1
|
Hvid H, Hjuler ST, Bedossa P, Tiniakos DG, Kamzolas I, Harder LM, Xue Y, Perfield JW, Kirk RK, Latta M, Mikkelsen LF, Pedersen HD. Choline-deficient, high-fat diet-induced MASH in Göttingen Minipigs: characterization and effects of a chow reversal period. Am J Physiol Gastrointest Liver Physiol 2024; 327:G571-G585. [PMID: 39041677 PMCID: PMC11482250 DOI: 10.1152/ajpgi.00120.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) is increasing, and translational animal models are needed to develop novel treatments for this disease. The physiology and metabolism of pigs have a relatively high resemblance to humans, and the present study aimed to characterize choline-deficient and high-fat diet (CDAHFD)-fed Göttingen Minipigs as a novel animal model of MASLD/MASH. Göttingen Minipigs were fed CDAHFD for up to 5 mo, and the phenotype was investigated by the analysis of plasma parameters and repeated collection of liver biopsies. Furthermore, changes in hepatic gene expression during the experiment were explored by RNA sequencing. For a subset of the minipigs, the diet was changed from CDAHFD back to chow to investigate whether the liver pathology was reversible. Göttingen Minipigs on CDAHFD gained body weight, and plasma levels of cholesterol, AST, ALT, ALP, and GGT were increased. CDAHFD-fed minipigs developed hepatic steatosis, inflammation, and fibrosis, which in 5 of 16 animals progressed to cirrhosis. During an 11-wk chow reversal period, steatosis regressed, while fibrosis persisted. Regarding inflammation, the findings were less clear, depending on the type of readout. MASH Human Proximity Scoring (combined evaluation of transcriptional, phenotypic, and histopathological parameters) showed that CDAHFD-fed Göttingen Minipigs resemble human MASLD/MASH better than most rodent models. In conclusion, CDAHFD-fed minipigs develop a MASH-like phenotype, which, in several aspects, resembles the changes observed in human patients with MASLD/MASH. Furthermore, repeated collection of liver biopsies allows detailed characterization of histopathological changes over time in individual animals.NEW & NOTEWORTHY The physiology and metabolism of pigs have a relatively high resemblance to humans. This study characterizes a new animal model of MASLD/MASH using CDAHFD-fed Göttingen Minipigs. Göttingen Minipigs fed CDAHFD gained weight and developed hepatic steatosis, inflammation, fibrosis, and cirrhosis. After an 11-wk chow-reversal period, hepatic steatosis and some inflammatory parameters reversed. Combined evaluation of phenotypic, transcriptional, and histological parameters revealed the minipig model showed a higher resemblance to human disease than many rodent models.
Collapse
Affiliation(s)
- Henning Hvid
- Research and Early Development, Novo Nordisk A/S, Maaloev, Denmark
| | - Sara T Hjuler
- Research and Early Development, Novo Nordisk A/S, Maaloev, Denmark
| | | | - Dina G Tiniakos
- Department of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ioannis Kamzolas
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Lea M Harder
- Research and Early Development, Novo Nordisk A/S, Maaloev, Denmark
| | - Yaxin Xue
- Research and Early Development, Novo Nordisk A/S, Maaloev, Denmark
| | - James W Perfield
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, Indiana, United States
| | - Rikke K Kirk
- Research and Early Development, Novo Nordisk A/S, Maaloev, Denmark
| | - Markus Latta
- Research and Early Development, Novo Nordisk A/S, Maaloev, Denmark
| | | | | |
Collapse
|
2
|
Mallikarjuna T, Thummadi NB, Vindal V, Manimaran P. Prioritizing cervical cancer candidate genes using chaos game and fractal-based time series approach. Theory Biosci 2024; 143:183-193. [PMID: 38807013 DOI: 10.1007/s12064-024-00418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Cervical cancer is one of the most severe threats to women worldwide and holds fourth rank in lethality. It is estimated that 604, 127 cervical cancer cases have been reported in 2020 globally. With advancements in high throughput technologies and bioinformatics, several cervical candidate genes have been proposed for better therapeutic strategies. In this paper, we intend to prioritize the candidate genes that are involved in cervical cancer progression through a fractal time series-based cross-correlations approach. we apply the chaos game representation theory combining a two-dimensional multifractal detrended cross-correlations approach among the known and candidate genes involved in cervical cancer progression to prioritize the candidate genes. We obtained 16 candidate genes that showed cross-correlation with known cancer genes. Functional enrichment analysis of the candidate genes shows that they involve GO terms: biological processes, cell-cell junction assembly, cell-cell junction organization, regulation of cell shape, cortical actin cytoskeleton organization, and actomyosin structure organization. KEGG pathway analysis revealed genes' role in Rap1 signaling pathway, ErbB signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, mTOR signaling pathway, Acute myeloid leukemia, chronic myeloid leukemia, Breast cancer, Thyroid cancer, Bladder cancer, and Gastric cancer. Further, we performed survival analysis and prioritized six genes CDH2, PAIP1, BRAF, EPB41L3, OSMR, and RUNX1 as potential candidate genes for cervical cancer that has a crucial role in tumor progression. We found that our study through this integrative approach an efficient tool and paved a new way to prioritize the candidate genes and these genes could be evaluated experimentally for potential validation. We suggest this may be useful in analyzing the nucleotide sequences and protein sequences for clustering, classification, class affiliation, etc.
Collapse
Affiliation(s)
- T Mallikarjuna
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - N B Thummadi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Vaibhav Vindal
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - P Manimaran
- School of Physics, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
3
|
Laybourn HA, Hellemann Polhaus C, Kristensen C, Lyngfeldt Henriksen B, Zhang Y, Brogaard L, Larsen CA, Trebbien R, Larsen LE, Kalogeropoulos K, Auf dem Keller U, Skovgaard K. Multi-omics analysis reveals the impact of influenza a virus host adaptation on immune signatures in pig tracheal tissue. Front Immunol 2024; 15:1432743. [PMID: 39247193 PMCID: PMC11378526 DOI: 10.3389/fimmu.2024.1432743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Influenza A virus (IAV) infection is a global respiratory disease, which annually leads to 3-5 million cases of severe illness, resulting in 290,000-650,000 deaths. Additionally, during the past century, four global IAV pandemics have claimed millions of human lives. The epithelial lining of the trachea plays a vital role during IAV infection, both as point of viral entry and replication as well as in the antiviral immune response. Tracheal tissue is generally inaccessible from human patients, which makes animal models crucial for the study of the tracheal host immune response. Method In this study, pigs were inoculated with swine- or human-adapted H1N1 IAV to gain insight into how host adaptation of IAV shapes the innate immune response during infection. In-depth multi-omics analysis (global proteomics and RNA sequencing) of the host response in upper and lower tracheal tissue was conducted, and results were validated by microfluidic qPCR. Additionally, a subset of samples was selected for histopathological examination. Results A classical innate antiviral immune response was induced in both upper and lower trachea after infection with either swine- or human-adapted IAV with upregulation of genes and higher abundance of proteins associated with viral infection and recognition, accompanied by a significant induction of interferon stimulated genes with corresponding higher proteins concentrations. Infection with the swine-adapted virus induced a much stronger immune response compared to infection with a human-adapted IAV strain in the lower trachea, which could be a consequence of a higher viral load and a higher degree of inflammation. Discussion Central components of the JAK-STAT pathway, apoptosis, pyrimidine metabolism, and the cytoskeleton were significantly altered depending on infection with swine- or human-adapted virus and might be relevant mechanisms in relation to antiviral immunity against putative zoonotic IAV. Based on our findings, we hypothesize that during host adaptation, IAV evolve to modulate important host cell elements to favor viral infectivity and replication.
Collapse
Affiliation(s)
- Helena Aagaard Laybourn
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Charlotte Kristensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Yaolei Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI-Qingdao, Qingdao, China
| | - Louise Brogaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cathrine Agnete Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ramona Trebbien
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Shah AA, Daud A, Bukhari A, Alshemaimri B, Ahsan M, Younis R. DEL-Thyroid: deep ensemble learning framework for detection of thyroid cancer progression through genomic mutation. BMC Med Inform Decis Mak 2024; 24:198. [PMID: 39039464 PMCID: PMC11533268 DOI: 10.1186/s12911-024-02604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Genes, expressed as sequences of nucleotides, are susceptible to mutations, some of which can lead to cancer. Machine learning and deep learning methods have emerged as vital tools in identifying mutations associated with cancer. Thyroid cancer ranks as the 5th most prevalent cancer in the USA, with thousands diagnosed annually. This paper presents an ensemble learning model leveraging deep learning techniques such as Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), and Bi-directional LSTM (Bi-LSTM) to detect thyroid cancer mutations early. The model is trained on a dataset sourced from asia.ensembl.org and IntOGen.org, consisting of 633 samples with 969 mutations across 41 genes, collected from individuals of various demographics. Feature extraction encompasses techniques including Hahn moments, central moments, raw moments, and various matrix-based methods. Evaluation employs three testing methods: self-consistency test (SCT), independent set test (IST), and 10-fold cross-validation test (10-FCVT). The proposed ensemble learning model demonstrates promising performance, achieving 96% accuracy in the independent set test (IST). Statistical measures such as training accuracy, testing accuracy, recall, sensitivity, specificity, Mathew's Correlation Coefficient (MCC), loss, training accuracy, F1 Score, and Cohen's kappa are utilized for comprehensive evaluation.
Collapse
Affiliation(s)
- Asghar Ali Shah
- Center of Excellence in Artificial Intelligence (CoE-AI), Department of Computer Science, Bahria University, Islamabad, 04408, Pakistan
| | - Ali Daud
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates.
| | - Amal Bukhari
- Department of Information Systems and Technology, Collage of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Bader Alshemaimri
- Software Engineering Department, College of Computing and Information Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Ahsan
- Department of Computer Science, University of Alabama at Birmingham, 1402 10th Avenue S, Birmingham, AL, 35294, USA
| | - Rehmana Younis
- College of Letters and Sciences, Graduate Student of Robotics Engineering, Columbus State University, Columbus, USA
| |
Collapse
|
5
|
Hossen MS, Akter A, Azmal M, Rayhan M, Islam KS, Islam MM, Ahmed S, Abdullah-Al-Shoeb M. Unveiling the molecular basis of paracetamol-induced hepatotoxicity: Interaction of N-acetyl- p-benzoquinone imine with mitochondrial succinate dehydrogenase. Biochem Biophys Rep 2024; 38:101727. [PMID: 38766381 PMCID: PMC11098724 DOI: 10.1016/j.bbrep.2024.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Background and aim N-acetyl-p-benzoquinoneimine (NAPQI), a toxic byproduct of paracetamol (Acetaminophen, APAP), can accumulate and cause liver damage by depleting glutathione and forming protein adducts in the mitochondria. These adducts disrupt the respiratory chain, increasing superoxide production and reducing ATP. The goal of this study was to provide computational proof that succinate dehydrogenase (SDH), a subunit of complex II in the mitochondrial respiratory chain, is a favorable binding partner for NAPQI in this regard. Method Molecular docking, molecular dynamics simulation, protein-protein interaction networks (PPI), and KEGG metabolic pathway analysis were employed to identify binding characteristics, interaction partners, and their associations with metabolic pathways. A lipid membrane was added to the experimental apparatus to mimic the natural cellular environment of SDH. This modification made it possible to develop a context for investigating the role and interactions of SDH within a cellular ecosystem that was more realistic and biologically relevant. Result The molecular binding affinity score for APAP and NAPQI with SDH was predicted -6.5 and -6.7 kcal/mol, respectively. Furthermore, RMSD, RMSF, and Rog from the molecular dynamics simulations study revealed that NAPQI has slightly higher stability and compactness compared to APAP at 100 ns timeframe with mitochondrial SDH. Conclusion This study serves to predict the mechanistic process of paracetamol toxicity by using different computational approaches. In addition, this study will provide information about the drug target against APAP hepatotoxicity.
Collapse
Affiliation(s)
- Md Sahadot Hossen
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Adiba Akter
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahir Azmal
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mostakim Rayhan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Kazi Saiful Islam
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Mahmodul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Shamim Ahmed
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mohammad Abdullah-Al-Shoeb
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
6
|
Chen CH, Shih LC, Hsu SW, Tien HC, Liu YF, Wang YC, Tsai CW, Bau DAT, Chang WS. Association of Matrix Metalloproteinase-9 Genotypes With Nasopharyngeal Carcinoma Risk. In Vivo 2024; 38:1731-1739. [PMID: 38936920 PMCID: PMC11215630 DOI: 10.21873/invivo.13623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM The up-regulation of matrix metalloproteinase-9 (MMP-9) expression is a characteristic feature observed across various malignancies, including nasopharyngeal carcinoma (NPC). Nevertheless, the influence of MMP-9 genotype in the context of NPC remains underexplored. This study examined the implications of MMP-9 promoter rs3918242 genotypes on the susceptibility to NPC in Taiwan. MATERIALS AND METHODS In a cohort comprising 208 NPC cases and 416 healthy controls, genotyping of MMP-9 rs3918242 was conducted utilizing polymerase chain reaction-restriction fragment length polymorphism methodology. RESULTS Individuals harbouring the variant CT or TT genotype of MMP-9 rs3918242 did not demonstrate a discernible alteration in NPC risk when compared to wild-type CC carriers [odds ratio (OR)=0.83 and 0.79, with 95% confidence intervals (95%CI)=0.56-1.24 and 0.27-2.29; p=0.4205 and 0.8675, respectively]. Moreover, the presence of the variant T allele did not confer a modified risk of NPC (OR=0.84, 95%CI=0.60-1.19, p=0.3761). Intriguingly, a protective effect associated with the MMP-9 rs3918242 CT genotype against NPC risk was discerned among individuals abstaining from betel quid chewing behaviour (OR=0.51, 95%CI=0.30-0.87, p=0.0166). Notably, no significant association was established between the MMP-9 rs3918242 CT or TT genotype and NPC risk among individuals with or without smoking or alcohol consumption habits. CONCLUSION Presence of the variant CT or TT genotype at MMP-9 rs3918242 did not appear to substantially contribute to an elevated risk of NPC. Notably, a protective effect against NPC risk was observed in individuals carrying the CT genotype, particularly in those abstaining from betel quid chewing.
Collapse
Affiliation(s)
- Chao-Hsuan Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan, R.O.C
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Liang-Chun Shih
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
- Department of Otorhinolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Shih-Wei Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
- Division of Neurosurgery, Department of Surgery, Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C
- National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Hui-Chi Tien
- Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan, R.O.C
| | - Yen-Fang Liu
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yun-Chi Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.;
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.;
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
7
|
Sarwar MF, Waseem QUA, Awan MF, Ali S, Ahmad A, Malook SU, Ali Q. In-silico characterization of LSDV132 protein divulged its BCL-2-like nature. Heliyon 2024; 10:e27657. [PMID: 38510042 PMCID: PMC10951589 DOI: 10.1016/j.heliyon.2024.e27657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Lumpy skin disease virus (LSDV) belongs to Poxviridae family. This virus possesses various proteins which impart potential functions to it including assembly of newly synthesized viruses in the replication cycle and forming their structure. LSDV132 protein is also one of such proteins. Its key characteristics were unknown because, no any relevant study was reported about it. This study aimed to investigate its characteristic features and essential functions using several bioinformatics techniques. These analyses included physiochemical characterization and exploring the crucial functional and structural perspectives. Upon analysis of the physiochemical properties, the instability index was computed to be 30.89% which proposed LSDV132 protein to be a stable protein. Afterwards, the phosphorylation sites were explored. Several sites were found in this regard which led to the hypothesis that it might be involved in the regulation of apoptosis and cell signaling, among other cellular processes. Furthermore, the KEGG analysis and the analysis of protein family classification confirmed that the LSDV132 protein possessed Poxvirus-BCL-2-like motifs, indicating that it might be responsible in modulating the apoptosis of host cells. This crucial finding suggested that the protein under study possessed BCL-2-like features. Proceeding this very important finding, the molecular docking analysis was performed. In this context, various viral BCL-2 inhibitors were retrieved from the ChEMBL database for docking purpose. The docking results revealed that pelcitoclax exhibited best docking scores i.e., -9.1841 kcal/mol, among all of the other docked complexes. This fact signified that this compound might serve as an inhibitor of LSDV132 protein.
Collapse
Affiliation(s)
- Muhammad Farhan Sarwar
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Qurat ul Ain Waseem
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Mudassar Fareed Awan
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Sajed Ali
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saif ul Malook
- Department of Entomology & Nematology, University of Florida, USA
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
8
|
Souza-Silva TG, Neves EGA, Koh C, Teixeira-Carvalho A, Araújo SS, Nunes MDCP, Gomes JDAS, Gollob KJ, Dutra WO. Correlation of blood-based immune molecules with cardiac gene expression profiles reveals insights into Chagas cardiomyopathy pathogenesis. Front Immunol 2024; 15:1338582. [PMID: 38390336 PMCID: PMC10882095 DOI: 10.3389/fimmu.2024.1338582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Understanding compartmentalized immune responses in target organs is crucial for elucidating the pathogenesis of various diseases. However, obtaining samples from affected vital organs often poses safety challenges. In this study, we aimed to investigate potential correlations between the levels of disease-associated immune molecules in the bloodstream with their gene expression profiles in the hearts of patients suffering from Chagas Cardiomyopathy (CCC). This debilitating and often fatal condition is caused by infection with the protozoan Trypanosoma cruzi. Methods Blood samples were analyzed using the Bio-Plex platform. Gene Expression Omnibus (GEO) database was used to determine gene expression profile in heart tissue from CCC and non-Chagas controls (CTRL). Results Elevated levels of inflammatory cytokines were detected in the plasma of CCC patients, and these levels correlated with clinical indicators of deteriorating cardiac function. Notably, 75% of the soluble factors assessed in the plasma exhibited a consistent relationship with their gene expression levels in the cardiac tissue of CCC patients. Analysis of interactions and signaling pathways related to these molecules revealed an overrepresentation of inflammatory pathways in both blood and heart compartments. Moreover, we identified that differentially expressed genes in CCC cardiac tissue were primarily associated with T-cell signaling pathways and correlated with the presence of CD8+ T cells in the myocardium. Discussion Our findings establish a strong correlation between relevant immune molecules and their signaling pathways in both the blood and heart tissue in CCC. This validates the use of blood as a non-invasive medium for understanding immunopathology and identifying markers for cardiac dysfunction in Chagas disease.
Collapse
Affiliation(s)
- Thaiany G. Souza-Silva
- Laboratório Biologia das Interações Celulares, Departament de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eula G. A. Neves
- Laboratório Biologia das Interações Celulares, Departament de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina Koh
- Laboratório Biologia das Interações Celulares, Departament de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Silvana Silva Araújo
- Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Juliana de Assis Silva Gomes
- Laboratório Biologia das Interações Celulares, Departament de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Kenneth J. Gollob
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Laboratório Biologia das Interações Celulares, Departament de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Ho SY, Yuliana ME, Chou HC, Chen CM. Intrauterine growth restriction alters kidney metabolism at the end of nephrogenesis. Nutr Metab (Lond) 2023; 20:50. [PMID: 37990266 PMCID: PMC10664663 DOI: 10.1186/s12986-023-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND This study investigated the effect of uteroplacental insufficiency (UPI) on renal development by detecting metabolic alterations in the kidneys of rats with intrauterine growth restriction (IUGR). METHODS On gestational day 17, pregnant Sprague Dawley rats were selected and allocated randomly to either the IUGR group or the control group. The IUGR group received a protocol involving the closure of bilateral uterine vessels, while the control group underwent a sham surgery. The rat pups were delivered on gestational day 22 by natural means. Pups were randomly recruited from both the control and IUGR groups on the seventh day after birth. The kidneys were surgically removed to conduct Western blot and metabolomic analyses. RESULTS IUGR was produced by UPI, as evidenced by the significantly lower body weights of the pups with IUGR compared to the control pups on postnatal day 7. UPI significantly increased the levels of cleaved caspase-3 (p < 0.05) and BAX/Bcl-2 (p < 0.01) in the pups with IUGR. Ten metabolites exhibited statistically significant differences between the groups (q < 0.05). Metabolic pathway enrichment analysis demonstrated statistically significant variations between the groups in the metabolism related to fructose and mannose, amino and nucleotide sugars, and inositol phosphate. CONCLUSIONS UPI alters kidney metabolism in growth-restricted newborn rats and induces renal apoptosis. The results of our study have the potential to provide new insights into biomarkers and metabolic pathways that are involved in the kidney changes generated by IUGR.
Collapse
Affiliation(s)
- Sheng-Yuan Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Merryl Esther Yuliana
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Faculty of Medicine, Christian University of Indonesia, Jakarta, Indonesia
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ming Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
10
|
Xie S, Yan R, Zheng A, Shi M, Tang L, Li X, Liu J, Gan Y, Wang Y, Jiang D, Liu L, Wu H, Wang Z. T cell receptor and B cell receptor exhibit unique signatures in tumor and adjacent non-tumor tissues of hepatocellular carcinoma. Front Immunol 2023; 14:1161417. [PMID: 37313417 PMCID: PMC10258310 DOI: 10.3389/fimmu.2023.1161417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
Background The tumor microenvironment in hepatocellular carcinoma (HCC) is complicated. Tumor-infiltrating T and B cells play a pivotal role in anti-tumor immunity. T cell receptor (TCR) and B cell receptor (BCR) features may reflect the disease-associated antigen response. Methods By combining bulk TCR/BCR-sequencing, RNA-sequencing, whole exome-sequencing, and human leukocyte antigen-sequencing, we examined the immune repertoire (IR) features of tumor and adjacent non-tumor tissues obtained from 64 HCC patients. Results High IR heterogeneity with weak similarity was discovered between tumor and non-tumor tissues. Higher BCR diversity, richness, and somatic hypermutation (SHM) were found in non-tumor tissues, while TCRα and TCRβ diversity and richness were comparable or higher in tumor. Additionally, lower immune infiltration was found in tumor than non-tumor tissues; the microenvironment in tumor appeared to keep stably inhibited and changed slightly with tumor progression. Moreover, BCR SHM was stronger, whereas TCR/BCR diversity declined with HCC progression. Importantly, we found that higher IR evenness in tumor and lower TCR richness in non-tumor tissues indicated better survival in HCC patients. Collectively, the results revealed that TCR and BCR exhibited distinct features in tumor and non-tumor tissues. Conclusions We demonstrated that IR features vary between different tissues of HCC. IR features may represent a biomarker for the diagnosis and treatment of HCC patients, providing references for subsequent immunotherapy research and strategy selection.
Collapse
Affiliation(s)
- Shi Xie
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Yan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Zheng
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengfen Shi
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Xueying Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiabang Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yifan Gan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Deke Jiang
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhanhui Wang
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Khadem A, Moshtaghi N, Bagheri A. Regulatory networks of hormone-involved transcription factors and their downstream pathways during somatic embryogenesis of Arabidopsis thaliana. 3 Biotech 2023; 13:132. [PMID: 37091499 PMCID: PMC10115918 DOI: 10.1007/s13205-023-03546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Somatic embryogenesis (SE) depends on a variety of developmental pathways that are influenced by several environmental factors. Therefore, it is important to understand the relationship between environmental and genetic factors by identifying the gene networks involved in SE through gene set enrichment analysis (GSEA). For determination of SE effective transcription factors, upstream sequences of core-enriched genes were analyzed. The results indicated that response to hormones is one of the biological pathways activated by the enriched TFs at all stages of somatic embryogenesis and about half of the hormonal pathways were enriched. On the fifth day after 2,4-Dichlorophenoxyacetic acid (2,4-D) treatment, the activity of hormone-affecting genes reached its maximum. At this time, more transcription factors regulated the enriched genes compared to the other stages of somatic embryogenesis. MYBs, AT-HOOKs, and HSFs are the main families of transcription factors which affect core-enriched genes during SE. CCA1, PRR7, and TOC1 and their related genes at the center of protein-protein interaction of SE-key transcription factors, involved in the regulation of the circadian clock. Gene expression analysis of CCA1, PRR7, and TOC1 revealed that the genes involved in circadian clock reached their maximum activity when embryonic cells formed. Also, auxin response elements were identified at the upstream of SE-circadian clock transcription factors, indicating that they might mediate between auxin signaling and SE-related hormonal pathways as well as SE marker genes such as AGL15, BBM, and LECs. Based on these results, it is possible that the cellular circadian rhythm activates various developmental pathways under the influence of auxin signal transduction and their interactions determine the induction of somatic embryogenesis. According to the results of this study, modifying pathways affected by SE-related transcription factors such as circadian rhythm may result in cell reprogramming and increase somatic embryogenesis efficiency. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03546-7.
Collapse
Affiliation(s)
- Azadeh Khadem
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nasrin Moshtaghi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
12
|
Nag A, Dhull N, Gupta A. Evaluation of tea (Camellia sinensis L.) phytochemicals as multi-disease modulators, a multidimensional in silico strategy with the combinations of network pharmacology, pharmacophore analysis, statistics and molecular docking. Mol Divers 2023; 27:487-509. [PMID: 35536529 PMCID: PMC9086669 DOI: 10.1007/s11030-022-10437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
Tea (Camellia sinensis L.) is considered as to be one of the most consumed beverages globally and a reservoir of phytochemicals with immense health benefits. Despite numerous advantages, tea compounds lack a robust multi-disease target study. In this work, we presented a unique in silico approach consisting of molecular docking, multivariate statistics, pharmacophore analysis, and network pharmacology approaches. Eight tea phytochemicals were identified through literature mining, namely gallic acid, catechin, epigallocatechin gallate, epicatechin, epicatechin gallate (ECG), quercetin, kaempferol, and ellagic acid, based on their richness in tea leaves. Further, exploration of databases revealed 30 target proteins related to the pharmacological properties of tea compounds and multiple associated diseases. Molecular docking experiment with eight tea compounds and all 30 proteins revealed that except gallic acid all other seven phytochemicals had potential inhibitory activities against these targets. The docking experiment was validated by comparing the binding affinities (Kcal mol-1) of the compounds with known drug molecules for the respective proteins. Further, with the aid of the application of statistical tools (principal component analysis and clustering), we identified two major clusters of phytochemicals based on their chemical properties and docking scores (Kcal mol-1). Pharmacophore analysis of these clusters revealed the functional descriptors of phytochemicals, related to the ligand-protein docking interactions. Tripartite network was constructed based on the docking scores, and it consisted of seven tea phytochemicals (gallic acid was excluded) targeting five proteins and ten associated diseases. Epicatechin gallate (ECG)-hepatocyte growth factor receptor (PDB id 1FYR) complex was found to be highest in docking performance (10 kcal mol-1). Finally, molecular dynamic simulation showed that ECG-1FYR could make a stable complex in the near-native physiological condition.
Collapse
Affiliation(s)
- Anish Nag
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India.
| | - Nikhil Dhull
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India
| | - Ashmita Gupta
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India
| |
Collapse
|
13
|
Trzebny A, Slodkowicz-Kowalska A, Björkroth J, Dabert M. Microsporidian Infection in Mosquitoes (Culicidae) Is Associated with Gut Microbiome Composition and Predicted Gut Microbiome Functional Content. MICROBIAL ECOLOGY 2023; 85:247-263. [PMID: 34939130 PMCID: PMC9849180 DOI: 10.1007/s00248-021-01944-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The animal gut microbiota consist of many different microorganisms, mainly bacteria, but archaea, fungi, protozoans, and viruses may also be present. This complex and dynamic community of microorganisms may change during parasitic infection. In the present study, we investigated the effect of the presence of microsporidians on the composition of the mosquito gut microbiota and linked some microbiome taxa and functionalities to infections caused by these parasites. We characterised bacterial communities of 188 mosquito females, of which 108 were positive for microsporidian DNA. To assess how bacterial communities change during microsporidian infection, microbiome structures were identified using 16S rRNA microbial profiling. In total, we identified 46 families and four higher taxa, of which Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae and Pseudomonadaceae were the most abundant mosquito-associated bacterial families. Our data suggest that the mosquito gut microbial composition varies among host species. In addition, we found a correlation between the microbiome composition and the presence of microsporidians. The prediction of metagenome functional content from the 16S rRNA gene sequencing suggests that microsporidian infection is characterised by some bacterial species capable of specific metabolic functions, especially the biosynthesis of ansamycins and vancomycin antibiotics and the pentose phosphate pathway. Moreover, we detected a positive correlation between the presence of microsporidian DNA and bacteria belonging to Spiroplasmataceae and Leuconostocaceae, each represented by a single species, Spiroplasma sp. PL03 and Weissella cf. viridescens, respectively. Additionally, W. cf. viridescens was observed only in microsporidian-infected mosquitoes. More extensive research, including intensive and varied host sampling, as well as determination of metabolic activities based on quantitative methods, should be carried out to confirm our results.
Collapse
Affiliation(s)
- Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Anna Slodkowicz-Kowalska
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Poznan, Poland
| | - Johanna Björkroth
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
14
|
Proteomics uncover EPHA2 as a potential novel therapeutic target in colorectal cancer cell lines with acquired cetuximab resistance. J Cancer Res Clin Oncol 2023; 149:669-682. [PMID: 36401637 PMCID: PMC9931833 DOI: 10.1007/s00432-022-04416-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/11/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND In metastatic colorectal cancer (mCRC), acquired resistance against anti-EGFR targeted monoclonal antibodies, such as cetuximab (CET), was shown to be frequently caused by activating alterations in the RAS genes KRAS or NRAS. To this day, no efficient follow-up treatment option has emerged to treat mCRC in such a setting of resistance. METHODS To uncover potential targets for second-line targeted therapies, we used mass-spectrometric proteomics to shed light on kinome reprogramming in an established cellular model of acquired, KRAS-associated CET resistance. RESULTS This CET resistance was reflected by significant changes in the kinome, most of them individual to each cell line. Interestingly, all investigated resistant cell lines displayed upregulation of the Ephrin type-A receptor 2 (EPHA2), a well-known driver of traits of progression. Expectedly resistant cell lines displayed increased migration (p < 0.01) that was significantly reduced by targeting the EPHA2 signalling axis using RNA interference (RNAi) (p < 0.001), ephrin-A1 stimulation (p < 0.001), dasatinib (p < 0.01), or anti-EPHA2 antibody treatment (p < 0.001), identifying it as an actionable target in mCRC with acquired CET resistance. CONCLUSION These results highlight EPHA2 and its role in mCRC with KRAS-gene mutated acquired CET resistance and support its use as a potential actionable target for the development of future precision medicine therapies.
Collapse
|
15
|
Lynch C, Peeters C, Walsh N, McCarthy C, Coffey A, Lucey B, Vandamme P. Campylobacter majalis sp. nov. and Campylobacter suis sp. nov., novel Campylobacter species isolated from porcine gastrointestinal mucosa. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748456 DOI: 10.1099/ijsem.0.005510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Strains LMG 7974T and LMG 8286T represent single, novel Campylobacter lineages with Campylobacter pinnipediorum and Campylobacter mucosalis as nearest phylogenomic neighbours, respectively. The results of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) analyses of LMG 7974T, LMG 8286T and type strains of species of the genus Campylobacter confirmed that these strains represent novel species of the genus Campylobacter. The 16S rRNA gene sequences of both strains showed highest identity towards C. mucosalis (97.84 and 98.74 %, respectively). Strains LMG 7974T and LMG 8286T shared 72.5 and 73.7% ANI, respectively, with their nearest phylogenomic neighbours and less than 21 % dDDH. The draft genome sizes of LMG 7974T and LMG 8286T are 1 945429 bp and 1 708214 bp in length with percentage DNA G+C contents of 33.8 and 37.2 %, respectively. Anomalous biochemical characteristics and low MALDI-TOF mass spectrometry log scores supported their designation as representing novel species of the genus Campylobacte. We therefore propose to classify strain LMG 7974T (=CCUG 20705T) as the type strain of the novel species Campylobacter majalis sp. nov. and strain LMG 8286T (=CCUG 24193T, NCTC 11879T) as the type strain of the novel species Campylobacter suis sp. nov.
Collapse
Affiliation(s)
- Caoimhe Lynch
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown Cork T12 P928, Ireland
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Niamh Walsh
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown Cork T12 P928, Ireland
| | - Conor McCarthy
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown Cork T12 P928, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown Cork T12 P928, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown Cork T12 P928, Ireland
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Santri IN, Irham LM, Djalilah GN, Perwitasari DA, Wardani Y, Phiri YVA, Adikusuma W. Identification of Hub Genes and Potential Biomarkers for Childhood Asthma by Utilizing an Established Bioinformatic Analysis Approach. Biomedicines 2022; 10:biomedicines10092311. [PMID: 36140412 PMCID: PMC9496621 DOI: 10.3390/biomedicines10092311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Childhood asthma represents a heterogeneous disease resulting from the interaction between genetic factors and environmental exposures. Currently, finding reliable biomarkers is necessary for the clinical management of childhood asthma. However, only a few biomarkers are being used in clinical practice in the pediatric population. In the long run, new biomarkers for asthma in children are required and would help direct therapy approaches. This study aims to identify potential childhood asthma biomarkers using a genetic-driven biomarkers approach. Herein, childhood asthma-associated Single Nucleotide Polymorphisms (SNPs) were utilized from the GWAS database to drive and facilitate the biomarker of childhood asthma. We uncovered 466 childhood asthma-associated loci by extending to proximal SNPs based on r2 > 0.8 in Asian populations and utilizing HaploReg version 4.1 to determine 393 childhood asthma risk genes. Next, the functional roles of these genes were subsequently investigated using Gene Ontology (GO) term enrichment analysis, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and a protein−protein interaction (PPI) network. MCODE and CytoHubba are two Cytoscape plugins utilized to find biomarker genes from functional networks created using childhood asthma risk genes. Intriguingly, 10 hub genes (IL6, IL4, IL2, IL13, PTPRC, IL5, IL33, TBX21, IL2RA, and STAT6) were successfully identified and may have been identified to play a potential role in the pathogenesis of childhood asthma. Among 10 hub genes, we strongly suggest IL6 and IL4 as prospective childhood asthma biomarkers since both of these biomarkers achieved a high systemic score in Cytohubba’s MCC algorithm. In summary, this study offers a valuable genetic-driven biomarker approach to facilitate the potential biomarkers for asthma in children.
Collapse
Affiliation(s)
| | | | | | | | - Yuniar Wardani
- Faculty of Public Health, Universitas Ahmad Dahlan, Yogyakarta 55164, Indonesia
| | - Yohane Vincent Abero Phiri
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- Institute for Health Research and Communication (IHRC), Lilongwe P.O. Box 1958, Malawi
| | - Wirawan Adikusuma
- Departement of Pharmacy, University of Muhammadiyah Mataram, Mataram 83127, Indonesia
- Correspondence: (W.A.)
| |
Collapse
|
17
|
Reza MS, Hossen MA, Harun-Or-Roshid M, Siddika MA, Kabir MH, Mollah MNH. Metadata analysis to explore hub of the hub-genes highlighting their functions, pathways and regulators for cervical cancer diagnosis and therapies. Discov Oncol 2022; 13:79. [PMID: 35994213 PMCID: PMC9395557 DOI: 10.1007/s12672-022-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Cervical cancer (CC) is considered as the fourth most common women cancer globally.that shows malignant features of local infiltration and invasion into adjacent organs and tissues. There are several individual studies in the literature that explored CC-causing hub-genes (HubGs), however, we observed that their results are not so consistent. Therefore, the main objective of this study was to explore hub of the HubGs (hHubGs) that might be more representative CC-causing HubGs compare to the single study based HubGs. We reviewed 52 published articles and found 255 HubGs/studied-genes in total. Among them, we selected 10 HubGs (CDK1, CDK2, CHEK1, MKI67, TOP2A, BRCA1, PLK1, CCNA2, CCNB1, TYMS) as the hHubGs by the protein-protein interaction (PPI) network analysis. Then, we validated their differential expression patterns between CC and control samples through the GPEA database. The enrichment analysis of HubGs revealed some crucial CC-causing biological processes (BPs), molecular functions (MFs) and cellular components (CCs) by involving hHubGs. The gene regulatory network (GRN) analysis identified four TFs proteins and three miRNAs as the key transcriptional and post-transcriptional regulators of hHubGs. Then, we identified hHubGs-guided top-ranked FDA-approved 10 candidate drugs and validated them against the state-of-the-arts independent receptors by molecular docking analysis. Finally, we investigated the binding stability of the top-ranked three candidate drugs (Docetaxel, Temsirolimus, Paclitaxel) by using 100 ns MD-based MM-PBSA simulations and observed their stable performance. Therefore the finding of this study might be the useful resources for CC diagnosis and therapies.
Collapse
Affiliation(s)
- Md. Selim Reza
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Alim Hossen
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Harun-Or-Roshid
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Mst. Ayesha Siddika
- Microbiology Lab, Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Hadiul Kabir
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|
18
|
Baubin C, Ran N, Siebner H, Gillor O. Divergence of Biocrust Active Bacterial Communities in the Negev Desert During a Hydration-Desiccation Cycle. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02063-z. [PMID: 35788422 DOI: 10.1007/s00248-022-02063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Rain events in arid environments are highly unpredictable and intersperse extended periods of drought. Therefore, tracking changes in desert soil bacterial communities during rain events, in the field, was seldom attempted. Here, we assessed rain-mediated dynamics of active bacterial communities in the Negev Desert biological soil crust (biocrust). Biocrust samples were collected during, and after a medium rainfall and dry soil was used as a control; we evaluated the changes in active bacterial composition, potential function, potential photosynthetic activity, and extracellular polysaccharide (EPS) production. We hypothesized that rain would activate the biocrust phototrophs (mainly Cyanobacteria), while desiccation would inhibit their activity. In contrast, the biocrust Actinobacteria would decline during rewetting and revive with desiccation. Our results showed that hydration increased chlorophyll content and EPS production. As expected, biocrust rewetting activated Cyanobacteria, which replaced the former dominant Actinobacteria, boosting potential autotrophic functions. However, desiccation of the biocrust did not immediately change the bacterial composition or potential function and was followed by a delayed decrease in chlorophyll and EPS levels. This dramatic shift in the community upon rewetting led to modifications in ecosystem services. We propose that following a rain event, the response of the active bacterial community lagged behind the biocrust water content due to the production of EPS which delayed desiccation and temporarily sustained the biocrust community activity.
Collapse
Affiliation(s)
- Capucine Baubin
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| | - Noya Ran
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Hagar Siebner
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| |
Collapse
|
19
|
Extraterrestrial Gynecology: Could Spaceflight Increase the Risk of Developing Cancer in Female Astronauts? An Updated Review. Int J Mol Sci 2022; 23:ijms23137465. [PMID: 35806469 PMCID: PMC9267413 DOI: 10.3390/ijms23137465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Outer space is an extremely hostile environment for human life, with ionizing radiation from galactic cosmic rays and microgravity posing the most significant hazards to the health of astronauts. Spaceflight has also been shown to have an impact on established cancer hallmarks, possibly increasing carcinogenic risk. Terrestrially, women have a higher incidence of radiation-induced cancers, largely driven by lung, thyroid, breast, and ovarian cancers, and therefore, historically, they have been permitted to spend significantly less time in space than men. In the present review, we focus on the effects of microgravity and radiation on the female reproductive system, particularly gynecological cancer. The aim is to provide a summary of the research that has been carried out related to the risk of gynecological cancer, highlighting what further studies are needed to pave the way for safer exploration class missions, as well as postflight screening and management of women astronauts following long-duration spaceflight.
Collapse
|
20
|
Amod A, Pahal S, Choudhary P, Gupta A, Singh S. Network pharmacological evaluation of strigolactones efficacy as potential inhibitors against therapeutic targets of hepatocellular carcinoma. Biotechnol Lett 2022; 44:879-900. [PMID: 35672528 DOI: 10.1007/s10529-022-03266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is the uncontrolled growth of hepatocytes which results in nearly 5 million deaths worldwide. Specific strategies have been developed to treat HCC, including surgery, chemotherapy and radiotherapy. But, the effective disease dealing requires synergistic collaboration with other approaches, which often results in moderate to severe side effects during and after the treatment period. Therefore, the focus is now shifting to explore and retrieve those plant-based products that could be utilized to treat HCC with maximum efficacy without causing any side effects. Strigolactones (SL) are compounds of plant origin derived from Striga lutea responsible for controlling the branching pattern of stem and have reported anti-cancerous activity by promoting apoptosis at micromolar concentrations. However, little work has been done concerning determining the pharmacogenomic effect of strigolactones on HCC. METHODS Current work focuses on comparing therapeutic efficiencies of SL analogs against core targets of HCC using network pharmacology approach, pharmacokinetics analysis, gene ontogeny, functional enrichment analysis, molecular docking and Molecular Dynamics simulation. RESULTS Drug-target prediction and functional enrichment analysis showed that HDAC1 and HDAC2 are the core proteins involved in hepatocellular carcinoma that strigolactone analogs can target. Consequently, results from molecular docking and MD simulation analyses report that among all the SL analogs strigol, epistrigol and nijmegen1 can turn out to be most effective in downregulating the expression of HDAC1, HDAC2 and CYP19A. CONCLUSION Strigol, epistrigol and nijmegen1 could be used as potential inhibitors against HCC and can be further validated through in vitro/in vivo studies.
Collapse
Affiliation(s)
- Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, 211015, India
| | - Sonu Pahal
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, 211015, India
| | - Princy Choudhary
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, 211015, India
| | - Ayushi Gupta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, 211015, India
| | - Sangeeta Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, 211015, India.
| |
Collapse
|
21
|
Chen H, Zhao X, Li Y, Zhang S, Wang Y, Wang L, Ma W. High Expression of TMEM33 Predicts Poor Prognosis and Promotes Cell Proliferation in Cervical Cancer. Front Genet 2022; 13:908807. [PMID: 35832191 PMCID: PMC9271802 DOI: 10.3389/fgene.2022.908807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 01/22/2023] Open
Abstract
Background: The prognosis of patients with advanced cervical cancer remains unsatisfactory. A study indicated that transmembrane protein 33 (TMEM33) was implicated in tumor recurrence, while its role in cervical cancer has not been elucidated. Methods: TMEM33 expression in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) was primarily screened in The Cancer Genome Atlas (TCGA), and further validated in Gene Expression Omnibus (GEO) database. The Kaplan–Meier plotter analysis and Cox regression were constructed to evaluate the prognostic value of TMEM33 in CESC. Functional enrichment analysis was performed with GO, KEGG and GSEA tools. CCK-8 assay and colony formation assay were performed to investigate the carcinogenesis role of TMEM33 in cervical cancer cell proliferation. Results: TMEM33 expression was significantly elevated in CESC compared with normal tissues. High expression of TMEM33 was associated with poor prognostic clinical characteristics in CESC patients. KM-plotter analysis revealed that patients with increased TMEM33 had shorter overall survival (OS), progress free interval (PFI), and disease specific survival (DSS). Moreover, Multivariate Cox analysis confirmed that high TMEM33 expression was an independent risk factor for OS in patients with CESC. TMEM33 was associated with immune infiltrates, and its expression was correlated with tumorigenesis-related genes RNF4, OCIAD1, TMED5, DHX15, MED28 and LETM1. More importantly, knockdown of TMEM33 in cervical cancer cells decreased the expression of those genes and inhibited cell proliferation. Conclusion: Increased TMEM33 in cervical cancer can serve as an independent prognostic marker and might play a role in tumorigenesis by promoting cell proliferation.
Collapse
Affiliation(s)
- Hanxiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong LaiBo Biotechnology Co., Ltd., Jinan, China
| | - Xia Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yongqing Li
- Department of Clinical Laboratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Yunshan Wang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lili Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Lili Wang, ; Wanshan Ma,
| | - Wanshan Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Lili Wang, ; Wanshan Ma,
| |
Collapse
|
22
|
Bioinformatics Screening of Potential Biomarkers from mRNA Expression Profiles to Discover Drug Targets and Agents for Cervical Cancer. Int J Mol Sci 2022; 23:ijms23073968. [PMID: 35409328 PMCID: PMC8999699 DOI: 10.3390/ijms23073968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Bioinformatics analysis has been playing a vital role in identifying potential genomic biomarkers more accurately from an enormous number of candidates by reducing time and cost compared to the wet-lab-based experimental procedures for disease diagnosis, prognosis, and therapies. Cervical cancer (CC) is one of the most malignant diseases seen in women worldwide. This study aimed at identifying potential key genes (KGs), highlighting their functions, signaling pathways, and candidate drugs for CC diagnosis and targeting therapies. Four publicly available microarray datasets of CC were analyzed for identifying differentially expressed genes (DEGs) by the LIMMA approach through GEO2R online tool. We identified 116 common DEGs (cDEGs) that were utilized to identify seven KGs (AURKA, BRCA1, CCNB1, CDK1, MCM2, NCAPG2, and TOP2A) by the protein–protein interaction (PPI) network analysis. The GO functional and KEGG pathway enrichment analyses of KGs revealed some important functions and signaling pathways that were significantly associated with CC infections. The interaction network analysis identified four TFs proteins and two miRNAs as the key transcriptional and post-transcriptional regulators of KGs. Considering seven KGs-based proteins, four key TFs proteins, and already published top-ranked seven KGs-based proteins (where five KGs were common with our proposed seven KGs) as drug target receptors, we performed their docking analysis with the 80 meta-drug agents that were already published by different reputed journals as CC drugs. We found Paclitaxel, Vinorelbine, Vincristine, Docetaxel, Everolimus, Temsirolimus, and Cabazitaxel as the top-ranked seven candidate drugs. Finally, we investigated the binding stability of the top-ranked three drugs (Paclitaxel, Vincristine, Vinorelbine) by using 100 ns MD-based MM-PBSA simulations with the three top-ranked proposed receptors (AURKA, CDK1, TOP2A) and observed their stable performance. Therefore, the proposed drugs might play a vital role in the treatment against CC.
Collapse
|
23
|
Pokhrel N, Genin O, Sela-Donenfeld D, Cinnamon Y. HREM, RNAseq and Cell Cycle Analyses Reveal the Role of the G2/M-Regulatory Protein, WEE1, on the Survivability of Chicken Embryos during Diapause. Biomedicines 2022; 10:779. [PMID: 35453529 PMCID: PMC9033001 DOI: 10.3390/biomedicines10040779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Avian blastoderm can enter into diapause when kept at low temperatures and successfully resume development (SRD) when re-incubated in body temperature. These abilities, which are largely affected by the temperature and duration of the diapause, are poorly understood at the cellular and molecular level. To determine how temperature affects embryonic morphology during diapause, high-resolution episcopic microscopy (HREM) analysis was utilized. While blastoderms diapausing at 12 °C for 28 days presented typical cytoarchitecture, similar to non-diapaused embryos, at 18 °C, much thicker blastoderms with higher cell number were observed. RNAseq was conducted to discover the genes underlying these phenotypes, revealing differentially expressed cell cycle regulatory genes. Among them, WEE1, a negative regulator of G2/M transition, was highly expressed at 12 °C compared to 18 °C. This finding suggested that cells at 12 °C are arrested at the G2/M phase, as supported by bromodeoxyuridine incorporation (BrdU) assay and phospho-histone H3 (pH 3) immunostaining. Inhibition of WEE1 during diapause at 12 °C resulted in cell cycle progression beyond the G2/M and augmented tissue volume, resembling the morphology of 18 °C-diapaused embryos. These findings suggest that diapause at low temperatures leads to WEE1 upregulation, which arrests the cell cycle at the G2/M phase, promoting the perseverance of embryonic cytoarchitecture and future SRD. In contrast, WEE1 is not upregulated during diapause at higher temperature, leading to continuous proliferation and maladaptive morphology associated with poor survivability. Combining HREM-based analysis with RNAseq and molecular manipulations, we present a novel mechanism that regulates the ability of diapaused avian embryos to maintain their cytoarchitecture via cell cycle arrest, which enables their SRD.
Collapse
Affiliation(s)
- Narayan Pokhrel
- Agriculture Research Organization, The Volcani Center, Department of Poultry and Aquaculture Science, Bet Dagan 50250, Israel; (N.P.); (O.G.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Olga Genin
- Agriculture Research Organization, The Volcani Center, Department of Poultry and Aquaculture Science, Bet Dagan 50250, Israel; (N.P.); (O.G.)
| | - Dalit Sela-Donenfeld
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yuval Cinnamon
- Agriculture Research Organization, The Volcani Center, Department of Poultry and Aquaculture Science, Bet Dagan 50250, Israel; (N.P.); (O.G.)
| |
Collapse
|
24
|
Qin W, Yang Y, Wang Y, Zhang X, Liu X. Transcriptomic and metabolomic analysis reveals the difference between large and small flower taxa of Herba Epimedii during flavonoid accumulation. Sci Rep 2022; 12:2762. [PMID: 35177764 PMCID: PMC8854644 DOI: 10.1038/s41598-022-06761-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
Herba Epimedii, as a traditional Chinese herb, is divided into large and small flower taxa, and can invigorate sexuality and strengthen muscles and bones. Herba Epimedii is rich in flavonoids, which largely contribute to its medicinal benefits. In our previous studies, we have found that the flavonoids content was much more in small than large flower taxa. To further identify molecular mechanisms of flavonoids metabolism in Herba Epimedii, combined metabolome and transcriptomic analyses were performed to profile leaves and flowers. Association analysis revealed that the expression of genes involved in flavonoid biosynthesis showed significant differences between small and large flower taxa. Eleven flavonols significantly increased in small compared to large flower taxa. Moreover, genes encoding O-methyltransferase played crucial roles in flavonoids metabolism by an integrated analysis. Taken together, these data highlight the breeding tendency of small flower taxa to improve the quality of Herba Epimedii.
Collapse
Affiliation(s)
- Weihan Qin
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Xiaomei Zhang
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Xiang Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China.
| |
Collapse
|
25
|
Jin Q, Wang Z, Chen Y, Luo Y, Tian N, Liu Z, Huang J, Liu S. Transcriptomics analysis reveals the signal transduction mechanism of brassinolides in tea leaves and its regulation on the growth and development of Camellia sinensis. BMC Genomics 2022; 23:29. [PMID: 34991475 PMCID: PMC8739690 DOI: 10.1186/s12864-021-08179-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Brassinosteroids (BRs) are a type of sterol plant hormone that play an important role in various biochemical and physiological reactions such as promoting cell growth, increasing biomass, and improving stress resistance. RESULTS To investigate the regulatory and molecular mechanism of BRs on the growth and development of tea plants (Camellia sinensis L.), changes in cell structure and gene expression levels of tea leaves treated with exogenous BRs were analyzed by electron microscopy and high-throughput Illumina RNA-Seq technology. The results showed that the number of starch granules in the chloroplasts and lipid globules increased and thylakoids expanded after BR treatment compared with the control. Transcriptome analysis showed that in the four BR treatments (CAA: BR treatment for 3 h, CAB: BR treatment for 9 h, CAC: BR treatment for 24 h, and CAD: BR treatment for 48 h), 3861 (1867 upregulated and 1994 downregulated), 5030 (2461 upregulated and 2569 downregulated), 1626 (815 upregulated and 811 downregulated), and 2050 (1004 upregulated and 1046 downregulated) differentially expressed genes were detected, respectively, compared with CAK (BR treatment for 0 h). Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, metabolic pathway enrichment analysis showed that the differentially expressed genes of CAA vs. CAK, CAB vs. CAK, CAC vs. CAK, and CAD vs. CAK significantly enriched the functional categories of signal transduction, cell cycle regulation, and starch, sucrose, and flavonoid biosynthesis and metabolism pathways. We also found that after spraying BR, the key genes for caffeine synthesis were downregulated. The results of qRT-PCR coincided with the findings of transcriptomic analysis. CONCLUSIONS The present study improved our understanding of the effects of BRs on the growth and development of tea leaves and laid the foundation for the in-depth analysis of signal transduction pathways of BRs in tea leaves.
Collapse
Affiliation(s)
- Qifang Jin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Zhong Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Yanni Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Yiping Luo
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Na Tian
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Shuoqian Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
26
|
Human Papillomaviruses-Associated Cancers: An Update of Current Knowledge. Viruses 2021; 13:v13112234. [PMID: 34835040 PMCID: PMC8623401 DOI: 10.3390/v13112234] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Human papillomaviruses (HPVs), which are small, double-stranded, circular DNA viruses infecting human epithelial cells, are associated with various benign and malignant lesions of mucosa and skin. Intensive research on the oncogenic potential of HPVs started in the 1970s and spread across Europe, including Croatia, and worldwide. Nowadays, the causative role of a subset of oncogenic or high-risk (HR) HPV types, led by HPV-16 and HPV-18, of different anogenital and head and neck cancers is well accepted. Two major viral oncoproteins, E6 and E7, are directly involved in the development of HPV-related malignancies by targeting synergistically various cellular pathways involved in the regulation of cell cycle control, apoptosis, and cell polarity control networks as well as host immune response. This review is aimed at describing the key elements in HPV-related carcinogenesis and the advances in cancer prevention with reference to past and on-going research in Croatia.
Collapse
|
27
|
Takihara H, Miura N, Aoki-Kinoshita KF, Okuda S. Functional glyco-metagenomics elucidates the role of glycan-related genes in environments. BMC Bioinformatics 2021; 22:505. [PMID: 34663219 PMCID: PMC8522060 DOI: 10.1186/s12859-021-04425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Glycan-related genes play a fundamental role in various processes for energy acquisition and homeostasis maintenance while adapting to the environment in which the organism exists; however, their role in the microbiome in the environment is unclear. METHODS Sequence alignment was performed between known glycan-related genes and complete genomes of microorganisms, and optimal parameters for identifying glycan-related genes were determined based on the alignments. Using the constructed scheme (> 90% of identity and > 25 aa of alignment length), glycan-related genes in various environments were identified from 198 different metagenome data. RESULTS As a result, we identified 86.73 million glycan-related genes from the metagenome data. Among the 12 environments classified in this study, the percentage of glycan-related genes was high in the human-associated environment, suggesting that these environments utilize glycan metabolism better than other environments. On the other hand, the relative abundances of both glycoside hydrolases and glycosyltransferases surprisingly had a coverage of over 80% in all the environments. These glycoside hydrolases and glycosyltransferases were classified into two groups of (1) general enzyme families identified in various environments and (2) specific enzymes found only in certain environments. The general enzyme families were mostly from genes involved in monosaccharide metabolism, and most of the specific enzymes were polysaccharide degrading enzymes. CONCLUSION These findings suggest that environmental microorganisms could change the composition of their glycan-related genes to adapt the processes involved in acquiring energy from glycans in their environments. Our functional glyco-metagenomics approach has made it possible to clarify the relationship between the environment and genes from the perspective of carbohydrates, and the existence of glycan-related genes that exist specifically in the environment.
Collapse
Affiliation(s)
- Hayato Takihara
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kiyoko F Aoki-Kinoshita
- Glycan and Life Systems Integration Center, Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| |
Collapse
|
28
|
Chen W, Huang S, Shi K, Yi L, Liu Y, Liu W. Prognostic Role of Matrix Metalloproteinases in Cervical Cancer: A Meta-Analysis. Cancer Control 2021; 28:10732748211033743. [PMID: 34482737 PMCID: PMC8424604 DOI: 10.1177/10732748211033743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Studies have published the association between the expression of matrix metalloproteinases (MMPs) and the outcome of cervical cancer. However, the prognostic value in cervical cancer remains controversial. This meta-analysis was conducted to evaluate the prognostic functions of MMP expression in cervical cancer. METHODS A comprehensive search of PubMed, Embase, and Web of Science databases was conducted to identify the eligible studies according to defined selection and excluding criteria and analyzed according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Fixed and random effects models were evaluated through the hazard ratios (HRs) and 95% confidence intervals (CIs) to estimate the overall survival (OS), recurrence-free survival (RFS), and progress-free survival (PFS). RESULTS A total of 18 eligible studies including 1967 patients were analyzed for prognostic value. Totally 16 selected studies including 21 tests were relevant to the cervical cancer OS, 4 studies focused on RFS, and 1 study on PFS. The combined pooled HRs and 95% CIs of OS were calculated with random-effects models (HR = 1.64, 95% CI = 1.01-2.65, P = .000). In the subgroup analysis for OS, there was no heterogeneity in MMP-2 (I2 = .0%, P = .880), MMP-1 (I2 = .0%, P = .587), and MMP-14 (I2 = 28.3%, P = .248). In MMP-7 and MMP-9, the heterogeneities were obvious (I2 = 99.2% (P = .000) and I2 = 77.9% (P = .000), respectively). The pooled HRs and 95% CIs of RFS were calculated with fixed-effects models (HR = 2.22, 95% CI = 1.38-3.58, P = .001) and PFS (HR = 2.29, 95% CI = 1.14-4.58, P = .035). CONCLUSIONS The results indicated that MMP overexpression was associated with shorter OS and RFS in cervical cancer patients. It suggested that MMP overexpression might be a poor prognostic marker in cervical cancer. Research Registry Registration Number: reviewregistry 1159.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Obstetrics and Gynecology, 159390Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, China
| | - Shenjiao Huang
- Department of Obstetrics and Gynecology, 159390Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, China
| | - Kun Shi
- Department of Obstetrics and Gynecology, 159390Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, China
| | - Lisha Yi
- Department of Obstetrics and Gynecology, 159390Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, China
| | - Yaqiong Liu
- Department of Obstetrics and Gynecology, 159390Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, China
| | - Wenjie Liu
- Department of Obstetrics and Gynecology, 159390Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, China
| |
Collapse
|
29
|
Metabarcoding under Brine: Microbial Ecology of Five Hypersaline Lakes at Rottnest Island (WA, Australia). WATER 2021. [DOI: 10.3390/w13141899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypersaline ecosystems—aquatic environments where concentration of salt exceeds 35 g L−1—host microbial communities that are highly specialised to cope with these extreme conditions. However, our knowledge on the taxonomic diversity and functional metabolisms characterising microbial communities in the water columns of hypersaline ecosystems is still limited, and this may compromise the future preservation of these unique environments. DNA metabarcoding provides a reliable and affordable tool to investigate environmental dynamics of aquatic ecosystems, and its use in brine can be highly informative. Here, we make use of bacterial 16S metabarcoding techniques combined with hydrochemical analyses to investigate the microbial patterns (diversity and functions) from five hypersaline lakes located at Rottnest Island (WA). Our results indicate lake-driven microbial aquatic assemblages that are characterised by taxonomically and functionally moderately to extremely halophilic groups, with TDS (total dissolved solids) and alkalinity amongst the most influential parameters driving the community patterns. Overall, our findings suggest that DNA metabarcoding allows rapid but reliable ecological assessment of the hypersaline aquatic microbial communities at Rottnest Island. Further studies involving different hypersaline lakes across multiple seasons will help elucidate the full extent of the potential of this tool in brine.
Collapse
|
30
|
Fang S, Zhong L, Wang AQ, Zhang H, Yin ZS. Identification of Regeneration and Hub Genes and Pathways at Different Time Points after Spinal Cord Injury. Mol Neurobiol 2021; 58:2643-2662. [PMID: 33484404 DOI: 10.1007/s12035-021-02289-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a neurological injury that can cause neuronal loss around the lesion site and leads to locomotive and sensory deficits. However, the underlying molecular mechanisms remain unclear. This study aimed to verify differential gene time-course expression in SCI and provide new insights for gene-level studies. We downloaded two rat expression profiles (GSE464 and GSE45006) from the Gene Expression Omnibus database, including 1 day, 3 days, 7 days, and 14 days post-SCI, along with thoracic spinal cord data for analysis. At each time point, gene integration was performed using "batch normalization." The raw data were standardized, and differentially expressed genes at the different time points versus the control were analyzed by Gene Ontology enrichment analysis, the Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene set enrichment analysis. A protein-protein interaction network was then built and visualized. In addition, ten hub genes were identified at each time point. Among them, Gnb5, Gng8, Agt, Gnai1, and Psap lack correlation studies in SCI and deserve further investigation. Finally, we screened and analyzed genes for tissue repair, reconstruction, and regeneration and found that Anxa1, Snap25, and Spp1 were closely related to repair and regeneration after SCI. In conclusion, hub genes, signaling pathways, and regeneration genes involved in secondary SCI were identified in our study. These results may be useful for understanding SCI-related biological processes and the development of targeted intervention strategies.
Collapse
Affiliation(s)
- Sheng Fang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Lin Zhong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - An-Quan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Zong-Sheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
31
|
Wang L, Wang R, Lei W, Wu J, Li C, Shi H, Meng L, Yuan F, Zhou Q, Cui C. Transcriptome analysis reveals gene responses to herbicide, tribenuron methyl, in Brassica napus L. during seed germination. BMC Genomics 2021; 22:299. [PMID: 33892633 PMCID: PMC8067372 DOI: 10.1186/s12864-021-07614-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Tribenuron methyl (TBM) is an herbicide that inhibits sulfonylurea acetolactate synthase (ALS) and is one of the most widely used broad-leaved herbicides for crop production. However, soil residues or drifting of the herbicide spray might affect the germination and growth of rapeseed, Brassica napus, so it is imperative to understand the response mechanism of rape to TBM during germination. The aim of this study was to use transcriptome analysis to reveal the gene responses in herbicide-tolerant rapeseed to TBM stress during seed germination. Results 2414, 2286, and 1068 differentially expressed genes (DEGs) were identified in TBM-treated resistant vs sensitive lines, treated vs. control sensitive lines, treated vs. control resistant lines, respectively. GO analysis showed that most DEGs were annotated to the oxidation-reduction pathways and catalytic activity. KEGG enrichment was mainly involved in plant-pathogen interactions, α-linolenic acid metabolism, glucosinolate biosynthesis, and phenylpropanoid biosynthesis. Based on GO and KEGG enrichment, a total of 137 target genes were identified, including genes involved in biotransferase activity, response to antioxidant stress and lipid metabolism. Biotransferase genes, CYP450, ABC and GST, detoxify herbicide molecules through physical or biochemical processes. Antioxidant genes, RBOH, WRKY, CDPK, MAPK, CAT, and POD regulate plant tolerance by transmitting ROS signals and triggering antioxidant enzyme expression. Lipid-related genes and hormone-related genes were also found, such as LOX3, ADH1, JAZ6, BIN2 and ERF, and they also played an important role in herbicide resistance. Conclusions This study provides insights for selecting TBM-tolerant rapeseed germplasm and exploring the molecular mechanism of TBM tolerance during germination. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07614-1.
Collapse
Affiliation(s)
- Liuyan Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Ruili Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Wei Lei
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Jiayi Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Chenyang Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Hongsong Shi
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Lijiao Meng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Fang Yuan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Qingyuan Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
| | - Cui Cui
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
32
|
Abstract
Metabolomics is a technology that generates large amounts of data and contributes to obtaining wide and integral explanations of the biochemical state of a living organism. Plants are continuously affected by abiotic stresses such as water scarcity, high temperatures and high salinity, and metabolomics has the potential for elucidating the response-to-stress mechanisms and develop resistance strategies in affected cultivars. This review describes the characteristics of each of the stages of metabolomic studies in plants and the role of metabolomics in the characterization of the response of various plant species to abiotic stresses.
Collapse
|
33
|
Möller J, Nosratabadi F, Musella L, Hofmann J, Burkovski A. Corynebacterium diphtheriae Proteome Adaptation to Cell Culture Medium and Serum. Proteomes 2021; 9:proteomes9010014. [PMID: 33805816 PMCID: PMC8005964 DOI: 10.3390/proteomes9010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/03/2022] Open
Abstract
Host-pathogen interactions are often studied in vitro using primary or immortal cell lines. This set-up avoids ethical problems of animal testing and has the additional advantage of lower costs. However, the influence of cell culture media on bacterial growth and metabolism is not considered or investigated in most cases. To address this question growth and proteome adaptation of Corynebacterium diphtheriae strain ISS3319 were investigated in this study. Bacteria were cultured in standard growth medium, cell culture medium, and fetal calf serum. Mass spectrometric analyses and label-free protein quantification hint at an increased bacterial pathogenicity when grown in cell culture medium as well as an influence of the growth medium on the cell envelope.
Collapse
Affiliation(s)
- Jens Möller
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (F.N.); (L.M.); (A.B.)
- Correspondence: ; Tel.: +49-9131-85-28802
| | - Fatemeh Nosratabadi
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (F.N.); (L.M.); (A.B.)
| | - Luca Musella
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (F.N.); (L.M.); (A.B.)
| | - Jörg Hofmann
- Biochemistry Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (F.N.); (L.M.); (A.B.)
| |
Collapse
|
34
|
Figueroa-Gonzalez PA, Bornemann TLV, Adam PS, Plewka J, Révész F, von Hagen CA, Táncsics A, Probst AJ. Saccharibacteria as Organic Carbon Sinks in Hydrocarbon-Fueled Communities. Front Microbiol 2020; 11:587782. [PMID: 33424787 PMCID: PMC7786006 DOI: 10.3389/fmicb.2020.587782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/03/2020] [Indexed: 01/05/2023] Open
Abstract
Organisms of the candidate phylum Saccharibacteria have frequently been detected as active members of hydrocarbon degrading communities, yet their actual role in hydrocarbon degradation remained unclear. Here, we analyzed three enrichment cultures of hydrocarbon-amended groundwater samples using genome-resolved metagenomics to unravel the metabolic potential of indigenous Saccharibacteria. Community profiling based on ribosomal proteins revealed high variation in the enrichment cultures suggesting little reproducibility although identical cultivation conditions were applied. Only 17.5 and 12.5% of the community members were shared between the three enrichment cultures based on ribosomal protein clustering and read mapping of reconstructed genomes, respectively. In one enrichment, two Saccharibacteria strains dominated the community with 16.6% in relative abundance and we were able to recover near-complete genomes for each of them. A detailed analysis of their limited metabolism revealed the capacity for peptide degradation, lactate fermentation from various hexoses, and suggests a scavenging lifestyle with external retrieval of molecular building blocks. In contrast to previous studies suggesting that Saccharibacteria are directly involved in hydrocarbon degradation, our analyses provide evidence that these organisms can be highly abundant scavengers acting rather as organic carbon sinks than hydrocarbon degraders in these communities.
Collapse
Affiliation(s)
- Perla Abigail Figueroa-Gonzalez
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Till L V Bornemann
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Panagiotis S Adam
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Julia Plewka
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Fruzsina Révész
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllõ, Hungary.,Department of Environmental Protection and Environmental Safety, Szent István University, Gödöllõ, Hungary
| | - Christian A von Hagen
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllõ, Hungary.,Department of Environmental Protection and Environmental Safety, Szent István University, Gödöllõ, Hungary
| | - Alexander J Probst
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
35
|
In Situ Metabolomics Expands the Spectrum of Renal Tumours Positive on 99mTc-sestamibi Single Photon Emission Computed Tomography/Computed Tomography Examination. EUR UROL SUPPL 2020; 22:88-96. [PMID: 34337482 PMCID: PMC8317898 DOI: 10.1016/j.euros.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Definite noninvasive characterisation of renal tumours positive on 99mTc-sestamibi single photon emission computed tomography/computed tomography (SPECT/CT) examination including renal oncocytomas (ROs), hybrid oncocytic chromophobe tumours (HOCTs), and chromophobe renal cell carcinoma (chRCC) is currently not feasible. Objective To investigate whether combined 99mTc-sestamibi SPECT/CT and in situ metabolomic profiling can accurately characterise renal tumours exhibiting 99mTc-sestamibi uptake. Design, setting, and participants A tissue microarray analysis of 33 tumour samples from 28 patients was used to investigate whether their in situ metabolomic status correlates with their features on 99mTc-sestamibi SPECT/CT examination. In order to validate emerging data, an independent cohort comprising 117 tumours was subjected to matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI MSI). Outcome measurements and statistical analysis MALDI MSI data analysis and image generation were facilitated by FlexImaging v. 4.2, while k-means analysis by SCiLS Lab software followed by R-package CARRoT analysis was used for assessing the highest predictive power in the differential of RO versus chRCC. Heatmap-based clustering, sparse partial least-squares discriminant analysis, and volcano plots were created with MetaboAnalyst 3.0. Results and limitations We identified a discriminatory metabolomic signature for 99mTc-sestamibi SPECT/CT–positive Birt-Hogg-Dubè–associated HOCTs versus other renal oncocytic tumours. Metabolomic differences were also evident between 99mTc-sestamibi–positive and 99mTc-sestamibi–negative chRCCs, prompting additional expert review; two of three 99mTc-sestamibi–positive chRCCs were reclassified as low-grade oncocytic tumours (LOTs). Differences were identified between distal-derived tumours from those of proximal tubule origin, including differences between ROs and chRCCs. Conclusions The current study expands the spectrum of 99mTc-sestamibi SPECT/CT–positive renal tumours, encompassing ROs, HOCTs, LOTs, and chRCCs, and supports the feasibility of in situ metabolomic profiling in the diagnostics and classification of renal tumours. Patient summary For preoperative evaluation of solid renal tumours, 99mTc-sestamibi single photon emission computed tomography/computed tomography (SPECT/CT) is a novel examination method. To increase diagnostic accuracy, we propose that 99mTc-sestamibi–positive renal tumours should be biopsied and followed by a combined histometabolomic analysis.
Collapse
|
36
|
Role of the JAK/STAT Pathway in Cervical Cancer: Its Relationship with HPV E6/E7 Oncoproteins. Cells 2020; 9:cells9102297. [PMID: 33076315 PMCID: PMC7602614 DOI: 10.3390/cells9102297] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
The janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway is associated with the regulation of essential cellular mechanisms, such as proliferation, invasion, survival, inflammation, and immunity. Aberrant JAK/STAT signaling contributes to cancer progression and metastatic development. STAT proteins play an essential role in the development of cervical cancer, and the inhibition of the JAK/STAT pathway may be essential for enhancing tumor cell death. Persistent activation of different STATs is present in a variety of cancers, including cervical cancer, and their overactivation may be associated with a poor prognosis and poor overall survival. The oncoproteins E6 and E7 play a critical role in the progression of cervical cancer and may mediate the activation of the JAK/STAT pathway. Inhibition of STAT proteins appears to show promise for establishing new targets in cancer treatment. The present review summarizes the knowledge about the participation of the different components of the JAK/STAT pathway and the participation of the human papillomavirus (HPV) associated with the process of cellular malignancy.
Collapse
|
37
|
Markers of Angiogenesis, Lymphangiogenesis, and Epithelial-Mesenchymal Transition (Plasticity) in CIN and Early Invasive Carcinoma of the Cervix: Exploring Putative Molecular Mechanisms Involved in Early Tumor Invasion. Int J Mol Sci 2020; 21:ijms21186515. [PMID: 32899940 PMCID: PMC7554870 DOI: 10.3390/ijms21186515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/01/2023] Open
Abstract
The establishment of a proangiogenic phenotype and epithelial-to-mesenchymal transition (EMT) are considered as critical events that promote the induction of invasive growth in epithelial tumors, and stimulation of lymphangiogenesis is believed to confer the capacity for early dissemination to cancer cells. Recent research has revealed substantial interdependence between these processes at the molecular level as they rely on common signaling networks. Of great interest are the molecular mechanisms of (lymph-)angiogenesis and EMT associated with the earliest stages of transition from intraepithelial development to invasive growth, as they could provide the source of potentially valuable tools for targeting tumor metastasis. However, in the case of early-stage cervical cancer, the players of (lymph-)angiogenesis and EMT processes still remain substantially uncharacterized. In this study, we used RNA sequencing to compare transcriptomes of HPV(+) preinvasive neoplastic lesions and early-stage invasive carcinoma of the cervix and to identify (lymph-)angiogenesis- and EMT-related genes and pathways that may underlie early acquisition of invasive phenotype and metastatic properties by cervical cancer cells. Second, we applied flow cytometric analysis to evaluate the expression of three key lymphangiogenesis/EMT markers (VEGFR3, MET, and SLUG) in epithelial cells derived from enzymatically treated tissue specimens. Overall, among 201 differentially expressed genes, a considerable number of (lymph-)angiogenesis and EMT regulatory factors were identified, including genes encoding cytokines, growth factor receptors, transcription factors, and adhesion molecules. Pathway analysis confirmed enrichment for angiogenesis, epithelial differentiation, and cell guidance pathways at transition from intraepithelial neoplasia to invasive carcinoma and suggested immune-regulatory/inflammatory pathways to be implicated in initiation of invasive growth of cervical cancer. Flow cytometry showed cell phenotype-specific expression pattern for VEGFR3, MET, and SLUG and revealed correlation with the amount of tumor-infiltrating lymphocytes at the early stages of cervical cancer progression. Taken together, these results extend our understanding of driving forces of angiogenesis and metastasis in HPV-associated cervical cancer and may be useful for developing new treatments.
Collapse
|
38
|
Wu S, Wu Y, Lu Y, Yue Y, Cui C, Yu M, Wang S, Liu M, Zhao Y, Sun Z. STAT1 expression and HPV16 viral load predict cervical lesion progression. Oncol Lett 2020; 20:28. [PMID: 32774501 PMCID: PMC7405543 DOI: 10.3892/ol.2020.11889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is the fourth leading cause of cancer-associated mortality worldwide. However, its underlying molecular mechanisms are unclear. It is important to explore these mechanisms in order to identify novel diagnostic and prognostic biomarkers. The present study determined the association between STAT1 and human papillomavirus (HPV)16 in cervical lesions. STAT1 expression was detected by immunohistochemistry. Quantitative PCR was used to detect HPV16 viral load and STAT1 expression in cervical lesions. The potential associations among STAT1 expression, HPV16 viral load and the severity of cervical lesions in patients were analyzed using receiver operating characteristic (ROC) curves. The Cancer Genome Atlas database was used to analyze STAT1 expression and survival. High STAT1 expression was observed in 10.71 (3/28), 41.18 (14/34), 53.06 (26/49) and 90.00% (27/30) of normal tissue, low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL) and cervical squamous cell carcinoma samples, respectively. The HPV16 copy number gradually increased with the progression of cervical lesions, with the highest copy number observed in cervical cancer samples. In addition, STAT1 expression was positively correlated with HPV16 viral load. Furthermore, ROC curve analysis demonstrated that the combination of STAT1 expression and HPV16 viral load was able to differentiate between LSIL/HSIL and cervical cancer samples. Bioinformatics analysis revealed that STAT1 expression was associated with improved survival in cervical cancer. Additionally, STAT1 expression was positively associated with the progression of cervical lesions, and HPV16 viral load may affect STAT1 expression. Overall, these findings indicate that STAT1 may be an indicator of the status of cervical lesions.
Collapse
Affiliation(s)
- Si Wu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yingying Wu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yiping Lu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Changwan Cui
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Miao Yu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuang Wang
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Miao Liu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Zhao
- Medical Examination Center, Shenyang Red Cross Hospital, Shenyang, Liaoning 110013, P.R. China
| | - Zhengrong Sun
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
39
|
Zhao Q, Li H, Zhu L, Hu S, Xi X, Liu Y, Liu J, Zhong T. Bioinformatics analysis shows that TOP2A functions as a key candidate gene in the progression of cervical cancer. Biomed Rep 2020; 13:21. [PMID: 32765860 PMCID: PMC7403841 DOI: 10.3892/br.2020.1328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer (CC) is one of the most prevalent types of cancer affecting females worldwide. However, the molecular mechanisms underlying the development and progression of CC remains to be elucidated. Taking the high incidence and mortality rates amongst women into consideration, the identification of novel biomarkers to prevent CC is of great significance and required to improve diagnosis. Using three raw microarray datasets from the Gene Expression Omnibus database, 188 differentially expressed genes (DEGs) were identified. Gene Ontology and pathway analyses were performed on the DEGs. Through protein-protein interaction network construction and module analysis, eight hub genes [cell division cycle 6, cyclin-dependent kinase 1 (CDK1), cell division control protein 45, budding uninhibited by benzimidazoles 1 (BUB1), DNA topoisomerase II α (TOP2A) and minichromosome maintenance complex component 4, CCNB2 and CCNB1] were identified, but only TOP2A was considered a prognostic factor in survival analysis. There were strong positive correlations between TOP2A and BUB1 (P<0.0001, rs=0.635), CDK1 (P<0.0001, rs=0.511), centromere protein F (CENPF) (P<0.0001, rs=0.677), Rac GTPase activating protein 1 (RACGAP1) (P<0.0001, rs=0.612), F-box protein 5 (FBXO5) (P<0.0001, rs=0.585) and BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) (P<0.0001, rs=0.584). Additionally, BUB1, CDK1, CENPF, RACGAP1, FBXO5 and BUB1B are all potentially suitable candidate targets for the diagnosis and treatment of CC. In conclusion, the present study identified TOP2A as a potential tumor oncogene and a biomarker for the prognosis of CC.
Collapse
Affiliation(s)
- Qinfei Zhao
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Huaying Li
- Department of Clinical College, Xiangtan Medicine and Health Vocational College, Xiangtan, Hunan 411104, P.R. China
| | - Longyu Zhu
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 50011, P.R. China
| | - Suping Hu
- Department of Emergency, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xuxiang Xi
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yanmei Liu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jianfeng Liu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Tianyu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China.,Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|