1
|
Li M, Yang X, Hong Y, Liu Q, Shen Y, Hu T, Shen Y, Kai G, Wu D. Gilteritinib overcomes primary resistance to venetoclax in a patient with FLT3 wild-type refractory/relapsed AML: Case report and exploration of possible mechanisms. Heliyon 2024; 10:e35847. [PMID: 39211920 PMCID: PMC11357765 DOI: 10.1016/j.heliyon.2024.e35847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Venetoclax, a selective BCL-2 inhibitor, has shown superior efficacy in the treatment of AML. Nevertheless, some AML patients with AML1-ETO respond poorly to venetoclax treatment. In this report, a relapsed/refractory (R/R) venetoclax resistant AML1-ETO positive AML patient showed rapid tumor regression after combination therapy with gilteritinib and venetoclax. Additional laboratory findings indicated that the combined impact of the two drugs may be associated with the induction of the integrated stress response. This case presents a novel therapeutic approach for the treatment of FLT3 wild-type RR, AML1-ETO AML patients who have primary resistance to venetoclax.
Collapse
Affiliation(s)
- Man Li
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xiawan Yang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yaonan Hong
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qi Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yingying Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tonglin Hu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yiping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guoyin Kai
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Zhejiang Chinese Medicine University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
DeWolf S, Tallman MS, Rowe JM, Salman MY. What Influences the Decision to Proceed to Transplant for Patients With AML in First Remission? J Clin Oncol 2023; 41:4693-4703. [PMID: 37611216 PMCID: PMC10564290 DOI: 10.1200/jco.22.02868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/12/2023] [Accepted: 06/14/2023] [Indexed: 08/25/2023] Open
Abstract
Although allogeneic hematopoietic cell transplantation (allo-HCT) remains the backbone of curative treatment for the majority of fit adults diagnosed with AML, there is indeed a subset of patients for whom long-term remission may be achieved without transplantation. Remarkable changes in our knowledge of AML biology in recent years has transformed the landscape of diagnosis, management, and treatment of AML. Specifically, markedly increased understanding of molecular characteristics of AML, the expanded application of minimal/measurable residual diseases testing, and an increased armamentarium of leukemia-directed therapeutic agents have created a new paradigm for the medical care of patients with AML. An attempt is herein made to decipher the decision to proceed to transplant for patients with AML in first complete remission on the basis of the current best available evidence. The focus is on factors affecting the biology and treatment of AML itself, rather than on variables related to allo-HCT, an area characterized by significant advancements that have reduced overall therapy-related complications. This review seeks to focus on areas of particular complexity, while simultaneously providing clarity on how our current knowledge and treatment strategies may, or may not, influence the decision to pursue allo-HCT in patients with AML.
Collapse
Affiliation(s)
- Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S. Tallman
- Division of Hematology and Oncology Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jacob M. Rowe
- Rambam Health Care Campus and Technion, Israel Institute of Technology, Haifa, Israel
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | | |
Collapse
|
3
|
Bogdanov K, Kudryavtseva E, Fomicheva Y, Churkina I, Lomaia E, Girshova L, Osipov Y, Zaritskey A. Shift of N-MYC Oncogene Expression in AML Patients Carrying the FLT3-ITD Mutation. PATHOPHYSIOLOGY 2023; 30:296-313. [PMID: 37606386 PMCID: PMC10443239 DOI: 10.3390/pathophysiology30030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023] Open
Abstract
Mutations in the FLT3 gene not only lead to abnormalities in its structure and function, but also affect the expression of other genes involved in leukemogenesis. This study evaluated the expression of genes that are more characteristic of neuroblastoma but less studied in leukemia. N-MYC oncogene expression was found to be more than 3-fold higher in primary AML patients carrying the FLT3-ITD mutation compared to carriers of other mutations as well as patients with normal karyotype (p = 0.03946). In contrast to the expression of several genes (C-MYC, SPT16, AURKA, AURKB) directly correlated to the allelic load of FLT3-ITD, the expression of the N-MYC oncogene is extremely weakly related or independent of it (p = 0.0405). Monitoring of N-MYC expression in some patients with high FLT3-ITD allelic load receiving therapy showed that a decrease in FLT3-ITD allelic load is not always accompanied by a decrease in N-MYC expression. On the contrary, N-MYC expression may remain elevated during the first three months after therapy, which is additional evidence of the emergence of resistance to therapy and progression of AML.
Collapse
Affiliation(s)
- Konstantin Bogdanov
- Almazov National Medical Research Centre, 2 Akkuratova Str., Saint Petersburg 197341, Russia; (E.K.); (Y.F.); (I.C.); (E.L.); (L.G.); (Y.O.); (A.Z.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Arai H, Minami Y, Chi S, Utsu Y, Masuda S, Aotsuka N. Molecular-Targeted Therapy for Tumor-Agnostic Mutations in Acute Myeloid Leukemia. Biomedicines 2022; 10:3008. [PMID: 36551764 PMCID: PMC9775249 DOI: 10.3390/biomedicines10123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Comprehensive genomic profiling examinations (CGPs) have recently been developed, and a variety of tumor-agnostic mutations have been detected, leading to the development of new molecular-targetable therapies across solid tumors. In addition, the elucidation of hereditary tumors, such as breast and ovarian cancer, has pioneered a new age marked by the development of new treatments and lifetime management strategies required for patients with potential or presented hereditary cancers. In acute myeloid leukemia (AML), however, few tumor-agnostic or hereditary mutations have been the focus of investigation, with associated molecular-targeted therapies remaining poorly developed. We focused on representative tumor-agnostic mutations such as the TP53, KIT, KRAS, BRCA1, ATM, JAK2, NTRK3, FGFR3 and EGFR genes, referring to a CGP study conducted in Japan, and we considered the possibility of developing molecular-targeted therapies for AML with tumor-agnostic mutations. We summarized the frequency, the prognosis, the structure and the function of these mutations as well as the current treatment strategies in solid tumors, revealed the genetical relationships between solid tumors and AML and developed tumor-agnostic molecular-targeted therapies and lifetime management strategies in AML.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| |
Collapse
|
5
|
Akram AM, Hassan M, Chaudhary A, Hayat S, Ali Q, Hussain T, Zafar A, Javed MA. Identification and in silico analysis of noval alteration Arg420Gly in KIT proto oncogene among acute myeloid leukemia patients. Sci Rep 2022; 12:19252. [PMID: 36357474 PMCID: PMC9649709 DOI: 10.1038/s41598-022-23934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
A number of studies have reported frequent incidence of c-kit gene mutations in association with core binding factor acute myeloid leukemia (CBF-AML). These genetic changes have become important prognostic predictors in patients with abnormal karyotype. Aim of this study was the detection of nucleotide alterations in newly diagnosed acute myeloid leukemia patients for three exons of c-kit gene, including cytogenetically normal patients. Thirty-one de novo AML patients were screened for any possible variations in exon 8, 11 and 17 sequences of c-kit proto-oncogene leading to amino acid substitutions or frame shift. Sanger sequencing method was employed followed by sequence analysis. Mutation data was then correlated with clinical and hematological parameters of patients and prognostic significance of genetic changes was assessed as well. The computational tools were then used to further understand the extent of damage caused by these mutations to c-kit protein. Fifteen (48.4%) mutant patients were observed with single, double or multiple mutations in one, two or all three exons studied. The analysis revealed eight new alterations which were not reported previously. Significant variation among mutant and non-mutant group of patients was observed with respect to FAB subtypes (x2 = 12.524, p = 0.029), Spleen size (x2 = 4.288, p = 0.038) and Red blood cell count (x2 = 8.447, p = 0.007). The survival analysis indicates poor overall and event free survival outcomes in mutant individuals. Furthermore, the in silico analysis suggests that changes in nucleotide sequences can possibly damage the protein structure and effect it's function. This study emphasizes the need to consider screening of c-kit gene alterations not only in CBF-AML but in cytogenetically normal AML patients as well. In current investigation the effect of mutation Arg420Gly on structure and function of c-kit protein was investigated, as this was the most observed substitution in present cohort. Various bioinformatics tools and techniques were employed, which determined that Arg420Gly is possibly non-pathogenic mutation.
Collapse
Affiliation(s)
- Afia Muhammad Akram
- grid.440554.40000 0004 0609 0414Department of Zoology, Division of Science and Technology, University of Education, Township Lahore, Pakistan
| | - Mubashir Hassan
- grid.440564.70000 0001 0415 4232Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Asma Chaudhary
- grid.440554.40000 0004 0609 0414Department of Zoology, Division of Science and Technology, University of Education, Township Lahore, Pakistan
| | - Sikandar Hayat
- grid.440564.70000 0001 0415 4232Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Qurban Ali
- grid.11173.350000 0001 0670 519XDepartment of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Taha Hussain
- grid.440554.40000 0004 0609 0414Department of Zoology, Division of Science and Technology, University of Education, Township Lahore, Pakistan
| | - Amjad Zafar
- grid.414714.30000 0004 0371 6979Department of Oncology, Mayo Hospital, Anarkali Bazar, Lahore, Pakistan
| | - Muhammad Arshad Javed
- grid.11173.350000 0001 0670 519XDepartment of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Shafik NF, Ibraheem D, Selim MM, Allam RM, Fathalla LA. The Prognostic Significance of c-KIT Mutations in Core Binding Factor Acute Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e363-e375. [PMID: 34972661 DOI: 10.1016/j.clml.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Many recurrent mutations are encountered in core binding factor acute myeloid leukemia (CBF-AML) which may affect the prognosis. Approximately 20 to 45% of CBF-AML patients have KIT mutations which are having poor prognosis and high incidence of relapse. There is still insufficient data to categorize the patients with c-kit mutation into which risk group and there is a debate around whether Tyrosine kinase inhibitors can decrease the relapse risk and improve the prognosis of those patients. PATIENTS AND METHODS This study was conducted throughout a period of 3 years, where 102 CBF-AML were enrolled in our study. We analyzed the incidence of c-KIT exon 8 and 17 D816V mutations in CBF-AML patients and studied the prognosis. RESULTS The prevalence of CBF-AML was 102 of 989 (10.3%), 13.7% and 8.7% in pediatrics and adults' groups respectively. c-KIT fragment mutation analysis revealed a mutant form in 27 of 102 (26.5%) patients. Exon 8 mutation was found in 4 of 40 pediatric and 2 of 62 adult patients, while exon 17 mutation was found in 9 of 40 pediatric and 12 of 62 adult patients. The c-KIT mutations was more common in t(8;21). There was no significant relationship between c-kit mutation and CR rates, while there was a significant inferior overall, disease free as well as progression free survival in the c-KIT mutant patients as compared to the wild group (P value .045, .036 and .024 respectively) in the pediatric group, however, this significance was not evident in the adults' group. CONCLUSION According to our study, the results may suggest c-KIT mutation as a poor risk factor in pediatric CBF-AML.
Collapse
Affiliation(s)
- Nevine F Shafik
- Clinical Pathology and Oncologic Laboratory Medicine Department, National Cancer Institute, Cairo University, Egypt.
| | - Dalia Ibraheem
- Medical oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Marwa Mahmoud Selim
- Medical oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Rasha Mahmoud Allam
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Egypt
| | - Lamiaa A Fathalla
- Clinical Pathology and Oncologic Laboratory Medicine Department, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
7
|
Yang M, Zhao B, Wang J, Zhang Y, Hu C, Liu L, Qin J, Lou F, Cao S, Wang C, Yu W, Tong H, Meng H, Huang J, Zhu H, Jin J. A Predictor Combining Clinical and Genetic Factors for AML1-ETO Leukemia Patients. Front Oncol 2022; 11:783114. [PMID: 35096581 PMCID: PMC8796117 DOI: 10.3389/fonc.2021.783114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Core Binding Factor (CBF)-AML is one of the most common somatic mutations in acute myeloid leukemia (AML). t(8;21)/AML1-ETO-positive acute myeloid leukemia accounts for 5-10% of all AMLs. In this study, we consecutively included 254 AML1-ETO patients diagnosed and treated at our institute from December 2009 to March 2020, and evaluated molecular mutations by 185-gene NGS platform to explore genetic co-occurrences with clinical outcomes. Our results showed that high KIT VAF(≥15%) correlated with shortened overall survival compared to other cases with no KIT mutation (3-year OS rate 26.6% vs 59.0% vs 69.6%, HR 1.50, 95%CI 0.78-2.89, P=0.0005). However, no difference was found in patients’ OS whether they have KIT mutation in two or three sites. Additionally, we constructed a risk model by combining clinical and molecular factors; this model was validated in other independent cohorts. In summary, our study showed that c-kit other than any other mutations would influence the OS in AML1-ETO patients. A proposed predictor combining both clinical and genetic factors is applicable to prognostic prediction in AML1-ETO patients.
Collapse
Affiliation(s)
- Min Yang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Bide Zhao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Yi Zhang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Chao Hu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Lixia Liu
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Jiayue Qin
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Feng Lou
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | | | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Haitao Meng
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Jian Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Honghu Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| |
Collapse
|
8
|
Bacova B, Sobotka J, Kacirkova P, Rivnacova V, Karlova/Zubata I, Novak J. Acute myeloid leukemia with variant t(8;10;21). Leuk Res Rep 2022; 18:100350. [PMID: 36158314 PMCID: PMC9489803 DOI: 10.1016/j.lrr.2022.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
|
9
|
Talami A, Bettelli F, Pioli V, Giusti D, Gilioli A, Colasante C, Galassi L, Giubbolini R, Catellani H, Donatelli F, Maffei R, Martinelli S, Barozzi P, Potenza L, Marasca R, Trenti T, Tagliafico E, Comoli P, Luppi M, Forghieri F. How to Improve Prognostication in Acute Myeloid Leukemia with CBFB-MYH11 Fusion Transcript: Focus on the Role of Molecular Measurable Residual Disease (MRD) Monitoring. Biomedicines 2021; 9:biomedicines9080953. [PMID: 34440157 PMCID: PMC8391269 DOI: 10.3390/biomedicines9080953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) carrying inv(16)/t(16;16), resulting in fusion transcript CBFB-MYH11, belongs to the favorable-risk category. However, even if most patients obtain morphological complete remission after induction, approximately 30% of cases eventually relapse. While well-established clinical features and concomitant cytogenetic/molecular lesions have been recognized to be relevant to predict prognosis at disease onset, the independent prognostic impact of measurable residual disease (MRD) monitoring by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), mainly in predicting relapse, actually supersedes other prognostic factors. Although the ELN Working Party recently indicated that patients affected with CBFB-MYH11 AML should have MRD assessment at informative clinical timepoints, at least after two cycles of intensive chemotherapy and after the end of treatment, several controversies could be raised, especially on the frequency of subsequent serial monitoring, the most significant MRD thresholds (most commonly 0.1%) and on the best source to be analyzed, namely, bone marrow or peripheral blood samples. Moreover, persisting low-level MRD positivity at the end of treatment is relatively common and not predictive of relapse, provided that transcript levels remain stably below specific thresholds. Rising MRD levels suggestive of molecular relapse/progression should thus be confirmed in subsequent samples. Further prospective studies would be required to optimize post-remission monitoring and to define effective MRD-based therapeutic strategies.
Collapse
Affiliation(s)
- Annalisa Talami
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Corrado Colasante
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Laura Galassi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Rachele Giubbolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Hillary Catellani
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Francesca Donatelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Silvia Martinelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Unità Sanitaria Locale, 41126 Modena, Italy;
| | - Enrico Tagliafico
- Center for Genome Research, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy;
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy;
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
- Correspondence: (M.L.); (F.F.); Tel.: +39-059-4222447 (F.F.); Fax: +39-059-4222386 (F.F.)
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.T.); (F.B.); (V.P.); (D.G.); (A.G.); (C.C.); (L.G.); (R.G.); (H.C.); (F.D.); (R.M.); (S.M.); (P.B.); (L.P.); (R.M.)
- Correspondence: (M.L.); (F.F.); Tel.: +39-059-4222447 (F.F.); Fax: +39-059-4222386 (F.F.)
| |
Collapse
|
10
|
Fan J, Gao L, Chen J, Hu S. Influence of KIT mutations on prognosis of pediatric patients with core-binding factor acute myeloid leukemia: a systematic review and meta-analysis. Transl Pediatr 2020; 9:726-733. [PMID: 33457293 PMCID: PMC7804481 DOI: 10.21037/tp-20-102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND KIT mutations are common in children with core-binding factor (CBF) acute myeloid leukemia (AML). The relationship between KIT mutations and their prognostic value has generated intense attention during the past years. Although studies have evaluated the role of KIT mutations, their prognostic implications remain unclear. To clarify this issue, we conducted this meta-analysis. METHODS We electronically searched the PubMed, Embase and Cochrane Library databases. Twelve studies met our selection criteria. These studies involved 1,123 children with CBF-AML including 256 children with KIT mutations. We investigated the effects of KIT mutations on the complete remission (CR), relapse, event-free survival (EFS), disease-free survival (DFS), and overall survival (OS) rates of pediatric CBF-AML patients. RESULTS KIT mutations were not associated with CR [relative risk: 1.01, 95% confidence interval (CI): 0.94-1.09, P=0.761], but were associated with higher relapse risk [hazard ratio (HR): 1.69, 95% CI: 1.32-2.16, P=0.000], lower OS (HR: 3.05, 95% CI: 1.23-7.60, P=0.016), lower DFS (HR: 1.65, 95% CI: 1.07-2.54, P=0.024), and lower EFS (HR: 3.08, 95% CI: 1.02-9.32, P=0.046). CONCLUSIONS Our analysis suggested that KIT mutations had an adverse prognostic effect in pediatric CBF-AML patients. The initial diagnostic workup for these patients should include tests for the detection of KIT mutations, and the treatment may need to be adjusted when these mutations are found to be present.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li Gao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Alnagar AA, Mahmoud AA, El Gammal MM, Hamdy N, Samra MA. Outcome of Core Binding Factor Acute Myeloid Leukemia by Receptor Tyrosine Kinase Mutation. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:459-467. [PMID: 32229198 DOI: 10.1016/j.clml.2020.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Core binding factor acute myeloid leukemia (CBF-AML) encodes 2 recurrent cytogenetic abnormalities, t(8;21) and inv(16), which carries an overall good prognosis. However, some patients will develop a relapse. We sought define the unfavorable group of CBF-AML by analysis of (c-KIT and FLT3-ITD) and to correlate them with treatment outcome. PATIENTS AND METHODS We performed a prospective study of 70 patients with CBF-AML diagnosed and managed at the medical oncology department of the (National Cancer Institute), Cairo University, with analysis of c-KIT and FLT3 mutations. All patients had received "3 + 7" induction, followed by 3 to 4 courses of high-dose cytarabine consolidation. The institutional review board approved the present study. RESULTS The median patient age was 31 years (range, 18-60 years), with a male/female ratio of 4:3. Of the 70 patients, 42 (60%) had t(8;21) and 28 had inv(16) (40%). c-KIT mutations (exons 8 and 17) were detected in 10 of 52 tested patients, and FLT3-ITD was detected in 3 of 70 patients. Patients with inv(16) experienced more lymphadenopathy and splenomegaly, had a higher median initial leukocyte count. Hepatitis C antibody positivity (8 of 42) was exclusively present in patients with t(8;21). The median overall survival (OS) was 19.5 months, and the median disease-free survival (DFS) was not reached. Patients with inv(16) had near-significant (P = .07) better DFS than patients with t(8;21). c-KIT mutations had no significant effect on OS or DFS. However, reverse tyrosine kinase mutations had a negative effect on DFS but not OS (P = .04). CONCLUSION CBF-AML with reverse tyrosine kinase mutation conveys a worse prognosis. Hepatitis C virus antibody positivity might be associated with t(8;21) AML and inv(16) with more extramedullary disease.
Collapse
Affiliation(s)
- Ahmed A Alnagar
- Department of Medical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Asmaa A Mahmoud
- Department of Medical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mosaad M El Gammal
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Naera Hamdy
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed A Samra
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Wang B, Zhang J, Hua X, Li H, Wang Z, Yang B. Clinical heterogeneity under induction with different dosages of cytarabine in core binding factor acute myeloid leukaemia. Sci Rep 2020; 10:685. [PMID: 31959790 PMCID: PMC6971028 DOI: 10.1038/s41598-020-57414-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
Repeated cycles of post-remission high-dose cytarabine (Ara-C) have been suggested to improve survival in core binding factor (CBF) acute myeloid leukaemia (AML). High-dose Ara-C used for induction regimens has also been reported to be associated with increased treatment-related mortality (TRM). Few data are available about intermediate-dose Ara-C serving as induction therapy. The aim of our study was to compare the tolerance and outcomes of standard- and intermediate-dose levels of Ara-C as induction in CBF AML and to analyse the clinical heterogeneity of the two AML entities under these induction settings. We retrospectively investigated the outcomes in adults with CBF AML induced with regimens based on standard-dose Ara-C at 100 to 200 mg/m2 or intermediate-dose Ara-C at 1,000 mg/m2. In total, 152 patients with t(8; 21) and 54 patients with inv(16) AML were administered an induction regimen containing anthracyclines plus either standard- or intermediate-dose Ara-C. After a single course of induction, the complete remission (CR) rate in the inv(16) cohort was 52/52 (100%), higher than the 127/147 (86.4%) in the t(8; 21) cohort (P = 0.005). Intermediate-dose Ara-C (HR = 9.931 [2.135-46.188], P = 0.003) and negative KITmut (HR = 0.304 [0.106-0.874], P = 0.027) independently produced an increased CR rate in the t(8; 21) cohort. Positive CD19 expression (HR = 0.133 [0.045-0.387], P = 0.000) and sex (male) (HR = 0.238 [0.085-0.667], P = 0.006) were associated with superior leukaemia-free survival (LFS) in the t(8; 21) cohort independently of KITmut status or the induction regimen. We conclude that intermediate-dose Ara-C is superior to standard-dose Ara-C for induction of remission in t(8; 21) AML, and CD19 status and sex independently confer prognostic significance for LFS. The KITmut status alone does not have an independent effect on survival in t(8; 21) AML. More intensive induction therapy is unnecessary in inv(16) AML.
Collapse
Affiliation(s)
- Biao Wang
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China
| | - Jihong Zhang
- Shengjing Hospital of China Medical University, Blood Research Laboratory, Shenyang, 110000, China
| | - Xiaoying Hua
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China
| | - Haiqian Li
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China
| | - Zhilin Wang
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China
| | - Bin Yang
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China.
| |
Collapse
|
13
|
Tarlock K, Alonzo TA, Wang YC, Gerbing RB, Ries R, Loken MR, Pardo L, Hylkema T, Joaquin J, Sarukkai L, Raimondi SC, Hirsch B, Sung L, Aplenc R, Bernstein I, Gamis AS, Meshinchi S, Pollard JA. Functional Properties of KIT Mutations Are Associated with Differential Clinical Outcomes and Response to Targeted Therapeutics in CBF Acute Myeloid Leukemia. Clin Cancer Res 2019; 25:5038-5048. [PMID: 31182436 DOI: 10.1158/1078-0432.ccr-18-1897] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/03/2019] [Accepted: 05/31/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE KIT mutations (KIT +) are common in core binding factor (CBF) AML and have been associated with varying prognostic significance. We sought to define the functional and clinical significance of distinct KIT mutations in CBF pediatric AML. EXPERIMENTAL DESIGN Following transfection of exon 17 (E17) and exon 8 (E8) mutations into HEK293 and Ba/F3 cells, KIT phosphorylation, cytokine-independent growth, and response to tyrosine kinase inhibitors (TKI) were evaluated. Clinical outcomes of patients treated on COG AAML0531 (NCT01407757), a phase III study of gemtuzumab ozogamicin (GO), were analyzed according to mutation status [KIT + vs. wild-type KIT (KIT -)] and mutation location (E8 vs. E17). RESULTS KIT mutations were detected in 63 of 205 patients (31%); 22 (35%) involved only E8, 32 (51%) only E17, 6 (10%) both exons, and 3 (5%) alternative exons. Functional studies demonstrated that E17, but not E8, mutations result in aberrant KIT phosphorylation and growth. TKI exposure significantly affected growth of E17, but not E8, transfected cells. Patients with KIT + CBF AML had overall survival similar to those with KIT - (78% vs. 81%, P = 0.905) but higher relapse rates (RR = 43% vs. 21%; P = 0.005). E17 KIT + outcomes were inferior to KIT - patients [disease-free survival (DFS), 51% vs. 73%, P = 0.027; RR = 21% vs. 46%, P = 0.007)], although gemtuzumab ozogamicin abrogated this negative prognostic impact. E8 mutations lacked significant prognostic effect, and GO failed to significantly improve outcome. CONCLUSIONS E17 mutations affect prognosis in CBF AML, as well as response to GO and TKIs; thus, clinical trials using both agents should be considered for KIT + patients.
Collapse
Affiliation(s)
- Katherine Tarlock
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. .,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Todd A Alonzo
- University of Southern California Keck School of Medicine, Los Angeles, California.,Children's Oncology Group, Monrovia, California
| | | | | | - Rhonda Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jason Joaquin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Leela Sarukkai
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Betsy Hirsch
- University of Minnesota Cancer Center, Minneapolis, Minnesota
| | - Lillian Sung
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard Aplenc
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Irwin Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Alan S Gamis
- Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Jessica A Pollard
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Badr P, Elsayed GM, Eldin DN, Riad BY, Hamdy N. Detection of KIT mutations in core binding factor acute myeloid leukemia. Leuk Res Rep 2018; 10:20-25. [PMID: 30112273 PMCID: PMC6092444 DOI: 10.1016/j.lrr.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/05/2018] [Accepted: 06/29/2018] [Indexed: 11/30/2022] Open
Abstract
We have investigated the frequency and the effect of KIT mutations on the outcome of patients with CBF-AML. 69 patients (34 pediatrics and 35 adults) with CBF-AML were enrolled in the study. The frequency of KIT mutations was higher in adults compared to pediatrics (22.9% and 14.7%, p = 0.38) respectively. Leukocytosis ≥ 20 × 109 /L was significantly associated with pediatrics compared to adults. t(8;21)(q22;22) was significantly associated with thrombocytopenia in adults. We conclude that no significant difference is found between KIT mutated and unmutated CBF-AML in adults and pediatrics. Children with CBF-AML present with leukocytosis. t(8;21) is associated with thrombocytopenia.
Collapse
Affiliation(s)
- Passant Badr
- BSc Biotechnology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ghada M Elsayed
- Professor of Clinical Pathology and Oncologic Laboratory Medicine, National Cancer institute, Cairo University, Cairo, Egypt
| | - Dalia Negm Eldin
- Lecturer of biostatistics, Department of Biostatistics and Cancer Epidemiology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Bahia Y Riad
- Professor of Organic Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - Nayera Hamdy
- Professor of Clinical Pathology and Oncologic Laboratory Medicine, National Cancer institute, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Wang Y, Wu N, Liu D, Jin Y. Recurrent Fusion Genes in Leukemia: An Attractive Target for Diagnosis and Treatment. Curr Genomics 2017; 18:378-384. [PMID: 29081694 PMCID: PMC5635644 DOI: 10.2174/1389202918666170329110349] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/23/2016] [Accepted: 02/14/2016] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Since the first fusion gene was discovered decades ago, a considerable number of fusion genes have been detected in leukemia. The majority of them are generated through chromosomal rearrangement or abnormal transcription. With the development of techniques, high-throughput sequencing method makes it possible to detect fusion genes systematically in multiple human cancers. Owing to their biological significance and tumor-specific expression, some of the fusion genes are attractive diagnostic tools and therapeutic targets. Tyrosine kinase inhibitors (TKI) targeting BCR-ABL1 fusions have been widely used to treat CML. The combination of ATRA and ATO targeting PML-RARA fusions has proven to be effective in acute promyelocytic leukemia (APL). Moreover, therapy with high dose cytarabine (HDAC) has significantly improved the prognosis of core binding factor (CBF) acute myeloid leukemia (AML) patients. Therefore, studies on fusion genes may benefit patients with leukemia by providing more diagnostic markers and therapies in the future. CONCLUSION The presented review focuses on the history of fusion genes, mechanisms of formation, and treatments against specific fusion genes in leukemia.
Collapse
Affiliation(s)
- Yuhui Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Nan Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Duo Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
16
|
Chen X, Dou H, Wang X, Huang Y, Lu L, Bin J, Su Y, Zou L, Yu J, Bao L. KIT mutations correlate with adverse survival in children with core-binding factor acute myeloid leukemia. Leuk Lymphoma 2017; 59:829-836. [PMID: 28792268 DOI: 10.1080/10428194.2017.1361025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The prevalence and clinical relevance of KIT mutations in childhood core-binding factor (CBF) acute myeloid leukemia (AML) have not been well characterized. In this study, a total of 212 children with de novo AML were enrolled from a Chinese population and 50 (23.5%) of the patients were deemed CBF-AML. KIT mutations were identified in 30% of the CBF-AML cohort. The KIT mutations were clustered in exon 17 and exon 8, and KIT mutations in exons 8 and 17 were correlated with a shorter overall survival (OS) (5-year OS: 30.0 ± 14.5% vs. 73.0 ± 8.5%, p = .007) and event-free survival (EFS) (5-year EFS: 30.0 ± 14.5% vs. 73.0 ± 8.5%, p = .003). Multivariate analysis revealed KIT mutations as an independent risk factor in CBF-AML. Our results suggest that KIT mutations are a molecular marker for an inferior prognosis in pediatric CBF-AML.
Collapse
Affiliation(s)
- Xi Chen
- a Center for Clinical Molecular Medicine , Children's Hospital of Chongqing Medical University , Chongqing , China.,b Ministry of Education Key Laboratory of Child Development and Disorders , Children's Hospital of Chongqing Medical University , Chongqing , China.,c Chongqing Key Laboratory of Pediatrics , Children's Hospital of Chongqing Medical University , Chongqing , China
| | - Hu Dou
- b Ministry of Education Key Laboratory of Child Development and Disorders , Children's Hospital of Chongqing Medical University , Chongqing , China.,d Department of Clinical Laboratory , Children's Hospital of Chongqing Medical University , Chongqing , China.,e Key Laboratory of Pediatrics in Chongqing , Children's Hospital of Chongqing Medical University , Chongqing , China.,f Chongqing International Science and Technology Cooperation Center for Child Development and Disorders , Children's Hospital of Chongqing Medical University , Chongqing , China
| | - Xingjuan Wang
- a Center for Clinical Molecular Medicine , Children's Hospital of Chongqing Medical University , Chongqing , China.,b Ministry of Education Key Laboratory of Child Development and Disorders , Children's Hospital of Chongqing Medical University , Chongqing , China.,c Chongqing Key Laboratory of Pediatrics , Children's Hospital of Chongqing Medical University , Chongqing , China
| | - Yi Huang
- b Ministry of Education Key Laboratory of Child Development and Disorders , Children's Hospital of Chongqing Medical University , Chongqing , China.,c Chongqing Key Laboratory of Pediatrics , Children's Hospital of Chongqing Medical University , Chongqing , China.,g Research Center for Immunity and Infectious Diseases , Children's Hospital of Chongqing Medical University , Chongqing , China
| | - Ling Lu
- h Department of Rheumatology, Huashan Hospital , Fudan University , Shanghai , China
| | - Junqing Bin
- a Center for Clinical Molecular Medicine , Children's Hospital of Chongqing Medical University , Chongqing , China.,b Ministry of Education Key Laboratory of Child Development and Disorders , Children's Hospital of Chongqing Medical University , Chongqing , China.,c Chongqing Key Laboratory of Pediatrics , Children's Hospital of Chongqing Medical University , Chongqing , China
| | - Yongchun Su
- b Ministry of Education Key Laboratory of Child Development and Disorders , Children's Hospital of Chongqing Medical University , Chongqing , China.,c Chongqing Key Laboratory of Pediatrics , Children's Hospital of Chongqing Medical University , Chongqing , China.,i Department of Hematology and Oncology , Children's Hospital of Chongqing Medical University , Chongqing , China
| | - Lin Zou
- a Center for Clinical Molecular Medicine , Children's Hospital of Chongqing Medical University , Chongqing , China.,b Ministry of Education Key Laboratory of Child Development and Disorders , Children's Hospital of Chongqing Medical University , Chongqing , China.,c Chongqing Key Laboratory of Pediatrics , Children's Hospital of Chongqing Medical University , Chongqing , China
| | - Jie Yu
- b Ministry of Education Key Laboratory of Child Development and Disorders , Children's Hospital of Chongqing Medical University , Chongqing , China.,c Chongqing Key Laboratory of Pediatrics , Children's Hospital of Chongqing Medical University , Chongqing , China.,i Department of Hematology and Oncology , Children's Hospital of Chongqing Medical University , Chongqing , China
| | - Liming Bao
- j Department of Pathology and Laboratory Medicine , Geisel School of Medicine at Dartmouth College , Hanover, NH , USA
| |
Collapse
|
17
|
D816V mutation in the KIT gene activation loop has greater cell-proliferative and anti-apoptotic ability than N822K mutation in core-binding factor acute myeloid leukemia. Exp Hematol 2017; 52:56-64.e4. [PMID: 28506695 DOI: 10.1016/j.exphem.2017.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 01/09/2023]
Abstract
In core-binding factor acute myeloid leukemia (CBF-AML), there have been conflicting reports regarding the status as an unfavorable prognostic factor of mutation in the KIT gene, the significance of which remains unclear. We previously reported that prognoses differ between the KIT D816V and N822K mutations. In the present study, we compared in vitro the cell-proliferative and anti-apoptotic ability of D816V and N822K. We transduced these KIT mutations into the interleukin-3-dependent cell line TF-1 (TF-1 KITD816V, TF-1 KITN822K). When these KIT mutations were transduced into TF-1 cells, the cells acquired a proliferative ability independent of growth factor, which was significantly higher in TF-1 KITD816V than in TF-1 KITN822K (p = 0.022). When Ara-C was added in the absence of growth factor, Annexin V assay revealed that TF-1 KITD816V was associated with a significantly lower proportion of apoptotic cells than TF-1 KITN822K (p < 0.001). Regarding signal transduction pathways, both KIT D816V and KIT N822K underwent autophosphorylation in the absence of growth factor. This was followed in KIT D816V by downstream activation of the SRC family kinase pathway in addition to the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, and in KIT N822K by downstream activation of the mitogen-activated protein kinase (MAPK) pathway in addition to the JAK/STAT pathway. These findings establish that D816V and N822K mutations are situated closely on the KIT receptor activation loop, but D816V has greater cell-proliferative and anti-apoptotic ability than N822K.
Collapse
|
18
|
Xu L, Guo Y, Yan W, Cen J, Niu Y, Yan Q, He H, Chen CS, Hu S. High level of miR-196b at newly diagnosed pediatric acute myeloid leukemia predicts a poor outcome. EXCLI JOURNAL 2017; 16:197-209. [PMID: 28507466 PMCID: PMC5427473 DOI: 10.17179/excli2016-707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/10/2017] [Indexed: 12/19/2022]
Abstract
Differential expression of microRNAs (miRNAs) has been implicated in leukemogenesis. We investigate the expression pattern of miR-196b. Using quantitative real-time PCR (qRT-PCR), we detected the expression of miR-196b and its correlated genes (SMC1A/MLH1) in initial pediatric AML. A significant association was observed between overexpression of miR-196b and inferior overall survival of pediatric AML (Log Rank P<0.0001). AML M4/5 subtype, high white blood cell (WBC) count at presentation, MLL rearrangement, or FLT3-ITD mutation at diagnosis and non-remission group after the first induction chemotherapy possessed higher miR-196b expression. Furthermore, a positive relationship was found between the expression of miR-196b and SMC1A/MLH1 (Spearman's r=0.37 and 0.44, P=0.001 and <0.0001, respectively). Taken together, these findings suggest that differentially high expression of miR-196b in diagnostic marrow samples of pediatric AML is associated with unfavorable outcome, and miR-196b potentially can be a novel biomarker for the diagnosis, prognosis and treatment in pediatric AML.
Collapse
Affiliation(s)
- Lihua Xu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, Jiangsu, China.,Department of Pediatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yang Guo
- Department of Pediatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wenying Yan
- Center for Systems Biology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jiannong Cen
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yuna Niu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Qing Yan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, Jiangsu, China
| | - Hailong He
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, Jiangsu, China
| | - Chien-Shing Chen
- Department of Internal Medicine, Division of Hematology and Medical Oncology & Biospecimen Laboratory, Loma Linda University, Loma Linda, CA 92350, USA
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, Jiangsu, China
| |
Collapse
|
19
|
The spleen microenvironment influences disease transformation in a mouse model of KIT D816V-dependent myeloproliferative neoplasm. Sci Rep 2017; 7:41427. [PMID: 28128288 PMCID: PMC5269732 DOI: 10.1038/srep41427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022] Open
Abstract
Activating mutations leading to ligand-independent signaling of the stem cell factor receptor KIT are associated with several hematopoietic malignancies. One of the most common alterations is the D816V mutation. In this study, we characterized mice, which conditionally express the humanized KITD816V receptor in the adult hematopoietic system to determine the pathological consequences of unrestrained KIT signaling during blood cell development. We found that KITD816V mutant animals acquired a myeloproliferative neoplasm similar to polycythemia vera, marked by a massive increase in red blood cells and severe splenomegaly caused by excessive extramedullary erythropoiesis. Moreover, we found mobilization of stem cells from bone marrow to the spleen. Splenectomy prior to KITD816V induction prevented expansion of red blood cells, but rapidly lead to a state of aplastic anemia and bone marrow fibrosis, reminiscent of post polycythemic myeloid metaplasia, the spent phase of polycythemia vera. Our results show that the extramedullary hematopoietic niche microenvironment significantly influences disease outcome in KITD816V mutant mice, turning this model a valuable tool for studying the interplay between functionally abnormal hematopoietic cells and their microenvironment during development of polycythemia vera-like disease and myelofibrosis.
Collapse
|
20
|
Ayatollahi H, Shajiei A, Sadeghian MH, Sheikhi M, Yazdandoust E, Ghazanfarpour M, Shams SF, Shakeri S. Prognostic Importance of C-KIT Mutations in Core Binding Factor Acute Myeloid Leukemia: A Systematic Review. Hematol Oncol Stem Cell Ther 2016; 10:1-7. [PMID: 27613372 DOI: 10.1016/j.hemonc.2016.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/07/2016] [Accepted: 08/10/2016] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE/BACKGROUND Acute myeloid leukemia (AML) is defined as leukemic blast reproduction in bone marrow. Chromosomal abnormalities form different subgroups with joint clinical specifications and results. t(8;21)(q22;q22) and inv(16)(p13;q22) form core binding factor-AML (CBF-AML). c-kit mutation activation occurs in 12.8-46.1% of adults with CBF leukemia. These mutations occur in 20-25% of t(8;21) and 30% of inv(16) cases. METHODS In this systematic review, we searched different databases, including PubMed, Scopus, and Embase. Selected articles were measured based on the inclusion criteria of this study and initially compared in terms of titles or abstracts. Finally, articles relevant to the subject of this review were retrieved in full text. Twenty-two articles matched the inclusion criteria and were selected for this review. RESULTS In this study, c-kit mutations were associated with poor prognosis in AML patients with t(8;21) and inv(16). In addition, these mutations had better prognostic effects on AML patients with inv(16) compared with those with t(8;21). CONCLUSION According to the results of this study, c-kit mutations have intense, harmful effects on the relapse and white blood cell increase in CBF-AML adults. However, these mutations have no significant prognostic effects on patients.
Collapse
Affiliation(s)
- Hossein Ayatollahi
- Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Shajiei
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hadi Sadeghian
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sheikhi
- Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ehsan Yazdandoust
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masumeh Ghazanfarpour
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyede Fatemeh Shams
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Shakeri
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Jang W, Yoon JH, Park J, Lee GD, Kim J, Kwon A, Choi H, Han K, Nahm CH, Kim HJ, Min WS, Kim M, Kim Y. Significance of KIT exon 17 mutation depends on mutant level rather than positivity in core-binding factor acute myeloid leukemia. Blood Cancer J 2016; 6:e387. [PMID: 26771813 PMCID: PMC4742633 DOI: 10.1038/bcj.2015.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/19/2015] [Indexed: 01/22/2023] Open
Abstract
KIT exon 17 mutation is a poor prognostic factor in core-binding factor acute myeloid leukemia. However, the mutation detection method used for risk assessment is not assigned. It is necessary to verify the analytical and clinical performance before applying new methods. Herein, we firstly applied a highly sensitive allele-specific, real-time quantitative PCR (AS-qPCR) assay to analyze KIT mutations, which demonstrated excellent sensitivity and specificity. Much higher incidence of KIT mutations (62.2%, 69/111) and prevalence of multiple mutations (43.5%, 30/69) were observed using AS-qPCR, which meant the existence of multiple KIT mutant subclones. The relative KIT mutant level was variable (median, 0.3 per control allele 100 copies, 0.002–532.7) and was divided into two groups: high (⩾10, n=26) and low (<10) mutant level. Interestingly, rather than mutation positivity, mutant level was found to be associated with clinical outcome. High mutant level showed significantly inferior overall survival (P=0.005) and event-free survival (P=0.03), whereas low level did not influence the prognosis. The follow-up data showed that the mutant level were along with fusion transcripts in the majority (n=29), but moved separately in some cases, including the loss of mutations (n=5) and selective proliferation of minor clones (n=2) at relapse. This study highlighted that the KIT mutation should be analyzed using sensitive and quantitative techniques and set a cutoff level for identifying the risk group.
Collapse
Affiliation(s)
- W Jang
- Department of Laboratory Medicine, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - J-H Yoon
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - J Park
- Department of Laboratory Medicine, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - G D Lee
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - J Kim
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - A Kwon
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - H Choi
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - K Han
- Department of Laboratory Medicine, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - C H Nahm
- Department of Laboratory Medicine, College of Medicine, Inha University, Incheon, Korea
| | - H-J Kim
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - W-S Min
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - M Kim
- Department of Laboratory Medicine, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Y Kim
- Department of Laboratory Medicine, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
22
|
Chen W, Xie H, Wang H, Chen L, Sun Y, Chen Z, Li Q. Prognostic Significance of KIT Mutations in Core-Binding Factor Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0146614. [PMID: 26771376 PMCID: PMC4714806 DOI: 10.1371/journal.pone.0146614] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/18/2015] [Indexed: 12/18/2022] Open
Abstract
The prognostic significance of KIT mutations in core-binding factor acute myeloid leukemia (CBF-AML), including inv(16) and t(8;21) AML, is uncertain. We performed a systematic review and meta-analysis of the effect of KIT mutations on the complete remission (CR) and relapse rates and overall survival (OS) of CBF-AML. PubMed, Embase, Web of Science, and the Cochrane Library were searched and relevant studies were included. Negative effect was indicated on relapse risk of CBF-AML (RR [relative risk], 1.43; 95%CI [confidence interval], 1.20–1.70) and t(8;21) AML (RR, 1.70; 95% CI, 1.31–2.21), not on OS of CBF-AML (RR, 1.09; 95% CI, 0.97–1.23), CR (OR [odds ratio], 0.95; 95% CI, 0.52–1.74), relapse risk (RR, 1.12; 95% CI, 0.90–1.41) or OS (RR, 1.03; 95% CI, 0.90–1.18) of inv(16) AML. Subgroup analysis of t(8,21) AML showed negative effect of KIT mutations on CR (OR, 2.03; 95%CI: 1.02–4.05), relapse risk (RR, 1.89; 95%CI: 1.51–2.37) and OS (RR, 2.26; 95%CI: 1.35–3,78) of non-Caucasians, not on CR (OR, 0.61; 95%CI: 0.19–1.95) or OS (RR, 1.12; 95%CI: 0.90–1.40) of Caucasians. This study indicates KIT mutations in CBF-AML to be included in the initial routine diagnostic workup and stratification system of t(8,21) AML. Prospective large-scale clinical trials are warranted to evaluate these findings.
Collapse
Affiliation(s)
- Wenlan Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Xie
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongxiang Wang
- Department of Hematology, Wuhan Central Hospital, Wuhan, 430000, China
| | - Li Chen
- Department of Hematology, Wuhan Central Hospital, Wuhan, 430000, China
| | - Yi Sun
- Department of Social Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhichao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- * E-mail: (ZC); (QL)
| | - Qiubai Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- * E-mail: (ZC); (QL)
| |
Collapse
|
23
|
Gou H, Zhou J, Ye Y, Hu X, Shang M, Zhang J, Zhao Z, Peng W, Zhou Y, Zhou Y, Song X, Lu X, Ying B. The prevalence and clinical profiles of FLT3-ITD, FLT3-TKD, NPM1, C-KIT, DNMT3A, and CEBPA mutations in a cohort of patients with de novo acute myeloid leukemia from southwest China. Tumour Biol 2015; 37:7357-70. [PMID: 26676635 DOI: 10.1007/s13277-015-4601-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/07/2015] [Indexed: 02/05/2023] Open
Abstract
While a substantial amount of data on gene mutations related to acute myeloid leukemia (AML) prognosis from western and other populations have been reported, these studies largely describe one or two genes. Additionally, in southwest China, only insufficient data exist regarding FLT3-ITD, FLT3-TKD, NPM1, C-KIT, DNMT3A, and CEBPA mutations have been widely used in clinical settings. Therefore, a comprehensive study about these mutations of clinical importance in the prognosis of AML in western China is necessary. In a cohort of 255 patients with de novo AML, we retrospectively analyzed the prevalence of the six gene mutations, and then we assessed the results in conjunction with clinical characteristics and treatment responses. As for the frequencies of these mutations, the NPM1 mutation occurred most frequently (17.7 %; 42/237), followed by the CEBPA mutation (15.0 %; 19/127) and the FLT3-ITD mutation (10.2 %; 25/244). The frequencies of the FLT3-TKD, DNMT3A, and C-KIT mutations were 3.7 % (9/234), 4.0 % (9/225) and 4.2 % (10/238), respectively. These mutations were closely related to clinical characteristics including FAB classification, gender and age, hemogram, blasts (%), fusion genes, and immunophenotypes. Additionally, a higher complete remission (CR) rate was found in NPM1-mutated patients. The occurrence of these mutations is variable among different countries and regions worldwide, which may provide clues to the etiology of AML. Besides, we identified new clinical characteristics that advance our understanding of these mutations and further clarify the involvement of these mutations in the development of leukemia.
Collapse
Affiliation(s)
- Haimei Gou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yuanxin Ye
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xuejiao Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Mengqiao Shang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Jingya Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Wu Peng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yanhong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yi Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xiaojun Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
24
|
Ziai JM, Siddon AJ. Pathology Consultation on Gene Mutations in Acute Myeloid Leukemia. Am J Clin Pathol 2015; 144:539-54. [PMID: 26386075 DOI: 10.1309/ajcp77zfpuqgygwy] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Acute myeloid leukemia (AML) is a rapidly fatal disease without the use of aggressive chemotherapy regimens. Cytogenetic and molecular studies are commonly used to classify types of AML based on prognosis, as well as to determine therapeutic regimens. METHODS Although there are several AML classifications determined by particular translocations, cytogenetically normal AML represents a molecularly, as well as clinically, heterogeneous group of diseases. Laboratory evaluation of AML will become increasingly important as new mutations with both prognostic and therapeutic implications are being recognized. Moreover, because many patients with AML are being treated more effectively, these mutations may become increasingly useful as markers of minimal residual disease, which can be interpreted in an individualized approach. RESULTS Current laboratory studies of gene mutations in AML include analysis of NPM1, FLT3, CEBPA, and KIT. In addition to these genes, many other genes are emerging as potentially useful in determining patients' prognosis, therapy, and disease course. CONCLUSIONS This article briefly reviews the current most clinically relevant gene mutations and their clinical and immunophenotypic features, prognostic information, and methods used for detection.
Collapse
Affiliation(s)
| | - Alexa J. Siddon
- Departments of Pathology, Yale School of Medicine, New Haven, CT
- Laboratory Medicine, Yale School of Medicine, New Haven, CT
- VA Connecticut Healthcare, West Haven, CT
| | | |
Collapse
|
25
|
Berenstein R. Class III Receptor Tyrosine Kinases in Acute Leukemia - Biological Functions and Modern Laboratory Analysis. Biomark Insights 2015; 10:1-14. [PMID: 26309392 PMCID: PMC4527365 DOI: 10.4137/bmi.s22433] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/02/2015] [Accepted: 07/04/2015] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease caused by deregulation of multiple signaling pathways. Mutations in class III receptor tyrosine kinases (RTKs) have been implicated in alteration of cell signals concerning the growth and differentiation of leukemic cells. Point mutations, insertions, or deletions of RTKs as well as chromosomal translocations induce constitutive activation of the receptor, leading to uncontrolled proliferation of undifferentiated myeloid blasts. Aberrations can occur in all domains of RTKs causing either the ligand-independent activation or mimicking the activated conformation. The World Health Organization recommended including RTK mutations in the AML classification since their detection in routine laboratory diagnostics is a major factor for prognostic stratification of patients. Polymerase chain reaction (PCR)-based methods are well-validated for the detection of fms-related tyrosine kinase 3 (FLT3) mutations and can easily be applied for other RTKs. However, when methodological limitations are reached, accessory techniques can be applied. For a higher resolution and more quantitative approach compared to agarose gel electrophoresis, PCR fragments can be separated by capillary electrophoresis. Furthermore, high-resolution melting and denaturing high-pressure liquid chromatography are reliable presequencing screening methods that reduce the sample amount for Sanger sequencing. Because traditional DNA sequencing is time-consuming, next-generation sequencing (NGS) is an innovative modern possibility to analyze a high amount of samples simultaneously in a short period of time. At present, standardized procedures for NGS are not established, but when this barrier is resolved, it will provide a new platform for rapid and reliable laboratory diagnostic of RTK mutations in patients with AML. In this article, the biological and physiological role of RTK mutations in AML as well as possible laboratory methods for their detection will be reviewed.
Collapse
Affiliation(s)
- Rimma Berenstein
- Department of Hematology, Oncology and Tumourimmunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
26
|
Lin TL, Williams T, He J, Aljitawi OS, Ganguly S, Abhyankar S, Fleming A, Male H, McGuirk JP. Rates of complete diagnostic testing for patients with acute myeloid leukemia. Cancer Med 2015; 4:519-22. [PMID: 25620650 PMCID: PMC4402066 DOI: 10.1002/cam4.406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 12/17/2022] Open
Abstract
In addition to cytogenetics, additional molecular markers of prognosis have been identified and incorporated into the management of patients with acute myeloid leukemia (AML). We hypothesized that rates of molecular testing would be higher in an academic center versus community sites. A retrospective chart review included all de novo AML patients (excluding M3) at Kansas University Medical Center (KUMC) from January 2008 through April 2013. Records were evaluated for completeness of molecular testing as indicated by karyotype (FLT3, CEBPα, NPM1 in normal cytogenetics AML and c-KIT in core binding factor [CBF] AML). 271 charts were reviewed: 98 with CN-AML and 29 with CBF AML. Seventy were diagnosed at KUMC, 57 at a community site. Molecular testing was sent in 76/98 (77%) patients with CN-AML. Patients diagnosed at KUMC had a significantly higher rate of molecular testing (51/55, 93%) as compared to those diagnosed at outside centers (18/43, 41%) (P < 0.001). Of 29 patients with CBF AML, c-kit mutational analysis was performed more frequently at KUMC (14/15, 93%) than in community sites (8/14, 57%) (P = 0.035). There was a trend towards increased testing at both KUMC and community sites in later years. Rates of molecular testing in AML were higher in an academic center versus community sites in the 5 years following the World Health Organization revised classification of AML. All physicians who diagnose and treat AML must remain up to date on the latest recommendations and controversies in molecular testing in order to appropriately risk stratify patients and determine optimal therapy.
Collapse
Affiliation(s)
- Tara L Lin
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas School of Medicine3901 Rainbow Blvd., Kansas City, Kansas, 66210
| | - Travis Williams
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas School of Medicine3901 Rainbow Blvd., Kansas City, Kansas, 66210
| | - Jianghua He
- Department of Biostatistics, University of Kansas School of Medicine3901 Rainbow Blvd., Kansas City, Kansas, 66210
| | - Omar S Aljitawi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas School of Medicine3901 Rainbow Blvd., Kansas City, Kansas, 66210
| | - Siddhartha Ganguly
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas School of Medicine3901 Rainbow Blvd., Kansas City, Kansas, 66210
| | - Sunil Abhyankar
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas School of Medicine3901 Rainbow Blvd., Kansas City, Kansas, 66210
| | - Allan Fleming
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas School of Medicine3901 Rainbow Blvd., Kansas City, Kansas, 66210
| | - Heather Male
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas School of Medicine3901 Rainbow Blvd., Kansas City, Kansas, 66210
| | - Joseph P McGuirk
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas School of Medicine3901 Rainbow Blvd., Kansas City, Kansas, 66210
| |
Collapse
|
27
|
Abstract
The prognosis for patients with acute myeloid leukemia (AML) is determined to a large degree by the biology of the leukemic cell. In recent years, the identification and characterization of genetic aberrations has vastly improved our understanding of the pathogenesis of AML. In contrast, however, there has been a lack of clinically meaningful therapeutic advances. The same chemotherapeutic strategies have been applied to AML for several decades now, and while these regimens are effective in inducing remission, most patients relapse within months after initial treatment. Hence, there is an urgent need for novel therapies. We review herein a number of lines of laboratory and clinical trial data supporting the clinical value of targeted treatment approaches that will likely result in improved outcomes for patients with AML.
Collapse
Affiliation(s)
- Heiko Konig
- Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
28
|
Nieto MJ, Scalise A, Najfeld V. Cytogenetically normal acute myeloid leukemia with a novel KIT mutation in exon 11 G565V developing a sole trisomy 13 at relapse: a clinical dilemma. Acta Haematol 2014; 133:1-5. [PMID: 24968822 DOI: 10.1159/000360389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/27/2014] [Indexed: 11/19/2022]
Abstract
We describe a patient with acute myeloid leukemia (AML) who had a normal karyotype at diagnosis and was negative for NPM1 and FLT3 mutations, but had a KIT G565V mutation in exon 11. This has not been described previously in AML. The patient received induction and consolidation chemotherapy and was in hematologic remission for 351 days when deletion 7q was cytogenetically detected in 8% of the bone marrow cells. After an initial treatment of azacitidine followed by decitabine, an unrelated trisomy 13 clone was identified, followed by subclonal rearrangement of ETV6. The patient underwent reinduction with high-dose cytarabine and mitoxantrone followed by voluntary-unrelated-donor allogeneic stem cell transplantation with a reduced-intensity conditioning. As of writing, the patient is in complete hematologic and cytogenetic remission with 100% donor cell engraftment.
Collapse
MESH Headings
- Chromosomes, Human, Pair 13
- Cytogenetic Analysis
- Disease Progression
- Exons
- Female
- Hematopoietic Stem Cell Transplantation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Middle Aged
- Mutation
- Nucleophosmin
- Proto-Oncogene Proteins c-kit/genetics
- Recurrence
- Remission Induction
- Transplantation, Homologous
- Treatment Outcome
- Trisomy
Collapse
Affiliation(s)
- Maria Jacqueline Nieto
- Department of Medicine, Tisch Cancer Institute, Ichan School of Medicine at The Mount Sinai, New York, N.Y., USA
| | | | | |
Collapse
|
29
|
Targeting autophagy potentiates the apoptotic effect of histone deacetylase inhibitors in t(8;21) AML cells. Blood 2013; 122:2467-76. [PMID: 23970379 DOI: 10.1182/blood-2013-05-500629] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The role of autophagy during leukemia treatment is unclear. On the one hand, autophagy might be induced as a prosurvival response to therapy, thereby reducing treatment efficiency. On the other hand, autophagy may contribute to degradation of fusion oncoproteins, as recently demonstrated for promyelocytic leukemia-retinoic acid receptor α and breakpoint cluster region-abelson, thereby facilitating leukemia treatment. Here, we investigated these opposing roles of autophagy in t(8;21) acute myeloid leukemia (AML) cells, which express the most frequently occurring AML fusion oncoprotein, AML1-eight-twenty-one (ETO). We demonstrate that autophagy is induced by AML1-ETO-targeting drugs, such as the histone deacetylase inhibitors (HDACis) valproic acid (VPA) and vorinostat. Furthermore, we show that autophagy does not mediate degradation of AML1-ETO but rather has a prosurvival role in AML cells, as inhibition of autophagy significantly reduced the viability and colony-forming ability of HDACi-treated AML cells. Combined treatment with HDACis and autophagy inhibitors such as chloroquine (CQ) led to a massive accumulation of ubiquitinated proteins that correlated with increased cell death. Finally, we show that VPA induced autophagy in t(8;21) AML patient cells, and combined treatment with CQ enhanced cell death. Because VPA and CQ are well-tolerated drugs, combinatorial therapy with VPA and CQ could represent an attractive treatment option for AML1-ETO-positive leukemia.
Collapse
|