1
|
Gao P, Li C, Gong Q, Liu L, Qin R, Liu J. Sex steroid hormone residues in milk and their potential risks for breast and prostate cancer. Front Nutr 2024; 11:1390379. [PMID: 39285863 PMCID: PMC11403374 DOI: 10.3389/fnut.2024.1390379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Milk was a source of important nutrients for humans and was especially important for children and adolescents. The modern dairy animal production pattern had contributed to residual sex steroid hormones in milk. When this milk was consumed by humans, these hormones entered the body leading to hormonal disruptions and potentially increasing the risk of various types of cancers. This article reviewed the presence of residual sex steroid hormones in milk, their potential risks on human health, and their possible association with the incidence of breast and prostate cancer. The potential linkage between dairy consumption and these cancers were described in detail. The hormones present in dairy products could affect the development and progression of these types of cancer. Sex steroid hormones could interact with different signaling pathways, influencing carcinogenic cascades that could eventually lead to tumorigenesis. Given these potential health risks, the article suggested appropriate consumption of dairy products. This included being mindful not just of the amount of dairy consumed, but also the types of dairy products selected. More scientific exploration was needed, but this review provided valuable insights for health-conscious consumers and contributed to the ongoing discussion on dietary guidelines and human health.
Collapse
Affiliation(s)
- Pengyue Gao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan, China
| | - Chengyi Li
- School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Quan Gong
- School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Lian Liu
- School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan, China
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan, China
| |
Collapse
|
2
|
Tirado-Garibay AC, Ruiz-Barcenas B, Rescala-Ponce de León JI, Ochoa-Zarzosa A, López-Meza JE. The GPR30 Receptor Is Involved in IL-6-Induced Metastatic Properties of MCF-7 Luminal Breast Cancer Cells. Int J Mol Sci 2024; 25:8988. [PMID: 39201674 PMCID: PMC11354767 DOI: 10.3390/ijms25168988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Luminal breast cancer has a high incidence worldwide and poses a severe health threat. Estrogen receptor alpha (ER-α) is activated by 17β-estradiol (E2), and its overexpression promotes cancerous characteristics. Luminal breast cancer is an epithelial type; however, the cytokine IL-6, secreted by cells within the tumor microenvironment, stimulates the epithelial-to-mesenchymal transition (EMT) and promotes metastasis. Also, IL-6 decreases ER-α levels, favoring the tamoxifen (TMX) resistance development. However, genes under E2 regulation continue to be expressed even though this receptor is absent. GPR30 is an alternative E2 receptor present in both luminal and aggressive triple-negative breast cancer and is related to TMX resistance and cancer progression. The roles of GPR30 and IL-6 in metastasis have been individually established; however, their interplay remains unexplored. This study aims to elucidate the role of GPR30 in IL-6-induced metastatic properties of MCF-7 luminal breast cancer cells. Results showed that GPR30 contributes to the E2-induced MCF-7 proliferation because its inhibition with the antagonist G15 and the Pertussis toxin (PTX) reduced it. Besides, GPR30 upregulated vimentin and downregulated E-cadherin levels in MCF-7 and TMX-resistant (R-TMX) cells and is also involved in the IL-6-induced migration, invasion, and TMX resistance in MCF-7 cells. In addition, in MDA-MB-231 triple-negative cells, both basal and IL-6-induced metastatic properties were related to GPR30 activity. These results indicate that the GPR30 receptor regulates the EMT induced by IL-6 in breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Joel E. López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58893, Michoacán, Mexico; (A.C.T.-G.); (B.R.-B.); (J.I.R.-P.d.L.); (A.O.-Z.)
| |
Collapse
|
3
|
Xiang X, Palasuberniam P, Pare R. The Role of Estrogen across Multiple Disease Mechanisms. Curr Issues Mol Biol 2024; 46:8170-8196. [PMID: 39194700 DOI: 10.3390/cimb46080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Estrogen is a significant hormone that is involved in a multitude of physiological and pathological processes. In addition to its pivotal role in the reproductive system, estrogen is also implicated in the pathogenesis of a multitude of diseases. Nevertheless, previous research on the role of estrogen in a multitude of diseases, including Alzheimer's disease, depression, cardiovascular disease, diabetes, osteoporosis, gastrointestinal diseases, and estrogen-dependent cancers, has concentrated on a single disease area, resulting in a lack of comprehensive understanding of cross-disease mechanisms. This has brought some challenges to the current treatment methods for these diseases, because estrogen as a potential therapeutic tool has not yet fully developed its potential. Therefore, this review aims to comprehensively explore the mechanism of estrogen in these seven types of diseases. The objective of this study is to describe the relationship between each disease and estrogen, including the ways in which estrogen participates in regulating disease mechanisms, and to outline the efficacy of estrogen in treating these diseases in clinical practice. By studying the role of estrogen in a variety of disease mechanisms, it is hoped that a more accurate theoretical basis and clinical guidance for future treatment strategies will be provided, thus promoting the effective management and treatment of these diseases.
Collapse
Affiliation(s)
- Xiuting Xiang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Praneetha Palasuberniam
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Rahmawati Pare
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
4
|
Tsamou M, Roggen EL. Sex-associated microRNAs potentially implicated in sporadic Alzheimer's disease (sAD). Brain Res 2024; 1829:148791. [PMID: 38307153 DOI: 10.1016/j.brainres.2024.148791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND The onset and pathology of sporadic Alzheimer's disease (sAD) seem to be affected by both sex and genetic mechanisms. Evidence supports that the high prevalence of sAD in women, worldwide, may be attributed to an interplay among aging, sex, and lifestyle, influenced by genetics, metabolic changes, and hormones. Interestingly, epigenetic mechanisms such as microRNAs (miRNAs), known as master regulators of gene expression, may contribute to this observed sexual dimorphism in sAD. OBJECTIVES To investigate the potential impact of sex-associated miRNAs on processes manifesting sAD pathology, as described by the Tau-driven Adverse Outcome Pathway (AOP) leading to memory loss. METHODS Using publicly available human miRNA datasets, sex-biased miRNAs, defined as differentially expressed by sex in tissues possibly affected by sAD pathology, were collected. In addition, sex hormone-related miRNAs were also retrieved from the literature. The compiled sex-biased and sex hormone-related miRNAs were further plugged into the dysregulated processes of the Tau-driven AOP for memory loss. RESULTS Several miRNAs, previously identified as sex-associated, were implicated in dysregulated processes associated with the manifestation of sAD pathology. Importantly, the described pathology processes were not confined to a particular sex. A mechanistic-based approach utilizing miRNAs was adopted in order to elucidate the link between sex and biological processes potentially involved in the development of memory loss. CONCLUSIONS The identification of sex-associated miRNAs involved in the early processes manifesting memory loss may shed light to the complex molecular mechanisms underlying sAD pathogenesis in a sex-specific manner.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Oxfordlaan 70, 6229EV Maastricht, The Netherlands.
| | - Erwin L Roggen
- ToxGenSolutions (TGS), Oxfordlaan 70, 6229EV Maastricht, The Netherlands
| |
Collapse
|
5
|
Gorostiola González M, Rakers PRJ, Jespers W, IJzerman AP, Heitman LH, van Westen GJP. Computational Characterization of Membrane Proteins as Anticancer Targets: Current Challenges and Opportunities. Int J Mol Sci 2024; 25:3698. [PMID: 38612509 PMCID: PMC11011372 DOI: 10.3390/ijms25073698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer remains a leading cause of mortality worldwide and calls for novel therapeutic targets. Membrane proteins are key players in various cancer types but present unique challenges compared to soluble proteins. The advent of computational drug discovery tools offers a promising approach to address these challenges, allowing for the prioritization of "wet-lab" experiments. In this review, we explore the applications of computational approaches in membrane protein oncological characterization, particularly focusing on three prominent membrane protein families: receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and solute carrier proteins (SLCs). We chose these families due to their varying levels of understanding and research data availability, which leads to distinct challenges and opportunities for computational analysis. We discuss the utilization of multi-omics data, machine learning, and structure-based methods to investigate aberrant protein functionalities associated with cancer progression within each family. Moreover, we highlight the importance of considering the broader cellular context and, in particular, cross-talk between proteins. Despite existing challenges, computational tools hold promise in dissecting membrane protein dysregulation in cancer. With advancing computational capabilities and data resources, these tools are poised to play a pivotal role in identifying and prioritizing membrane proteins as personalized anticancer targets.
Collapse
Affiliation(s)
- Marina Gorostiola González
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
- Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Pepijn R. J. Rakers
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| | - Willem Jespers
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| | - Adriaan P. IJzerman
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| | - Laura H. Heitman
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
- Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Gerard J. P. van Westen
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| |
Collapse
|
6
|
Rymbai E, Sugumar D, Chakkittukandiyil A, Kothandan R, Selvaraj J, Selvaraj D. The identification of cianidanol as a selective estrogen receptor beta agonist and evaluation of its neuroprotective effects on Parkinson's disease models. Life Sci 2023; 333:122144. [PMID: 37797687 DOI: 10.1016/j.lfs.2023.122144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
AIM The present study aims to identify selective estrogen receptor beta (ERβ) agonists and to evaluate the neuroprotective mechanism in Parkinson's disease (PD) models. MAIN METHODS In-silico studies were carried out using Maestro and GROMACS. Neuroprotective activity and apoptosis were evaluated using cytotoxicity assay and flow cytometry respectively. Gene expression studies were carried out by reverse transcription polymerase chain reaction. Motor and cognitive functions were assessed by actophotometer, rotarod, catalepsy, and elevated plus maze. The neuronal population in the substantia nigra and striatum of rats was assessed by hematoxylin and eosin staining. KEY FINDINGS Cianidanol was identified as a selective ERβ agonist through virtual screening. The cianidanol-ERβ complex is stable during the 200 ns simulation and was able to retain the interactions with key amino acid residues. Cianidanol (25 μM) prevents neuronal toxicity and apoptosis induced by rotenone in differentiated SH-SY5Y cells. Additionally, cianidanol (25 μM) increases the expression of ERβ, cathepsin D, and Nrf2 transcripts. The neuroprotective effects of cianidanol (25 μM) were reversed in the presence of a selective ERβ antagonist. In this study, we found that selective activation of ERβ could decrease the transcription of α-synuclein gene. Additionally, cianidanol (10, 20, 30 mg/kg, oral) improves the motor and cognitive deficit in rats induced by rotenone. SIGNIFICANCE Cianidanol shows neuroprotective action in PD models and has the potential to serve as a novel therapeutic agent for the treatment of PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
7
|
Escandon P, Nicholas SE, Vasini B, Cunningham RL, Murphy DA, Riaz KM, Karamichos D. Selective Modulation of the Keratoconic Stromal Microenvironment by FSH and LH. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1762-1775. [PMID: 36822267 PMCID: PMC10726429 DOI: 10.1016/j.ajpath.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Keratoconus (KC) affects the corneal structure, with thinning and bulging outward into a conelike shape. Irregular astigmatism and decreased visual acuity appear during puberty and progress into the mid-30s, with unpredictable disease severity. The cause of KC is recognized as multifactorial, but remains poorly understood. Hormone imbalances are a significant modulator of the onset of KC. This study sought to investigate the role of gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in KC, using a three-dimensional, self-assembled matrix in vitro model. Healthy corneal fibroblasts and human KC cells in the corneal stroma were isolated, cultured, and stimulated with stable vitamin C to promote extracellular matrix assembly. Cultures were further stimulated with 2.5 or 10 mIU/mL FSH and 5 or 35 mIU/mL LH. Samples were evaluated for cell proliferation and morphology via BrdU assay and imaging; protein expression was assessed via Western blot analysis. Proliferation was significantly greater in human KC cells compared to healthy corneal fibroblasts with LH stimulation, but no changes were found with FSH stimulation. Additionally, in sex hormone receptors, fibrotic markers, proteoglycans, and members of the gonadotropin signaling pathway were significantly changed, largely driven by exogenous LH. The impact of exogenous FSH/LH in the KC stromal microenvironment was demonstrated. These results highlight the need to further examine the role of FSH/LH in KC and in human corneal homeostasis.
Collapse
Affiliation(s)
- Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | - Sarah E Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | - Brenda Vasini
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | - David A Murphy
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kamran M Riaz
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas.
| |
Collapse
|
8
|
Tirado-Garibay AC, Falcón-Ruiz EA, Ochoa-Zarzosa A, López-Meza JE. GPER: An Estrogen Receptor Key in Metastasis and Tumoral Microenvironments. Int J Mol Sci 2023; 24:14993. [PMID: 37834441 PMCID: PMC10573234 DOI: 10.3390/ijms241914993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogens and their role in cancer are well-studied, and some cancer types are classified in terms of their response to them. In recent years, a G protein-coupled estrogen receptor (GPER) has been described with relevance in cancer. GPER is a pleiotropic receptor with tissue-specific activity; in normal tissues, its activation is related to correct development and homeostasis, while in cancer cells, it can be pro- or anti-tumorigenic. Also, GPER replaces estrogen responsiveness in estrogen receptor alpha (ERα)-lacking cancer cell lines. One of the most outstanding activities of GPER is its role in epithelial-mesenchymal transition (EMT), which is relevant for metastasis development. In addition, the presence of this receptor in tumor microenvironment cells contributes to the phenotypic plasticity required for the dissemination and maintenance of tumors. These characteristics suggest that GPER could be a promising therapeutic target for regulating cancer development. This review focuses on the role of GPER in EMT in tumorigenic and associated cells, highlighting its role in relation to the main hallmarks of cancer and possible therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Joel E. López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología—FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58893, Mexico; (A.C.T.-G.); (E.A.F.-R.); (A.O.-Z.)
| |
Collapse
|
9
|
Malla R, Marni R, Chakraborty A. Exploring the role of CD151 in the tumor immune microenvironment: Therapeutic and clinical perspectives. Biochim Biophys Acta Rev Cancer 2023; 1878:188898. [PMID: 37094754 DOI: 10.1016/j.bbcan.2023.188898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
CD151 is a transmembrane protein implicated in tumor progression and has been shown to regulate various cellular and molecular mechanisms contributing to malignancy. More recently, the role of CD151 in the tumor immune microenvironment (TIME) has gained attention as a potential target for cancer therapy. This review aims to explore the role of CD151 in the TIME, focusing on the therapeutic and clinical perspectives. The role of CD151 in regulating the interactions between tumor cells and the immune system will be discussed, along with the current understanding of the molecular mechanisms underlying these interactions. The current state of the development of CD151-targeted therapies and the potential clinical applications of these therapies will also be reviewed. This review provides an overview of the current knowledge on the role of CD151 in the TIME and highlights the potential of CD151 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Rakshmita Marni
- Cancer Biology Laboratory, Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | | |
Collapse
|
10
|
Muhammad A, Forcados GE, Yusuf AP, Abubakar MB, Sadiq IZ, Elhussin I, Siddique MAT, Aminu S, Suleiman RB, Abubakar YS, Katsayal BS, Yates CC, Mahavadi S. Comparative G-Protein-Coupled Estrogen Receptor (GPER) Systems in Diabetic and Cancer Conditions: A Review. Molecules 2022; 27:molecules27248943. [PMID: 36558071 PMCID: PMC9786783 DOI: 10.3390/molecules27248943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
For many patients, diabetes Mellitus and Malignancy are frequently encountered comorbidities. Diabetes affects approximately 10.5% of the global population, while malignancy accounts for 29.4 million cases each year. These troubling statistics indicate that current treatment approaches for these diseases are insufficient. Alternative therapeutic strategies that consider unique signaling pathways in diabetic and malignancy patients could provide improved therapeutic outcomes. The G-protein-coupled estrogen receptor (GPER) is receiving attention for its role in disease pathogenesis and treatment outcomes. This review aims to critically examine GPER' s comparative role in diabetes mellitus and malignancy, identify research gaps that need to be filled, and highlight GPER's potential as a therapeutic target for diabetes and malignancy management. There is a scarcity of data on GPER expression patterns in diabetic models; however, for diabetes mellitus, altered expression of transport and signaling proteins has been linked to GPER signaling. In contrast, GPER expression in various malignancy types appears to be complex and debatable at the moment. Current data show inconclusive patterns of GPER expression in various malignancies, with some indicating upregulation and others demonstrating downregulation. Further research should be conducted to investigate GPER expression patterns and their relationship with signaling pathways in diabetes mellitus and various malignancies. We conclude that GPER has therapeutic potential for chronic diseases such as diabetes mellitus and malignancy.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | | | - Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Minna P.M.B. 65, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
- Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Isra Elhussin
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Md Abu Talha Siddique
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Rabiatu Bako Suleiman
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Yakubu Saddeeq Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Clayton C Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sunila Mahavadi
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
11
|
Hanusek K, Karczmarski J, Litwiniuk A, Urbańska K, Ambrozkiewicz F, Kwiatkowski A, Martyńska L, Domańska A, Bik W, Paziewska A. Obesity as a Risk Factor for Breast Cancer-The Role of miRNA. Int J Mol Sci 2022; 23:ijms232415683. [PMID: 36555323 PMCID: PMC9779381 DOI: 10.3390/ijms232415683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most common cancer diagnosed among women in the world, with an ever-increasing incidence rate. Due to the dynamic increase in the occurrence of risk factors, including obesity and related metabolic disorders, the search for new regulatory mechanisms is necessary. This will help a complete understanding of the pathogenesis of breast cancer. The review presents the mechanisms of obesity as a factor that increases the risk of developing breast cancer and that even initiates the cancer process in the female population. The mechanisms presented in the paper relate to the inflammatory process resulting from current or progressive obesity leading to cell metabolism disorders and disturbed hormonal metabolism. All these processes are widely regulated by the action of microRNAs (miRNAs), which may constitute potential biomarkers influencing the pathogenesis of breast cancer and may be a promising target of anti-cancer therapies.
Collapse
Affiliation(s)
- Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Jakub Karczmarski
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Katarzyna Urbańska
- Department of General, Oncological, Metabolic and Thoracic Surgery, Military Institute of Medicine, 128 Szaserów St, 04-141 Warsaw, Poland
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic
| | - Andrzej Kwiatkowski
- Department of General, Oncological, Metabolic and Thoracic Surgery, Military Institute of Medicine, 128 Szaserów St, 04-141 Warsaw, Poland
| | - Lidia Martyńska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anita Domańska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
- Faculty of Medical and Health Sciences, Institute of Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Correspondence:
| |
Collapse
|
12
|
Chimento A, De Luca A, Avena P, De Amicis F, Casaburi I, Sirianni R, Pezzi V. Estrogen Receptors-Mediated Apoptosis in Hormone-Dependent Cancers. Int J Mol Sci 2022; 23:1242. [PMID: 35163166 PMCID: PMC8835409 DOI: 10.3390/ijms23031242] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
It is known that estrogen stimulates growth and inhibits apoptosis through estrogen receptor(ER)-mediated mechanisms in many cancer cell types. Interestingly, there is strong evidence that estrogens can also induce apoptosis, activating different ER isoforms in cancer cells. It has been observed that E2/ERα complex activates multiple pathways involved in both cell cycle progression and apoptotic cascade prevention, while E2/ERβ complex in many cases directs the cells to apoptosis. However, the exact mechanism of estrogen-induced tumor regression is not completely known. Nevertheless, ERs expression levels of specific splice variants and their cellular localization differentially affect outcome of estrogen-dependent tumors. The goal of this review is to provide a general overview of current knowledge on ERs-mediated apoptosis that occurs in main hormone dependent-cancers. Understanding the molecular mechanisms underlying the induction of ER-mediated cell death will be useful for the development of specific ligands capable of triggering apoptosis to counteract estrogen-dependent tumor growth.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| |
Collapse
|
13
|
Deng Y, Jin H. Effects of menopausal hormone therapy-based on the role of estrogens, progestogens, and their metabolites in proliferation of breast cancer cells. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0344. [PMID: 34779589 PMCID: PMC9088189 DOI: 10.20892/j.issn.2095-3941.2021.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/30/2021] [Indexed: 11/11/2022] Open
Abstract
Menopausal hormone therapy (MHT) has been widely used for the clinical treatment of symptoms associated with menopause in women. However, the exact nature of the relationship between MHT and the increased risk of breast cancer has not been fully elucidated. The results of the Women's Health Initiative's randomized controlled clinical studies showed that estrogen monotherapy was associated with a lower incidence of breast cancer as compared to estrogen-progesterone combined therapy, with an elevated risk of breast cancer. The evidence currently available from randomized trials and observational studies is based on data from different populations, drug formulations, and routes of administration. Even though the risks of MHT and breast cancer have received a great deal of attention, information regarding the unpredictable toxicological risks of estrogen and progestogen metabolism needs to be further analyzed. Furthermore, the diversity and complexity of the metabolic pathways of estrogen and different progestogens as well as the association of the different estrogen and progestogen metabolites with the increased risk of breast cancer need to be adequately studied. Therefore, this review aimed to describe the biological effects of estrogen, progesterone, and their metabolites on the proliferation of breast cancer cells, based on relevant basic research and clinical trials, to improve our understanding of the biological functions of estrogen and progestogen as well as the safety of MHT.
Collapse
Affiliation(s)
- Yu Deng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Hongyan Jin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
14
|
Molecular Characterization of Membrane Steroid Receptors in Hormone-Sensitive Cancers. Cells 2021; 10:cells10112999. [PMID: 34831222 PMCID: PMC8616056 DOI: 10.3390/cells10112999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones’ activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.
Collapse
|