleaved, leading to increased cellular uptake of these SNAs, relative to SNAs containing nonsheddable shells. Moreover, the zwitterionic nature of the polypeptide shell shields the SNAs from immune system recognition, which extends their blood circulation time and improves tumor accumulation and in vivo cellular uptake relative to control SNAs with no protective coating. Taken together, these results indicate that this strategy is a viable method for increasing nanoparticle tumor accumulation and can have utility for the systemic delivery of oligonucleotides and nanomaterials to target cells in vivo with low immunogenicity.
Collapse
Affiliation(s)
- Wuliang Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cassandra E. Callmann
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian Meckes
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Mechanical Properties of the Extracellular Environment of Human Brain Cells Drive the Effectiveness of Drugs in Fighting Central Nervous System Cancers. Brain Sci 2022; 12:brainsci12070927. [PMID: 35884733 PMCID: PMC9313046 DOI: 10.3390/brainsci12070927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
The evaluation of nanomechanical properties of tissues in health and disease is of increasing interest to scientists. It has been confirmed that these properties, determined in part by the composition of the extracellular matrix, significantly affect tissue physiology and the biological behavior of cells, mainly in terms of their adhesion, mobility, or ability to mutate. Importantly, pathophysiological changes that determine disease development within the tissue usually result in significant changes in tissue mechanics that might potentially affect the drug efficacy, which is important from the perspective of development of new therapeutics, since most of the currently used in vitro experimental models for drug testing do not account for these properties. Here, we provide a summary of the current understanding of how the mechanical properties of brain tissue change in pathological conditions, and how the activity of the therapeutic agents is linked to this mechanical state.
Collapse
|
5
|
Małek A, Kocot J, Mitrowska K, Posyniak A, Kurzepa J. Bee Venom Effect on Glioblastoma Cells Viability and Gelatinase Secretion. Front Neurosci 2022; 16:792970. [PMID: 35221898 PMCID: PMC8873382 DOI: 10.3389/fnins.2022.792970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe involvement of MMP-2 and MMP-9 in the pathogenesis of various kinds of cancers including glioblastoma is well documented. The evaluation of the anticancer potential of honey bee (Apis mellifera) venom (BV) consisting of the inhibition of MMP-2 and MMP-9 secretion in a glioblastoma cell culture model was the aim of the study.Methods8-MG-BA and GAMG human primary glioblastoma cell lines vs. HT-22 mouse hippocampal neuronal cells were applied for the study. The BV dose (0.5, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, and 5.0 μg/ml) and time-dependent (24, 48, 72 h) cytotoxicity was evaluated with the tetrazolium-based colorimetric assay (MTT test). MMP-2 and MMP-9 activities in the cell culture medium under different BV concentrations were determined by gelatin zymography.ResultsA dose and time-dependent BV effect on cytotoxicity of both glioblastoma cell lines and hippocampus line was observed. The weakest, but statistically important effect was exerted by BV on HT-22 cells. The greatest cytotoxic effect of BV was observed on the 8-MG-BA line, where a statistically significant reduction in viability was observed at the lowest BV dose and the shortest incubation time. The reduction of both gelatinases secretion was observed at 8-MG-BA and GAMG lines without significant effect of HT-22 cell line.ConclusionIn vitro studies indicate that BV has both cytotoxic and inhibitory effects on the secretion of MMP-2 and MMP-9 in selected lines of glioma, suggesting anticancer properties of BV.
Collapse
Affiliation(s)
- Agata Małek
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
- *Correspondence: Agata Małek,
| | - Joanna Kocot
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Kamila Mitrowska
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | - Andrzej Posyniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
- Jacek Kurzepa,
| |
Collapse
|
6
|
Yu D, Lai P, Yan T, Fang K, Chen L, Zhang S. Quantifying the Matrix Metalloproteinase 2 (MMP2) Spatially in Tissues by Probe via MALDI Imaging Mass Spectrometry. Front Chem 2021; 9:786283. [PMID: 34976953 PMCID: PMC8715900 DOI: 10.3389/fchem.2021.786283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
As a matrix metalloproteinase, the abnormal expression of MMP2 is associated with multiple biological processes, including tissue remodeling and cancer progression. Therefore, spatial analysis of MMP2 protein in tissues can be used as an important approach to evaluate the expression distribution of MMP2 in complex tissue environments, which will help the diagnosis and treatment of various diseases, including tissue or organ injuries. Moreover, this analysis will also help the evaluation of prognoses. However, MMP2 is difficult to be spatially determined by MALDI TOF mass spectrometry due to its large molecular weight (over 72 KD) and low content. Therefore, a new method should be developed to help this detection. Here, we have designed a specific MMP2 probe that closely binds to MMP2 protein in tissue. This probe has a Cl on Tyr at the terminal, which can provide two isotope peaks to help the accuracy quantitative of MMP2 protein. Based on this, we used the probe to determine the spatial expression of MMP2 in the tissues based on MALDI TOF mass spectrometry. This approach may help to study the influence of multifunctional proteases on the degree of malignancy in vivo.
Collapse
Affiliation(s)
- Daojiang Yu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- *Correspondence: Daojiang Yu, ; Shuyu Zhang,
| | - Peng Lai
- Department of Endocrinology, Xuzhou Center Hospital, Xuzhou, China
| | - Tao Yan
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Kai Fang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Lei Chen
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Shuyu Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- Department of Oncology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
- *Correspondence: Daojiang Yu, ; Shuyu Zhang,
| |
Collapse
|
7
|
Chen XY, Chen JY, Huang YX, Xu JH, Sun WW, Chen Y, Ding CY, Wang SB, Wu XY, Kang DZ, You HH, Lin YX. Establishment and Validation of an Integrated Model to Predict Postoperative Recurrence in Patients With Atypical Meningioma. Front Oncol 2021; 11:754937. [PMID: 34692542 PMCID: PMC8529147 DOI: 10.3389/fonc.2021.754937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
Background This study aims to establish an integrated model based on clinical, laboratory, radiological, and pathological factors to predict the postoperative recurrence of atypical meningioma (AM). Materials and Methods A retrospective study of 183 patients with AM was conducted. Patients were randomly divided into a training cohort (n = 128) and an external validation cohort (n = 55). Univariable and multivariable Cox regression analyses, the least absolute shrinkage and selection operator (LASSO) regression analysis, time-dependent receiver operating characteristic (ROC) curve analysis, and evaluation of clinical usage were used to select variables for the final nomogram model. Results After multivariable Cox analysis, serum fibrinogen >2.95 g/L (hazard ratio (HR), 2.43; 95% confidence interval (CI), 1.05–5.63; p = 0.039), tumor located in skull base (HR, 6.59; 95% CI, 2.46-17.68; p < 0.001), Simpson grades III–IV (HR, 2.73; 95% CI, 1.01–7.34; p = 0.047), tumor diameter >4.91 cm (HR, 7.10; 95% CI, 2.52–19.95; p < 0.001), and mitotic level ≥4/high power field (HR, 2.80; 95% CI, 1.16–6.74; p = 0.021) were independently associated with AM recurrence. Mitotic level was excluded after LASSO analysis, and it did not improve the predictive performance and clinical usage of the model. Therefore, the other four factors were integrated into the nomogram model, which showed good discrimination abilities in training cohort (C-index, 0.822; 95% CI, 0.759–0.885) and validation cohort (C-index, 0.817; 95% CI, 0.716–0.918) and good match between the predicted and observed probability of recurrence-free survival. Conclusion Our study established an integrated model to predict the postoperative recurrence of AM.
Collapse
Affiliation(s)
- Xiao-Yong Chen
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jin-Yuan Chen
- Department of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yin-Xing Huang
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jia-Heng Xu
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wei-Wei Sun
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yue- Chen
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chen-Yu Ding
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shuo-Bin Wang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xi-Yue Wu
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - De-Zhi Kang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hong-Hai You
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuan-Xiang Lin
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Wang S, Ma J, Zeng Y, Zhou G, Wang Y, Zhou W, Sun X, Wu M. Icariin, an Up-and-Coming Bioactive Compound Against Neurological Diseases: Network Pharmacology-Based Study and Literature Review. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3619-3641. [PMID: 34447243 PMCID: PMC8384151 DOI: 10.2147/dddt.s310686] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Icariin is a biologically active substance in Epimedii herba that is used for the treatment of neurologic disorders. However, a comprehensive analysis of the molecular mechanisms of icariin is lacking. In this review, we present a brief history of the use of icariin for medicinal purposes; describe the active chemical components of Epimedii herba; and examine the evidence from experimental studies that have uncovered molecular targets of icariin in different diseases. We also constructed a protein–protein interaction network and carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses to predict the therapeutic actions of icariin in nervous system diseases including Alzheimer disease, Parkinson disease, ischemic stroke, depressive disorder, multiple sclerosis, glioblastoma, and hereditary spastic paraplegias. The results of our analyses can guide future studies on the application of icariin to the treatment of neurologic disorders.
Collapse
Affiliation(s)
- Shuangqiu Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Jiarui Ma
- Provincial Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Yanqi Zeng
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Guowei Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yuxuan Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Wenjuan Zhou
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Xiaohe Sun
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Minghua Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Garcia JH, Jain S, Aghi MK. Metabolic Drivers of Invasion in Glioblastoma. Front Cell Dev Biol 2021; 9:683276. [PMID: 34277624 PMCID: PMC8281286 DOI: 10.3389/fcell.2021.683276] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma is a primary malignant brain tumor with a median survival under 2 years. The poor prognosis glioblastoma caries is largely due to cellular invasion, which enables escape from resection, and drives inevitable recurrence. While most studies to date have focused on pathways that enhance the invasiveness of tumor cells in the brain microenvironment as the primary driving forces behind GBM’s ability to invade adjacent tissues, more recent studies have identified a role for adaptations in cellular metabolism in GBM invasion. Metabolic reprogramming allows invasive cells to generate the energy necessary for colonizing surrounding brain tissue and adapt to new microenvironments with unique nutrient and oxygen availability. Historically, enhanced glycolysis, even in the presence of oxygen (the Warburg effect) has dominated glioblastoma research with respect to tumor metabolism. More recent global profiling experiments, however, have identified roles for lipid, amino acid, and nucleotide metabolism in tumor growth and invasion. A thorough understanding of the metabolic traits that define invasive GBM cells may provide novel therapeutic targets for this devastating disease. In this review, we focus on metabolic alterations that have been characterized in glioblastoma, the dynamic nature of tumor metabolism and how it is shaped by interaction with the brain microenvironment, and how metabolic reprogramming generates vulnerabilities that may be ripe for exploitation.
Collapse
Affiliation(s)
- Joseph H Garcia
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
10
|
Abstract
Glioma is one of the most frequent primary brain tumors. Currently, the most common therapeutic strategy for patients with glioma is surgical resection combined with radiotherapy or/and adjuvant chemotherapy. However, due to the metastatic and invasive nature of glioma cells, the recurrence rate is high, resulting in poor prognosis. In recent years, gas therapy has become an emerging treatment. Studies have shown that the proliferation, metastasis and invasiveness of glioma cells exposed to anesthetic gases are obviously inhibited. Therefore, anesthetic gas may play a special therapeutic role in gliomas. In this review, we aim to collect existing research and summarize the rules of using anesthetic gases on glioma, providing potential strategies for further clinical treatment.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yi-Guang Mao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zheng-Quan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Putavet DA, de Keizer PLJ. Residual Disease in Glioma Recurrence: A Dangerous Liaison with Senescence. Cancers (Basel) 2021; 13:1560. [PMID: 33805316 PMCID: PMC8038015 DOI: 10.3390/cancers13071560] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
With a dismally low median survival of less than two years after diagnosis, Glioblastoma (GBM) is the most lethal type of brain cancer. The standard-of-care of surgical resection, followed by DNA-damaging chemo-/radiotherapy, is often non-curative. In part, this is because individual cells close to the resection border remain alive and eventually undergo renewed proliferation. These residual, therapy-resistant cells lead to rapid recurrence, against which no effective treatment exists to date. Thus, new experimental approaches need to be developed against residual disease to prevent GBM survival and recurrence. Cellular senescence is an attractive area for the development of such new approaches. Senescence can occur in healthy cells when they are irreparably damaged. Senescent cells develop a chronic secretory phenotype that is generally considered pro-tumorigenic and pro-migratory. Age is a negative prognostic factor for GBM stage, and, with age, senescence steadily increases. Moreover, chemo-/radiotherapy can provide an additional increase in senescence close to the tumor. In light of this, we will review the importance of senescence in the tumor-supportive brain parenchyma, focusing on the invasion and growth of GBM in residual disease. We will propose a future direction on the application of anti-senescence therapies against recurrent GBM.
Collapse
Affiliation(s)
| | - Peter L. J. de Keizer
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, 3584CG Utrecht, The Netherlands;
| |
Collapse
|
12
|
Antitumor Activity of Curcumin in Glioblastoma. Int J Mol Sci 2020; 21:ijms21249435. [PMID: 33322413 PMCID: PMC7763573 DOI: 10.3390/ijms21249435] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Current standard-of-care treatment for glioblastoma, the most common malignant primary central nervous system (CNS) tumor, consists of surgical resection followed by adjuvant chemotherapy and radiation (Stupp protocol), providing an overall median survival of 15 months. With additional treatment using tumor-treating fields (Optune® therapy, Novocure Ltd., Haifa, Israel), survival can be extended up to 20 months. In spite of significant progress in our understanding of the molecular pathogenesis, the prognosis for patients with malignant gliomas remains poor and additional treatment modalities are critically needed. Curcumin is a bright yellow pigment found in the rhizome of the widely utilized spice, turmeric (Curcuma longa). It has long been used in South Asian traditional medicines and has been demonstrated to have in vitro antioxidant, anti-inflammatory, and antiproliferative effects. Curcumin has been demonstrated to induce multiple cytotoxic effects in tumor cells including cell cycle arrest, apoptosis, autophagy, changes in gene expression, and disruption of molecular signaling. Additionally, curcumin has been shown to potentiate the effect of radiation on cancer cells, while exhibiting a protective effect on normal tissue. Curcumin’s positive safety profile and widespread availability make it a promising compound for future clinical trials for high-grade gliomas.
Collapse
|
13
|
Wang P, Wang Z, Yan Y, Xiao L, Tian W, Qu M, Meng A, Sun F, Li G, Dong J. Psychological Stress Up-Regulates CD147 Expression Through Beta-Arrestin1/ERK to Promote Proliferation and Invasiveness of Glioma Cells. Front Oncol 2020; 10:571181. [PMID: 33178600 PMCID: PMC7593686 DOI: 10.3389/fonc.2020.571181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Psychological stress is closely related to the occurrence and prognosis of various malignant tumors, but the underlying mechanisms are not well studied. CD147 has been reported to be expressed in glioma and other malignant tumors. CD147 not only participates in lactic acid transport, but it also plays an important role in the invasion and metastasis of malignant tumor cells by stimulating the production of numerous matrix metalloproteinases (MMPs) and vascular endothelial growth factor by fibroblasts, and could also act as an autocrine factor stimulating MMPs production in metastatic tumor cells. Here, we found that silencing CD147 in chronically stressed nude mice not only inhibited the proliferation of xenografts but also decreased matrix metalloproteinase-2, 9 expression and lactic acid content in tumor tissues. Furthermore, norepinephrine (NE) was significantly increased in the serum of nude mice in glioma stress model. To determine the underlying cellular mechanism, we added exogenous NE into LN229 and U87 cells to simulate the stress environment in vitro. The invasiveness of the glioma cells was subsequently examined using a Matrigel invasion assay. We demonstrated that knockdown of CD147 inhibited glioma invasiveness and metastasis with norepinephrine stimulation. Luciferase reporter gene experiments further demonstrated that the expression of CD147 is up-regulated primarily by norepinephrine via the β-Adrenalin receptor (βAR)-β-arrestin1-ERK1/2-Sp1 pathway. High expression of CD147 promoted the secretion of MMP-2 and the increment of lactic acid, which accelerated the augmented invasion and metastasis of glioma induced by psychological stress. Taken together, these results suggest that psychological stress promotes glioma proliferation and invasiveness by up-regulating CD147 expression. Thus, CD147 might be a potential target site in the treatment of glioma progression induced by chronic psychological stress.
Collapse
Affiliation(s)
- Ping Wang
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Zhenming Wang
- Department of Clinical Laboratory, Weifang City People's Hospital, Weifang, China
| | - Yizhi Yan
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Lin Xiao
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Wenxiu Tian
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China.,Central of Translation Medicine, Zibo Central Hospital, Zibo, China
| | - Meihua Qu
- Translational Medical Center, Weifang Second People's Hospital, Weifang, China
| | - Aixia Meng
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Fengxiang Sun
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Guizhi Li
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Junhong Dong
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
14
|
Hsu FT, Chiang I, Wang W. Induction of apoptosis through extrinsic/intrinsic pathways and suppression of ERK/NF-κB signalling participate in anti-glioblastoma of imipramine. J Cell Mol Med 2020; 24:3982-4000. [PMID: 32149465 PMCID: PMC7171418 DOI: 10.1111/jcmm.15022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/27/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastomas are the most aggressive type of brain tumour, with poor prognosis even after standard treatment such as surgical resection, temozolomide and radiation therapy. The overexpression of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in glioblastomas is recognized as an important treatment target. Thus, an urgent need regarding glioblastomas is the development of a new, suitable agent that may show potential for the inhibition of extracellular signal-regulated kinase (ERK)/NF-κB-mediated glioblastoma progression. Imipramine, a tricyclic antidepressant, has anti-inflammatory actions against inflamed glial cells; additionally, imipramine can induce glioblastoma toxicity via the activation of autophagy. However, whether imipramine can suppress glioblastoma progression via the induction of apoptosis and blockage of ERK/NF-κB signalling remains unclear. The main purpose of this study was to investigate the effects of imipramine on apoptotic signalling and ERK/NF-κB-mediated glioblastoma progression by using cell proliferation (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide [MTT] assay), flow cytometry, Western blotting, and cell invasion/migration assay analysis in vitro. The ERK and NF-κB inhibitory capacity of imipramine is detected by NF-κB reporter gene assay and Western blotting. Additionally, a glioblastoma-bearing animal model was used to validate the therapeutic efficacy and general toxicity of imipramine. Our results demonstrated that imipramine successfully triggered apoptosis through extrinsic/intrinsic pathways and suppressed the invasion/migration ability of glioblastoma cells. Furthermore, imipramine effectively suppressed glioblastoma progression in vivo via the inhibition of the ERK/NF-κB pathway. In summary, imipramine is a potential anti-glioblastoma drug which induces apoptosis and has the capacity to inhibit ERK/NF-κB signalling.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan
| | - I‐Tsang Chiang
- Department of Radiation OncologyShow Chwan Memorial HospitalChanghuaTaiwan
- Department of Radiation OncologyChang Bing Show Chwan Memorial HospitalLukangTaiwan
- Department of Medical Imaging and Radiological SciencesCentral Taiwan University of Science and TechnologyTaichungTaiwan
| | - Wei‐Shu Wang
- Department of MedicineNational Yang‐Ming University HospitalYilanTaiwan
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
| |
Collapse
|