1
|
Mon AM, Intuyod K, Klungsaeng S, Jusakul A, Pongking T, Lert-Itthiporn W, Luvira V, Pairojkul C, Plengsuriyakarn T, Na-Bangchang K, Pinlaor S, Pinlaor P. Overexpression of microRNA-205-5p promotes cholangiocarcinoma growth by reducing expression of homeodomain-interacting protein kinase 3. Sci Rep 2023; 13:22444. [PMID: 38105269 PMCID: PMC10725890 DOI: 10.1038/s41598-023-49694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
The microRNA miR-205-5p has diverse effects in different malignancies, including cholangiocarcinoma (CCA), but its effects on CCA progression is unclear. Here we investigated the role and function of miR-205-5p in CCA. Three CCA cell lines and human serum samples were found to have much higher expression levels of miR-205-5p than seen in typical cholangiocyte cell lines and healthy controls. Inhibition of miR-205-5p suppressed CCA cell motility, invasion and proliferation of KKU-213B whereby overexpression of miR-205-5p promoted cell proliferation and motility of KKU-100 cells. Bioinformatics tools (miRDB, TargetScan, miRWalk, and GEPIA) all predicted various miR-205-5p targets. Experiments using miR-205-5p inhibitor and mimic indicated that homeodomain-interacting protein kinase 3 (HIPK3) was a potential direct target of miR-205-5p. Overexpression of HIPK3 using HIPK3 plasmid cloning DNA suppressed migration and proliferation of KKU-100 cells. Notably, HIPK3 expression was lower in human CCA tissues than in normal adjacent tissues. High HIPK3 expression was significantly associated with longer survival time of CCA patients. Multivariate regression analysis indicated tissue HIPK3 levels as an independent prognostic factor for CCA patients. These findings indicate that overexpression of miR-205-5p promotes CCA cells proliferation and migration partly via HIPK3-dependent way. Therefore, targeting miR-205-5p may be a potential treatment approach for CCA.
Collapse
Affiliation(s)
- Aye Myat Mon
- Medical Technology Program, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kitti Intuyod
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirinapha Klungsaeng
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apinya Jusakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thatsanapong Pongking
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Worachart Lert-Itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Vor Luvira
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Program in Bioclinical Sciences, Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, 12120, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, 12120, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Tan GZL, Leong SM, Jin Y, Kuick CH, Chee JJK, Low SZ, Ding LW, Cheng H, Lim D, Hue SSS. MicroRNA Landscape in Endometrial Carcinomas in an Asian population: Unraveling Subtype-Specific Signatures. Cancers (Basel) 2023; 15:5260. [PMID: 37958433 PMCID: PMC10648581 DOI: 10.3390/cancers15215260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
MicroRNAs (MiRNAs) are small, non-coding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression. We analyzed the differential expression of miRNAs in 119 endometrial carcinomas, measuring their expression in histological subtypes, molecular subtypes, and tumors with CTNNB1 mutations. Tumors were subdivided into histological and molecular subtypes as defined by The Cancer Genome Atlas. The expression levels of 352 miRNAs were quantified using the PanoramiR panel. Mir-449a, mir-449b-5p, and mir-449c-5p were the top three miRNAs showing increased expression in both endometrioid and de-differentiated carcinomas but were not significantly increased in serous and clear cell carcinomas. The miRNAs with the most increased expression in serous and clear cell carcinomas were miR-9-3p and miR-375, respectively. We also identified 62 differentially expressed miRNAs among different molecular subtypes. Using sequential forward selection, we built subtype classification models for some molecular subtypes of endometrial carcinoma, comprising 5 miRNAs for MMR-deficient tumors, 10 miRNAs for p53-mutated tumors, and 3 miRNAs for CTNNB1-mutated tumors, with areas under curves of 0.75, 0.85, and 0.78, respectively. Our findings confirm the differential expression of miRNAs between various endometrial carcinoma subtypes and may have implications for the development of diagnostic and prognostic tools.
Collapse
Affiliation(s)
- Gideon Ze Lin Tan
- Department of Pathology, National University Hospital, Singapore 118177, Singapore; (G.Z.L.T.); (S.Z.L.); (D.L.)
| | - Sai Mun Leong
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; (S.M.L.)
| | - Yu Jin
- MiRXES Pte Ltd., Singapore 618305, Singapore (H.C.)
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Jeremy Joon Keat Chee
- Department of Pathology, National University Hospital, Singapore 118177, Singapore; (G.Z.L.T.); (S.Z.L.); (D.L.)
| | - San Zeng Low
- Department of Pathology, National University Hospital, Singapore 118177, Singapore; (G.Z.L.T.); (S.Z.L.); (D.L.)
| | - Ling-Wen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; (S.M.L.)
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - He Cheng
- MiRXES Pte Ltd., Singapore 618305, Singapore (H.C.)
| | - Diana Lim
- Department of Pathology, National University Hospital, Singapore 118177, Singapore; (G.Z.L.T.); (S.Z.L.); (D.L.)
| | - Susan Swee-Shan Hue
- Department of Pathology, National University Hospital, Singapore 118177, Singapore; (G.Z.L.T.); (S.Z.L.); (D.L.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; (S.M.L.)
| |
Collapse
|
3
|
Li P, Hong J, Liang C, Li Y, Gao L, Wu L, Yao R, Zhang Y. Endothelial cell-released extracellular vesicles trigger pyroptosis and vascular inflammation to induce atherosclerosis through the delivery of HIF1A-AS2. FASEB J 2023; 37:e22942. [PMID: 37178006 DOI: 10.1096/fj.202201399rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Extracellular vesicles (EVs) possess great potential in the modulation of cardiovascular diseases. Our current work intended to assay the clinical significance of endothelial cell (EC)-derived EVs in atherosclerosis (AS). Expression of HIF1A-AS2, miR-455-5p, and ESRRG in plasma from AS patients and mice and EVs from ox-LDL-treated ECs was measured. Interactions among HIF1A-AS2, miR-455-5p, ESRRG, and NLRP3 were analyzed. Next, EVs were co-cultured with ECs, and ectopic expression and depletion experimentations of HIF1A-AS2, miR-455-5p, ESRRG, and/or NLRP3 were carried out to assay their roles in pyroptosis and inflammation of ECs in AS. At last, the effects of HIF1A-AS2 shuttled by EC-derived EVs on EC pyroptosis and vascular inflammation in AS were verified in vivo. HIF1A-AS2 and ESRRG were highly expressed, while miR-455-5p was poorly expressed in AS. HIF1A-AS2 could sponge miR-455-5p to elevate the expression of ESRRG and NLRP3. Both in vitro and in vivo experiments revealed that ECs-derived EVs carrying HIF1A-AS2 induced the pyroptosis and vascular inflammation of ECs to promote the progression of AS by sponging miR-455-5p via ESRRG/NLRP3. HIF1A-AS2 shuttled by ECs-derived EVs can accelerate the progression of AS by downregulating miR-455-5p and upregulating ESRRG and NLRP3.
Collapse
Affiliation(s)
- Pengcheng Li
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Jin Hong
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Cui Liang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Yapeng Li
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Lu Gao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Leiming Wu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Rui Yao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Yanzhou Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
4
|
Oropeza-de Lara SA, Garza-Veloz I, Berthaud-González B, Martinez-Fierro ML. Circulating and Endometrial Tissue microRNA Markers Associated with Endometrial Cancer Diagnosis, Prognosis, and Response to Treatment. Cancers (Basel) 2023; 15:2686. [PMID: 37345024 DOI: 10.3390/cancers15102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
In developed countries, endometrial cancer (EC) is one of the most common neoplasms of the female reproductive system. MicroRNAs (miRs) are a class of single-stranded noncoding RNA molecules with lengths of 19-25 nucleotides that bind to target messenger RNA (mRNA) to regulate post-transcriptional gene expression. Although there is a large amount of research focused on identifying miRs with a diagnostic, prognostic, or response to treatment capacity in EC, these studies differ in terms of experimental methodology, types of samples used, selection criteria, and results obtained. Hence, there is a large amount of heterogeneous information that makes it difficult to identify potential miR biomarkers. We aimed to summarize the current knowledge on miRs that have been shown to be the most suitable potential markers for EC. We searched PubMed and Google Scholar without date restrictions or filters. We described 138 miRs with potential diagnostic, prognostic, or treatment response potential in EC. Seven diagnostic panels showed higher sensitivity and specificity for the diagnosis of EC than individual miRs. We further identified miRs up- or downregulated depending on the FIGO stage, precursor lesions, and staging after surgery, which provides insight into which miRs are expressed chronologically depending on the disease stage and/or that are modulated depending on the tumor grade based on histopathological evaluation.
Collapse
Affiliation(s)
- Sergio Antonio Oropeza-de Lara
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6, Ejido La Escondida, Zacatecas 98160, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6, Ejido La Escondida, Zacatecas 98160, Mexico
| | - Bertha Berthaud-González
- Hospital General Zacatecas "Luz González Cosío", Servicios de Salud de Zacatecas, Zacatecas 98160, Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6, Ejido La Escondida, Zacatecas 98160, Mexico
| |
Collapse
|
5
|
MiR-125b-5p Targets MTFP1 to Inhibit Cell Proliferation, Migration, and Invasion and Facilitate Cell Apoptosis in Endometrial Carcinoma. Mol Biotechnol 2022; 65:961-969. [DOI: 10.1007/s12033-022-00601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
|
6
|
Huang M, Hua X, Xu J, Tian Z, Wang J, Chen H, Wang X, Shu P, Ye H, Shu J, Huang C. Induction of p27 contributes to inhibitory effect of isorhapontigenin (ISO) on malignant transformation of human urothelial cells. Cell Cycle 2022:1-14. [PMID: 35532178 DOI: 10.1080/15384101.2022.2074623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022] Open
Abstract
Bladder cancer (BC) is the most expensive cancer to manage on a per-patient basis, costing about $4 billion in total healthcare expenditure per annum in America alone. Therefore, identifying a natural compound for prevention of BC is of tremendous importance for managing this disease. Previous studies have identified isorhapontigenin (ISO) as having an 85% preventive effect against invasive BC formation induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). The results showed here that ISO treatment inhibited EGF-induced cell transformation of human urothelial cells through induction of tumor suppressor p27 transcription secondary to activation of an E2F1-dependentpathway.ISOtreatmentrenderedcellsresistanttoEGF-induced anchorage-independent growth concurrent with p27 protein induction in both UROtsa and SV-HUC-1 cells. ISO inhibition of EGF-induced cell transformation could be completely reversed by knockdown of p27, indicating that this protein was essential for the noted ISO inhibitory action. Mechanistic studies revealed that ISO treatment resulted in increased expression of E2F1, which in turn bound to its binding site in p27 promoter and initiated p27 transcription. The E2F1 induction was due to the elevation of its translation caused by ISO-induced miR-205 downregulation. Consistently, miR-205 was found to be overexpressed in human BCs, and ectopic expression of miR-205 mitigated ISO inhibitory effects against EGF-induced outcomes. Collectively, the results here demonstrate that ISO exhibits its preventive effect on EGF-induced human urothelial cell transformation by induction of p27 through a miR-205/E2F1 axis. This is distinct from what has been described for the therapeutic effects of ISO on human BC cells.
Collapse
Affiliation(s)
- Maowen Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiajing Wang
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Hengchao Chen
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Xuyao Wang
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Peng Shu
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Hongyan Ye
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Jianfeng Shu
- HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Li YZ, Mou P, Shen Y, Gao LD, Chen XX, Wei RL. Effect of miR-184 and miR-205 on the tumorigenesis of conjunctival mucosa associated lymphoid tissue lymphoma through regulating RasL10B and TNFAIP8. Int J Ophthalmol 2022; 15:1-8. [PMID: 35047349 DOI: 10.18240/ijo.2022.01.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/11/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To explore the effect of miR-184 and miR-205 on the proliferation and metastasis of conjunctival mucosa associated lymphoid tissue (MALT) lymphoma. METHODS Tissue of tumor and adjacent normal control from 5 patients with conjunctival MALT was included. RPMI8226 cell line was selected to verify the effect of miRNAs in B cells. The function of microRNA on the RPMI8226 cell apoptosis, migration and invasion was evaluated by apoptosis assay and Transwell assay. The mRNA and protein expression were examined by quantitative RT-PCR and Western blotting. The effect of microRNA on regulation of downstream gene expression was evaluated by luciferase report assay. RESULTS A decreased level of miR-184 and miR-205 was observed in MALT lymphoma tissue. Exogenous miR-184 and miR-205 analogues promoted apoptosis, and inhibited the survival, migration, and invasion of RPMI8226 cells. miR-184 and miR-205 inhibitor reversed the process. The RNA and protein level of RasL10B and TNFAIP8 were downregulated in MALT lymphoma tissue. The exogenous of miR-184 and miR-205 promoted the expression of RasL10B and TNFAIP8. Meanwhile, inhibition of miR-184 and miR-205 repressed the expression of target gene, RasL10B and TNFAIP8. CONCLUSION miR-184 and miR-205 suppresses the tumorigenesis of conjunctival MALT lymphoma through regulating RasL10B and TNFAIP8.
Collapse
Affiliation(s)
- Yu-Zhen Li
- Department of Ophthalmology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Pei Mou
- Department of Ophthalmology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Ya Shen
- Department of Ophthalmology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Lian-Di Gao
- Department of Nursing, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xin-Xin Chen
- Department of Ophthalmology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Rui-Li Wei
- Department of Ophthalmology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| |
Collapse
|
8
|
Manetti AC, Maiese A, Baronti A, Mezzetti E, Frati P, Fineschi V, Turillazzi E. MiRNAs as New Tools in Lesion Vitality Evaluation: A Systematic Review and Their Forensic Applications. Biomedicines 2021; 9:1731. [PMID: 34829960 PMCID: PMC8615694 DOI: 10.3390/biomedicines9111731] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Wound vitality demonstration is one of the most challenging fields in forensic pathology. In recent years, researchers focused on the application of histological and immunohistochemical staining in this sphere of study. It is based on the detection of inflammation, red cell infiltration, and tissue alterations at the histological examination, all of which are supposedly present in antemortem rather than post-mortem wounds. Nevertheless, some doubts about the reliability of those markers have arisen. Furthermore, the lack of a standardized protocol and the operator dependency of this approach make the proper interpretation of its results difficult. Moreover, a differential miRNAs expression has been demonstrated in antemortem and post-mortem wounds. Herein, a systematic review concerning the current knowledge about the use of miRNAs in lesion vitality evaluation is carried out, to encourage researchers to deepen this peculiar study area. A compendium about the potential miRNAs that may be further investigated as vitality markers is also provided. The aim is to collect all available data about this topic to direct further studies on this field and highlight the future applications of miRNAs in forensic pathology. We found 20 articles and a total of 51 miRNAs that are involved in inflammation and wound healing. Further studies are certainly needed to deepen the role of miRNAs in inflammatory processes in lesioned skin and to evaluate their reliability in distinguishing between antemortem and post-mortem lesions.
Collapse
Affiliation(s)
- Alice Chiara Manetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Arianna Baronti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00186 Rome, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00186 Rome, Italy;
| | - Emanuela Turillazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| |
Collapse
|
9
|
Klicka K, Grzywa TM, Klinke A, Mielniczuk A, Włodarski PK. The Role of miRNAs in the Regulation of Endometrial Cancer Invasiveness and Metastasis-A Systematic Review. Cancers (Basel) 2021; 13:3393. [PMID: 34298609 PMCID: PMC8304659 DOI: 10.3390/cancers13143393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Endometrial cancer (EC) is the most common genital cancer in women with increasing death rates. MiRNAs are short non-coding RNAs that regulate gene expression on the post-transcriptional levels. Multiple studies demonstrated a fundamental role of miRNAs in the regulation of carcinogenesis. This systematic review is a comprehensive overview of the role of miRNAs in the regulation of cancer cell invasiveness and metastasis in EC. The literature was searched for studies investigating the role of miRNAs in the regulation of invasiveness and metastasis in EC. We explored PubMed, Embase, and Scopus using the following keywords: miRNA, metastasis, invasiveness, endometrial cancer. Data were collected from 163 articles that described the expression and role of 106 miRNAs in the regulation of EC invasiveness and metastasis out of which 63 were tumor suppressor miRNAs, and 38 were oncomiRNAs. Five miRNAs had a discordant role in different studies. Moreover, we identified 66 miRNAs whose expression in tumor tissue or concentration in serum correlated with at least one clinical parameter. These findings suggest a crucial role of miRNAs in the regulation of EC invasiveness and metastasis and present them as potential prognostic factors for patients with EC.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| | - Aleksandra Mielniczuk
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| |
Collapse
|
10
|
Xu LB, Xiong J, Zhang YH, Dai Y, Ren XP, Ren YJ, Han D, Wei SH, Qi M. miR‑205‑3p promotes lung cancer progression by targeting APBB2. Mol Med Rep 2021; 24:588. [PMID: 34165160 PMCID: PMC8222966 DOI: 10.3892/mmr.2021.12227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), a leading cause of cancer-associated mortality, has resulted in low survival rates and a high mortality worldwide. Accumulating evidence has suggested that microRNAs (miRs) play critical roles in the regulation of cancer progression and the present study aimed to explore the underlying mechanism of miR-205 in NSCLC. Reverse transcription-quantitative PCR was performed, which determined that miR-205 expression was upregulated in NSCLC, and the present study detected the upregulation of miR-205-3p in a number of NSCLC cell lines and NSCLC tissues. In addition, the mediation of amyloid β precursor protein-binding family B member 2 (APBB2) by miR-205-3p was demonstrated. Moreover, miR-205-3p was predicted to directly target the 3′untranslated region of APBB2, which was confirmed using a dual-luciferase reporter assay. It was found that lentivirus mediated-APBB2 knockdown could promote cellular viability and suppress apoptosis in NSCLC cells, as determined via MTT, TUNEL and flow cytometry assays. Thus, the current findings highlighted the potential promotive impact of miR-205-3p on NSCLC processes and may provide theoretical evidence for miR-205-3p as a potential clinical gene therapy target.
Collapse
Affiliation(s)
- Ling-Bin Xu
- Department of Pulmonary and Critical Care Medicine No. 2, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jie Xiong
- Department of Pulmonary and Critical Care Medicine No. 2, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ya-Hui Zhang
- Department of Orthopaedics, Xi'an Daxing Hospital, Xi'an, Shaanxi 710016, P.R. China
| | - Yun Dai
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiao-Ping Ren
- Department of Pulmonary and Critical Care Medicine No. 2, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ya-Juan Ren
- Department of Pulmonary and Critical Care Medicine No. 2, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Dong Han
- Department of Pulmonary and Critical Care Medicine No. 2, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Sheng-Hong Wei
- Department of Pulmonary and Critical Care Medicine No. 2, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Min Qi
- Imaging Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
11
|
Shen Y, Xu Y, Huang L, Chi Y, Meng L. MiR-205 suppressed the malignant behaviors of breast cancer cells by targeting CLDN11 via modulation of the epithelial-to-mesenchymal transition. Aging (Albany NY) 2021; 13:13073-13086. [PMID: 33971623 PMCID: PMC8148491 DOI: 10.18632/aging.202988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Some Aberrant expression of miRNAs plays an important role in the occurrence and distant metastasis of breast cancer. This study aimed to identify crucial miRNA signatures for breast cancer using microarray data from the Gene Expression Omnibus database, including ductal carcinoma in situ and invasive duct carcinoma. In this study, we founded that miR-205 was significantly down-regulated in breast cancer, and the low expression of miR-205 was significantly associated with the TNM stage of breast cancer. In vitro, functional studies revealed that over-expression of miR-205 inhibited the proliferation and promoted apoptosis of breast cancer cells MDA-MB-231. Mechanistically, claudin 11 (CLDN11) was found to be the direct target of miR-205; the function of miR-205 could be exerted via downregulation of the target gene CLDN11 in breast cancer cells. Furthermore, the over-expression of miR-205 promoted the expression of the epithelial marker E-cadherin but reduced the mesenchymal markers in breast cancer cells. These results collectively indicated the tumor-suppressive role of miR-205 in breast cancer by targeting CLDN11; implying miR-205 may serve as a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yupeng Shen
- Medical School of Shaoxing University, Yuecheng, Shaoxing 312000, Zhejiang Province, People's Republic of China
| | - Yingchun Xu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang Province, People's Republic of China
| | - Liming Huang
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang Province, People's Republic of China
| | - Yongxin Chi
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang Province, People's Republic of China
| | - Liwei Meng
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang Province, People's Republic of China
| |
Collapse
|
12
|
Zhu H, Xu Y, Li M, Chen Z. Inhibition Sequence of miR-205 Hinders the Cell Proliferation and Migration of Lung Cancer Cells by Regulating PETN-Mediated PI3K/AKT Signal Pathway. Mol Biotechnol 2021; 63:587-594. [PMID: 33783672 DOI: 10.1007/s12033-021-00321-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/20/2021] [Indexed: 01/11/2023]
Abstract
The aim of this study was to identify the pro-tumor role of miR-205 in patients with lung cancer (LC) on the cell proliferation and migration through regulating PTEN-mediated PI3K/AKT signal pathway. Paired cancer tissues and adjacent tissues were collected from 107 LC patients who received treatment in Jinan Central hospital. In addition, the purchased LC cell lines were transfected into HCC827 cell line to observe and compare the biological behaviors. Compared with adjacent tissues, miR-205 was statistically higher in LC tissues, while PTEN was notably lower (P < 0.05). Inhibition of miR-205 not only suppressed cell proliferation, migration and invasion, increased apoptosis rate, but regulated epithelial mesenchymal transformation (EMT)-related proteins. Likewise, overexpression of PETN played the same role as that of miR-205 inhibition sequence. Inhibited miR-205 or PTEN overexpression brought dramatically decreased PI3K and p-Akt. The relationship between miR-205 and PTEN was verified through the biological prediction website and luciferase reporter. Co-transfection experiments revealed that after cotransfection of miR-205 inhibitor and si-PETN, the cell proliferation and invasion showed no marked difference between cotransfection group and NC group. MiR-205 is involved in LC cell proliferation and migration by regulating PETN-mediated PI3K/AKT signal pathway, which may be a feasible treatment target for LC in clinical practice.
Collapse
Affiliation(s)
- Huizhen Zhu
- Department of Urological Surgery, Jinan Central Hospital Affiliated To Shandong University, Shandong, 250013, P.R. China
| | - Yan Xu
- Outpatient Injection Room, The First Affiliated Hospital of Shandong First Medical University, Shandong, 250014, P.R. China
| | - Meng Li
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, P.R. China
| | - Zhitao Chen
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, P.R. China.
| |
Collapse
|
13
|
Piergentili R, Zaami S, Cavaliere AF, Signore F, Scambia G, Mattei A, Marinelli E, Gulia C, Perelli F. Non-Coding RNAs as Prognostic Markers for Endometrial Cancer. Int J Mol Sci 2021; 22:3151. [PMID: 33808791 PMCID: PMC8003471 DOI: 10.3390/ijms22063151] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endometrial cancer (EC) has been classified over the years, for prognostic and therapeutic purposes. In recent years, classification systems have been emerging not only based on EC clinical and pathological characteristics but also on its genetic and epigenetic features. Noncoding RNAs (ncRNAs) are emerging as promising markers in several cancer types, including EC, for which their prognostic value is currently under investigation and will likely integrate the present prognostic tools based on protein coding genes. This review aims to underline the importance of the genetic and epigenetic events in the EC tumorigenesis, by expounding upon the prognostic role of ncRNAs.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, “Sapienza” University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Anna Franca Cavaliere
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santo Stefano Hospital, 59100 Prato, Italy;
| | - Fabrizio Signore
- Obstetrics and Gynecology Department, USL Roma2, Sant’Eugenio Hospital, 00144 Rome, Italy;
| | - Giovanni Scambia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Gynecologic Oncology Unit, 00168 Rome, Italy;
- Universita’ Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Mattei
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (A.M.); (F.P.)
| | - Enrico Marinelli
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy;
| | - Caterina Gulia
- Department of Urology, Misericordia Hospital, 58100 Grosseto, Italy;
| | - Federica Perelli
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (A.M.); (F.P.)
| |
Collapse
|
14
|
Unveiling the ups and downs of miR-205 in physiology and cancer: transcriptional and post-transcriptional mechanisms. Cell Death Dis 2020; 11:980. [PMID: 33191398 PMCID: PMC7667162 DOI: 10.1038/s41419-020-03192-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
miR-205 plays important roles in the physiology of epithelia by regulating a variety of pathways that govern differentiation and morphogenesis. Its aberrant expression is frequently found in human cancers, where it was reported to act either as tumor-suppressor or oncogene depending on the specific tumor context and target genes. miR-205 expression and function in different cell types or processes are the result of the complex balance among transcription, processing and stability of the microRNA. In this review, we summarize the principal mechanisms that regulate miR-205 expression at the transcriptional and post-transcriptional level, with particular focus on the transcriptional relationship with its host gene. Elucidating the mechanisms and factors regulating miR-205 expression in different biological contexts represents a fundamental step for a better understanding of the contribution of such pivotal microRNA to epithelial cell function in physiology and disease, and for the development of modulation strategies for future application in cancer therapy.
Collapse
|
15
|
Laschos K, Lampropoulou DI, Aravantinos G, Piperis M, Filippou D, Theodoropoulos G, Gazouli M. Exosomal noncoding RNAs in cholangiocarcinoma: Laboratory noise or hope? World J Gastrointest Surg 2020; 12:407-424. [PMID: 33194090 PMCID: PMC7642347 DOI: 10.4240/wjgs.v12.i10.407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, extracellular vesicles and particularly exosomes have gained a lot of research interest due to their unique roles in several biological processes. Noncoding RNAs (microRNAs, long noncoding RNAs and circular RNAs) represent a class of functional RNA with distinct regulatory roles in tumorigenesis and cancer progression. Cholangiocarcinoma is a rare but highly aggressive type of malignancy that is very challenging to diagnose, especially in early stages; surgical resection still represents the sole potentially curative treatment option. Hence, there is an urgent need for the discovery of novel diagnostic and prognostic biomarkers. Hereby, we provide a comprehensive review of the most recent discoveries that focus on exosomal noncoding RNAs in cholangio-carcinoma with the aim to identify new molecular players that could be used as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Konstantinos Laschos
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, Athens 14564, Greece
| | - Dimitra Ioanna Lampropoulou
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, Athens 14564, Greece
| | - Gerasimos Aravantinos
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, Athens 14564, Greece
| | - Maria Piperis
- Radiation Therapy Department, Iatropolis, Athens 15231, Greece
| | - Dimitrios Filippou
- Department of Anatomy and Surgical Anatomy, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George Theodoropoulos
- 1st Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
16
|
Liu J, Li Y, Chen X, Xu X, Zhao H, Wang S, Hao J, He B, Liu S, Wang J. Upregulation of miR-205 induces CHN1 expression, which is associated with the aggressive behaviour of cervical cancer cells and correlated with lymph node metastasis. BMC Cancer 2020; 20:1029. [PMID: 33109127 PMCID: PMC7590479 DOI: 10.1186/s12885-020-07478-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cervical cancer is the leading cause of cancer-related death in women worldwide. However, the mechanisms mediating the development and progression of cervical cancer are unclear. In this study, we aimed to elucidate the roles of microRNAs and a1-chimaerin (CHN1) protein in cervical cancer progression. METHODS The expression of miR-205 and CHN1 protein was investigated by in situ hybridisation and immunohistochemistry. We predicted the target genes of miR-205 using software prediction and dual luciferase assays. The expression of mRNAs and proteins was tested by qRT-PCR and western blotting respectively. The ability of cell growth, migration and invasion was evaluated by CCK-8 and transwell. Cell apoptosis was analysed by flow cytometry analysis. RESULTS We found that miR-205 and CHN1 were highly expressed in human cervical cancer tissue compared with paired normal cervical tissues. The CHN1 gene was shown to be targeted by miR-205 in HeLa cells. Interestingly, transfection with miR-205 mimic upregulated CHN1 mRNA and protein, while miR-205 inhibitor downregulated CHN1 in high-risk and human papilloma virus (HPV)-negative human cervical cancer cells in vitro,. These data suggested that miR-205 positively regulated the expression of CHN1. Furthermore, the miR-205 mimic promoted cell growth, apoptosis, migration, and invasion in high-risk and HPV-negative cervical cancer cells, while the miR-205 inhibitor blocked these biological processes. Knockdown of CHN1 obviously reduced the aggressive cellular behaviours induced by upregulation of miR-205, suggesting that miR-205 positively regulated CHN1 to mediate these cell behaviours during the development of cervical cancer. Furthermore, CHN1 was correlated with lymph node metastasis in clinical specimens. CONCLUSIONS Our findings showed that miR-205 positively regulated CHN1 to mediate cell growth, apoptosis, migration, and invasion during cervical cancer development, particularly for high-risk HPV-type cervical cancer. These findings suggested that dysregulation of miR-205 and subsequent abnormalities in CHN1 expression promoted the oncogenic potential of human cervical cancer.
Collapse
Affiliation(s)
- Jianbing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yunfeng Li
- Basic Medical College, Hebei University of Chinese Medicine, Shijiazhuang, 050017, People's Republic of China
| | - Xihua Chen
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, People's Republic of China
| | - Xiangbo Xu
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, People's Republic of China
| | - Haoqi Zhao
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, People's Republic of China
| | - Shufang Wang
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, People's Republic of China
| | - Jianqing Hao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Bin He
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, People's Republic of China.
| | - Shuyan Liu
- School of Pre-clinical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China.
| | - Jiedong Wang
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, People's Republic of China
| |
Collapse
|
17
|
Nguyen VHL, Yue C, Du KY, Salem M, O’Brien J, Peng C. The Role of microRNAs in Epithelial Ovarian Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21197093. [PMID: 32993038 PMCID: PMC7583982 DOI: 10.3390/ijms21197093] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological cancer, and the major cause of death is mainly attributed to metastasis. MicroRNAs (miRNAs) are a group of small non-coding RNAs that exert important regulatory functions in many biological processes through their effects on regulating gene expression. In most cases, miRNAs interact with the 3′ UTRs of target mRNAs to induce their degradation and suppress their translation. Aberrant expression of miRNAs has been detected in EOC tumors and/or the biological fluids of EOC patients. Such dysregulation occurs as the result of alterations in DNA copy numbers, epigenetic regulation, and miRNA biogenesis. Many studies have demonstrated that miRNAs can promote or suppress events related to EOC metastasis, such as cell migration, invasion, epithelial-to-mesenchymal transition, and interaction with the tumor microenvironment. In this review, we provide a brief overview of miRNA biogenesis and highlight some key events and regulations related to EOC metastasis. We summarize current knowledge on how miRNAs are dysregulated, focusing on those that have been reported to regulate metastasis. Furthermore, we discuss the role of miRNAs in promoting and inhibiting EOC metastasis. Finally, we point out some limitations of current findings and suggest future research directions in the field.
Collapse
Affiliation(s)
- Vu Hong Loan Nguyen
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chenyang Yue
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Kevin Y. Du
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Mohamed Salem
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Jacob O’Brien
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chun Peng
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
- Centre for Research in Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada
- Correspondence:
| |
Collapse
|
18
|
Chauhan N, Dhasmana A, Jaggi M, Chauhan SC, Yallapu MM. miR-205: A Potential Biomedicine for Cancer Therapy. Cells 2020; 9:cells9091957. [PMID: 32854238 PMCID: PMC7564275 DOI: 10.3390/cells9091957] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) are a class of small non-coding RNAs that regulate the expression of their target mRNAs post transcriptionally. miRNAs are known to regulate not just a gene but the whole gene network (signaling pathways). Accumulating evidence(s) suggests that miRNAs can work either as oncogenes or tumor suppressors, but some miRNAs have a dual nature since they can act as both. miRNA 205 (miR-205) is one such highly conserved miRNA that can act as both, oncomiRNA and tumor suppressor. However, most reports confirm its emerging role as a tumor suppressor in many cancers. This review focuses on the downregulated expression of miR-205 and discusses its dysregulation in breast, prostate, skin, liver, gliomas, pancreatic, colorectal and renal cancers. This review also confers its role in tumor initiation, progression, cell proliferation, epithelial to mesenchymal transition, and tumor metastasis. Restoration of miR-205 makes cells more sensitive to drug treatments and mitigates drug resistance. Additionally, the importance of miR-205 in chemosensitization and its utilization as potential biomedicine and nanotherapy is described. Together, this review research article sheds a light on its application as a diagnostic and therapeutic marker, and as a biomedicine in cancer.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (N.C.); (A.D.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (N.C.); (A.D.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (N.C.); (A.D.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (N.C.); (A.D.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (N.C.); (A.D.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: ; Tel.: +1-(956)-296-1734
| |
Collapse
|
19
|
Gong C, Hu Y, Zhou M, Yao M, Ning Z, Wang Z, Ren J. Identification of specific modules and hub genes associated with the progression of gastric cancer. Carcinogenesis 2020; 40:1269-1277. [PMID: 30805585 DOI: 10.1093/carcin/bgz040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/01/2019] [Accepted: 02/22/2019] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer (GC) has high morbidity and mortality rates worldwide. Abundant literature has reported several individual genes and their related pathways intimately involved in tumor progression. However, little is known about GC progression at the gene network level. Therefore, understanding the underlying mechanisms of pathological transition from early stage to late stage is urgently needed. This study aims to identify potential vital genes and modules involved in the progression of GC. To understand the gene regulatory network of GC progression, we analyzed micro RNAs and messenger RNA s expression profiles by using a couple of bioinformatics tools. miR-205 was identified by differentially expressed analysis and was further confirmed through using multiple kernel learning-based Kronecker regularized least squares. Using weighted gene co-expression network analysis, the gastric cancer progression-related module, which has the highest correlation value with cancer progression, was obtained. Kyoto Encyclopedia of Genes and Genomes pathways and biological processes of the GCPR module genes were related to cell adhesion. Meanwhile, large-scale genes of GCPR module were found to be targeted by miR-205, including two hub genes SORBS1 and LPAR1. In brief, through multiple analytical methods, we found that miR-205 and the GCPR module play critical roles in GC progression. In addition, miR-205 might maintain cell adhesion by regulating SORBS1 and LPAR1. To screen the potential drug candidates, the gene expression profile of the GCPR module was mapped connectivity map (Cmap), and the mTOR inhibitor (Sirolimus) was found to be the most promising candidate. We further confirmed that Sirolimus can suppress cell proliferation of GC cell in vitro.
Collapse
Affiliation(s)
- Congcong Gong
- School of Food Science and Technology, South China University of Technology, Guangzhou, Guangdong, China
| | - Yang Hu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mao Zhou
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Maojin Yao
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Zhengxiang Ning
- School of Food Science and Technology, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiaoyan Ren
- School of Food Science and Technology, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Wu Z, Tang H, Xiong Q, Liu D, Xia T, Liang H, Ye Q. Prognostic Role of microRNA-205 in Human Gynecological Cancer: A Meta-Analysis of Fourteen Studies. DNA Cell Biol 2020; 39:875-889. [PMID: 32354230 DOI: 10.1089/dna.2019.5316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Several studies have revealed that miR-205 plays important roles in the development of gynecological cancers and thus may serve as a potential prognostic biomarker, but the current conclusions remain controversial. Therefore, the goal of this study was to explore the prognostic significance and functional mechanisms of miR-205 based on a meta-analysis and bioinformatics investigation. A total of 14 published studies containing 5835 patients were enrolled by searching the PubMed, EMBASE, and Cochrane library databases, 13 (14 datasets) and 5 (6 datasets) of which evaluated the correlations between the expression level of miR-205 and overall survival (OS) or disease-free survival (DFS)/disease-specific survival (DSS)/progression-free survival (PFS)/distant metastasis-free survival (DMFS), respectively. Furthermore, the use of online Kaplan-Meier plotter database analysis supplemented another seven results for OS. Then, a meta-analysis using these 21 and 6 datasets was performed. As a result, the overall analysis failed to demonstrate any significant associations between miR-205 expression and OS (p = 0.267) or DSS/DFS/DMFS/PFS (p = 0.457), but the subgroup analysis suggested that elevated miR-205 predicted a reduced OS for breast cancer (BC) patients (hazard ratio [HR] = 0.84, 95% confidence interval [CI] = 0.72-0.98; p = 0.022), while higher miR-205 was associated with a poor DSS for endometrial cancer (EC) patients (HR = 2.19, 95% CI = 1.45-3.32; p < 0.001). Function prediction analysis indicated that miR-205 may be involved in BC by negatively influencing hub genes, SMARCA5 and SIAH1, whereas miR-205 may participate in EC by negatively modulating BMPR1B because of the presence of interactions of miR-205 with them at 3'-untranslated region and their opposite prognosis outcomes with miR-205. In conclusion, our findings suggest miR-205 may be a promising prognostic biomarker and therapeutic target for BC and EC patients.
Collapse
Affiliation(s)
- Zhixi Wu
- Department of Obstetrics and Gynecology, Dongguan People's Hospital (Affiliated Dongguan Hospital, South Medical University), Dongguan, China
| | - Hong Tang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Xiong
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dong Liu
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tingting Xia
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huichao Liang
- Department of Obstetrics and Gynecology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qingjian Ye
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Yang J, Gong Y, Jiang Q, Liu L, Li S, Zhou Q, Huang F, Liu Z. Circular RNA Expression Profiles in Nasopharyngeal Carcinoma by Sequence Analysis. Front Oncol 2020; 10:601. [PMID: 32426279 PMCID: PMC7204547 DOI: 10.3389/fonc.2020.00601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/01/2020] [Indexed: 12/31/2022] Open
Abstract
Circular RNAs (circRNAs), as a burgeoning sort of non-coding RNAs (ncRNAs), can regulate the expression of parental genes as miRNA sponges. This study was designed to explore the circRNA expression profile of nasopharyngeal carcinoma (NPC). High-throughput sequencing was performed to identify the circRNA expression profile of NPC patients compared with healthy controls. A total of 93 upregulated circRNAs and 77 downregulated circRNAs were identified. The expression levels of the top three upregulated and three downregulated circRNAs annotated by circBase were validated by quantitative real-time PCR (qRT-PCR). GO and KEGG analyses showed that these differentially expressed circRNAs were potentially implicated in NPC pathogenesis. CircRNA-miRNA-target gene network analysis revealed a potential mechanism that hsa_circ_0002375 (circKITLG) may be involved in NPC through sponging up miR-3198 and interfering with its downstream targets. Silencing of circKITLG inhibited NPC cell proliferation, migration, and invasion in vitro. This study provides a leading and fundamental circRNA expression profile of NPC.
Collapse
Affiliation(s)
- Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yongqian Gong
- Department of Otorhinolaryngology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Qingshan Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Lijun Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Shuyan Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Quanjun Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Fang Huang
- Department of Otorhinolaryngology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhifeng Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
22
|
Exosomal microRNA-205 is involved in proliferation, migration, invasion, and apoptosis of ovarian cancer cells via regulating VEGFA. Cancer Cell Int 2019; 19:281. [PMID: 31719795 PMCID: PMC6836480 DOI: 10.1186/s12935-019-0990-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
Background Recently, the impact of microRNAs (miRNAs) and exosome on ovarian cancer has been assessed in many studies. We aim to explore the mechanism of exosomes transferring miR-205 in ovarian cancer, and confirm its diagnostic value in ovarian cancer. Methods The expression of miR-205 of ovarian cancer patients and healthy people was detected by RT-qPCR, and the diagnostic value of miR-205 was evaluated. The exosomes derived from SKOV3 cells were identified. Ovarian cancer SKOV3 donor cells and receptor cells were used to measure the proliferation, migration, invasion, apoptosis and cell cycle by a series of experiments. The binding site between miR-205 and vascular endothelial growth factor A (VEGFA) was evaluated by bioinformatics tool and dual-luciferase reporter gene assay. Results MiR-205 was up-regulated in ovarian cancer, and up-regulated miR-205 could enhance the risk of ovarian cancer and was one of its risk factors. After SKOV3 cells-derived exosomes were transiently introduced with miR-205 mimics, the cell proliferation, migration and invasion in ovarian cancer were elevated, the apoptosis of ovarian cancer cells was attenuated, and the epithelial–mesenchymal transition (EMT) protein E-cadherin was down-regulated, while Vimentin was elevated. VEGFA was identified to be a target gene of miR-205. Conclusion This study suggests that exosomes from donor ovarian cancer cell SKOV3 shuttled miR-205 could participate in the regulation of the proliferation, migration, invasion, apoptosis as well as EMT progression of receptor SKOV3 cells by targeting VEGFA.
Collapse
|
23
|
Li Y, Sun D, Gao J, Shi Z, Chi P, Meng Y, Zou C, Wang Y. Retracted: MicroRNA-373 promotes the development of endometrial cancer by targeting LATS2 and activating the Wnt/β-Catenin pathway. J Cell Biochem 2019; 120:8611-8618. [PMID: 30485504 DOI: 10.1002/jcb.28149] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
In the female reproductive tract, endometrial cancer is the most common malignant tumor. Recently, the specific functions of many miRNAs have been identified in endometrial cancer. However, the contradictory effects of microRNA-373 (miR-373) in different human cancers draw our attention. In the present research, upregulation of miR-373 was identified in endometrial cancer which predicted poor prognosis. Moreover, upregulation of miR-373 promoted the migration, invasion, and proliferation of endometrial cancer cells. To further confirm that results, the EMT and Wnt/β-Catenin pathways were also investigated, which were promoted by overexpression of miR-373. Then, we further investigate the downstream factor, large tumor suppressor kinase 2 (LATS2) which was inhibited by miR-373. LATS2 was verified as a direct target gene of miR-373 through luciferase reporter assay. Especially, the facilitation of miR-373 for cell proliferation, migration and invasion was impaired by LATS2. Taken together, miR-373 promotes the progression of endometrial cancer through targeting LATS2 and promoting EMT and Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Emergency, Handan Municipal Maternal and Child Health Hospital, Handan, Hebei, PR China
| | - Dongxia Sun
- Department of Pathology, Handan Municipal Maternal and Child Health Hospital, Handan, Hebei, PR China
| | - Jie Gao
- Department of Function Examination, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, PR China
| | - Zhimin Shi
- Department of Pathology, College of Medicine, Hebei University of Engineering, Handan, Hebei, PR China
| | - Pengyu Chi
- Obstetrical Department, Handan Municipal Maternal and Child Health Hospital, Handan, Hebei, PR China
| | - Yuanyuan Meng
- Department of Physiology, College of Medicine, Hebei University of Engineering, Handan, Hebei, PR China
| | - Changjun Zou
- Department of Emergency, Handan Municipal Maternal and Child Health Hospital, Handan, Hebei, PR China
| | - Yanhua Wang
- Department of Pathology, Handan Municipal Maternal and Child Health Hospital, Handan, Hebei, PR China
| |
Collapse
|
24
|
Shen Z, Hu Y, Zhou C, Yuan J, Xu J, Hao W, Deng H, Ye D. ESRRG promoter hypermethylation as a diagnostic and prognostic biomarker in laryngeal squamous cell carcinoma. J Clin Lab Anal 2019; 33:e22899. [PMID: 31002184 PMCID: PMC6642328 DOI: 10.1002/jcla.22899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/22/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
Background Estrogen‐related receptor gamma (ESRRG) has been identified as a tumor suppressor gene in several cancers. We aimed to evaluate ESRRG promoter methylation in laryngeal squamous cell carcinoma (LSCC) and its relative clinical value in LSCC. Methods Bisulfite pyrosequencing assays were performed on 91 pairs of tumor and paracancer tissues from LSCC patients in China. The diagnostic value and overall survival (OS) were analyzed descriptively by receiver operating characteristic (ROC) curves and the Kaplan‐Meier methods, respectively. Results The ESRRG promoter was more frequently hypermethylated in tumor tissues than in adjacent tissues (P < 0.01). ESRRG promoter methylation was significantly increased in advanced T stage tumors (P < 0.01) and advanced clinical stage patients (P < 0.01). Moreover, the area under the ROC curve (AUC) value (0.81) indicated high discrimination accuracy. Furthermore, ESRRG hypermethylation was associated with poor OS, as confirmed by Kaplan‐Meier survival curves (P < 0.01). Conclusion Our study indicated that ESRRG promoter hypermethylation contributed to LSCC‐related risks, primarily tumor progression and survival prognosis, in patients. ESRRG promoter methylation could, therefore, be a diagnostic and prognostic biomarker in LSCC.
Collapse
Affiliation(s)
- Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yan Hu
- Department of Otolaryngology, Ningbo University Medical School, Ningbo, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jie Yuan
- Department of Otolaryngology, Ningbo University Medical School, Ningbo, China
| | - Jie Xu
- Department of Otolaryngology, Ningbo University Medical School, Ningbo, China
| | - Wenjuan Hao
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
25
|
Zhao X, Zhou S, Wang D, He W, Li J, Zhang S. MicroRNA-205 is downregulated in hepatocellular carcinoma and inhibits cell growth and metastasis via directly targeting vascular endothelial growth factor A. Oncol Lett 2018; 16:2207-2214. [PMID: 30008920 DOI: 10.3892/ol.2018.8933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRs) are an emerging class of non-coding, endogenous and small RNA molecules that serve important functions in tumorigenesis and development. The present study investigated the expression, functions and molecular mechanism underlying miR-205 in hepatocellular carcinoma. miR-205 was downregulated in hepatocellular carcinoma tissues and cell lines. Ectopic miR-205 expression suppressed hepatocellular carcinoma cell proliferation, migration and invasion in vitro. In addition, vascular endothelial growth factor A (VEGFA) was identified as a functional downstream target of miR-205 in hepatocellular carcinoma. Furthermore, knockdown of VEGFA revealed the same functions with miR-205 overexpression in hepatocellular carcinoma cells. These results provided evidence that miR-205 served important functions in the inhibition of hepatocellular carcinoma cells growth and metastasis via directly targeting VEGFA, which indicated that miR-205 may have therapeutic value for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xuya Zhao
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Shi Zhou
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Dazhi Wang
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Wei He
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Junxiang Li
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Shuai Zhang
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| |
Collapse
|
26
|
Lu J, Lin Y, Li F, Ye H, Zhou R, Jin Y, Li B, Xiong X, Cheng N. MiR-205 suppresses tumor growth, invasion, and epithelial-mesenchymal transition by targeting SEMA4C in hepatocellular carcinoma. FASEB J 2018; 32:fj201800113R. [PMID: 29799789 DOI: 10.1096/fj.201800113r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Growing evidence indicates that microRNAs are involved in tumorigenesis and progression of hepatocellular carcinoma (HCC). However, the functional mechanisms of miR-205 in HCC remain largely unknown. Here, we demonstrate that miR-205 expression was significantly down-regulated in HCC tissues and cell lines and was correlated with metastatic pathologic features and shorter disease-free and overall survival. Overexpression of miR-205 dramatically inhibited HCC cell proliferation, apoptosis, migration, invasion, epithelial-mesenchymal transition (EMT) in vitro, and tumor growth in vivo. We subsequently identified semaphorin 4C (SEMA4C) as a novel target of miR-205. Furthermore, high expression levels of SEMA4C were frequently found in HCC tissues and were associated with poor prognosis. Ectopic expression of SEMA4C restored the suppressive effect of overexpressed miR-205 on migration, invasion, and EMT. Taken together, our findings provide new insight into the critical role of miR-205 in regulating tumor growth, invasion, and EMT of HCC, suggesting miR-205 may serve as a promising therapeutic target and novel prognostic indicator for patients with HCC.-Lu, J., Lin, Y., Li, F., Ye, H., Zhou, R., Jin, Y., Li, B., Xiong, X., Cheng, N. MiR-205 suppresses tumor growth, invasion and epithelial-mesenchymal transition by targeting SEMA4C in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jiong Lu
- Department of Bile Duct Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yixin Lin
- Department of Bile Duct Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fuyu Li
- Department of Bile Duct Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Ye
- Department of Bile Duct Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Rongxing Zhou
- Department of Bile Duct Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yanwen Jin
- Department of Bile Duct Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Li
- Department of Bile Duct Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xianze Xiong
- Department of Bile Duct Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Nansheng Cheng
- Department of Bile Duct Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Torres A, Kozak J, Korolczuk A, Rycak D, Wdowiak P, Maciejewski R, Torres K. Locked nucleic acid-inhibitor of miR-205 decreases endometrial cancer cells proliferation in vitro and in vivo. Oncotarget 2018; 7:73651-73663. [PMID: 27655663 PMCID: PMC5342005 DOI: 10.18632/oncotarget.12043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/27/2016] [Indexed: 12/18/2022] Open
Abstract
Pathogenesis of endometrial cancer has been connected with alterations of microRNA expression and in particular miR-205 up–regulation was consistently reported in this carcinoma. Presented study aimed to investigate if inhibition of miR-205 expression using LNA-modified-nucleotide would attenuate endometrial cancer cells proliferation in vitro and in vivo. In the course of the study we found that the proliferation of endometrial cancer cells (HEC-1-B, RL-95, KLE, Ishikawa) transfected with LNA-miR-205-inhibitor and evaluated using real time cell monitoring as well as standard cell proliferation assay, was significantly decreased. Next, LNA-miR-205-inhibitor was used to assess the in vivo effects of miR-205 inhibition of endometrial cancer growth. Cby.Cg-Foxn1<nu>/cmdb mice bearing endometrial cancer xenografts were intraperitoneally injected with nine dosages of 25mg/kg of miR-205-LNA-inhibitor or scramble control or phosphatase buffered saline and were observed for 32 days. We found that systemic administration of miR-205-LNA-inhibitor was technically possible, and exerted inhibitory effect on endometrial cancer xenograft growth in vivo with only mild toxic effects in treated animals. In conclusion our results suggest that systemic delivery of miR-205-LNA-inhibitor is feasible, devoid of significant toxicity, and could be a promising treatment strategy for endometrial cancer. Therefore it warrants further studies in other animal models.
Collapse
Affiliation(s)
- Anna Torres
- Laboratory of Biostructure, Chair and Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Joanna Kozak
- Laboratory of Biostructure, Chair and Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Agnieszka Korolczuk
- Department of Clinical Pathomorphology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Dominika Rycak
- Laboratory of Biostructure, Chair and Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Paulina Wdowiak
- Laboratory of Biostructure, Chair and Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Ryszard Maciejewski
- Chair and Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Kamil Torres
- Chair and Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| |
Collapse
|
28
|
Wang Y, Xu M, Yang Q. A six-microRNA signature predicts survival of patients with uterine corpus endometrial carcinoma. Curr Probl Cancer 2018; 43:167-176. [PMID: 29567372 DOI: 10.1016/j.currproblcancer.2018.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/27/2022]
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common female gynecological malignant tumors that threaten women health seriously. MicroRNAs (miRNAs) has been proved to play critical roles in tumor pathogenesis and malignant progression. In this study, we aimed to explore a novel signature of microRNA expression for predicting the overall survival (OS) of patients with UCEC. The genome-wide miRNA expression profiles and relevant clinical characteristics of 348 patients with UCEC were downloaded from the Cancer Genome Atlas (TCGA) data portal and analyzed comprehensively. A total of 144 miRNAs were confirmed to be expressed differentially in tumor tissues. Among them, 6 miRNAs (hsa-mir-15a.MIMAT0000068, hsa-mir-142.MIMAT0000433, hsa-mir-142.MIMAT0000434, hsa-mir-3170.MIMAT0015045, hsa-mir-1976.MIMAT0009451, and hsa-mir-146a.MIMAT0000449) were validated to be significantly correlated with the OS of patients with UCEC. The risk indictor established by the 6-microRNA signature was proved be an independent prognostic factor (Hazard ratio = 0.391; 95% CI: 0.195-0.783; P = 0.008). In conclusion, we identified miRNAs that were correlated with the occurrence and progression of UCEC and established a 6-microRNA expression signature as a predictor for the OS of patients with UCEC.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Mu Xu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China.
| |
Collapse
|
29
|
Srivastava SK, Ahmad A, Zubair H, Miree O, Singh S, Rocconi RP, Scalici J, Singh AP. MicroRNAs in gynecological cancers: Small molecules with big implications. Cancer Lett 2017; 407:123-138. [PMID: 28549791 PMCID: PMC5601032 DOI: 10.1016/j.canlet.2017.05.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Gynecological cancers (GCs) are often diagnosed at advanced stages, limiting the efficacy of available therapeutic options. Thus, there remains an urgent and unmet need for innovative research for the efficient clinical management of GC patients. Research over past several years has revealed the enormous promise of miRNAs. These small non-coding RNAs can aid in the diagnosis, prognosis and therapy of all major GCs, viz., ovarian cancers, cervical cancers and endometrial cancers. Mechanistic details of the miRNAs-mediated regulation of multiple biological functions are under constant investigation, and a number of miRNAs are now believed to influence growth, proliferation, invasion, metastasis, chemoresistance and the relapse of different GCs. Modulation of tumor microenvironment by miRNAs can possibly explain some of their reported biological effects. miRNA signatures have been proposed as biomarkers for the early detection of GCs, even the various subtypes of individual GCs. miRNA signatures are also being pursued as predictors of response to therapies. This review catalogs the knowledge gained from collective studies, so as to assess the progress made so far. It is time to ponder over the knowledge gained, so that more meaningful pre-clinical and translational studies can be designed to better realize the potential that miRNAs have to offer.
Collapse
Affiliation(s)
- Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Orlandric Miree
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Rodney P Rocconi
- Division of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Jennifer Scalici
- Division of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
30
|
Yang X, Yang L, Ma Y, Zhao X, Wang H. MicroRNA-205 Mediates Proteinase-Activated Receptor 2 (PAR 2) -Promoted Cancer Cell Migration. Cancer Invest 2017; 35:601-609. [PMID: 28990808 DOI: 10.1080/07357907.2017.1378671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of proteinase-activated receptor 2 (PAR2) promotes cell migration in cancers, but the exact mechanism underlying this process remains largely unknown. Here we report that activation of PAR2 reduced miR-205 expression, whereas inhibition of miR-205 promoted cell migration in cancer cells. Overexpression of miR-205 blocked PAR2-mediated stimulation of cell migration. BMPR1B was identified as a downstream target gene of miR-205. In colorectal carcinoma specimens from patients, the level of PAR2 was negatively correlated with that of miR-205, but it was positively associated with BMPR1B expression. Taken together, our findings indicate that PAR2 signaling promotes cancer cell migration through miR-205/BMPR1B pathway in human colorectal carcinoma.
Collapse
Affiliation(s)
- Xu Yang
- a State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing , China
| | - Lan Yang
- a State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing , China
| | - Yiming Ma
- a State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing , China
| | - Xinhua Zhao
- a State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing , China
| | - Hongying Wang
- a State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing , China
| |
Collapse
|
31
|
Pang H, Yue X. MiR-205 serves as a prognostic factor and suppresses proliferation and invasion by targeting insulin-like growth factor receptor 1 in human cervical cancer. Tumour Biol 2017. [PMID: 28651495 DOI: 10.1177/1010428317701308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs are a kind of small and non-coding RNAs, which have been demonstrated to play an important role in the progression of human cervical cancer. Here, we found that the expression of miR-205 was low in cervical cancer cell lines and tissues, compared with matched non-tumor tissues and human endocervical epithelial cells. Also, miR-205 was inversely correlated with histological differentiation, metastasis, International Federation of Gynecology and Obstetrics stage, and the expression of insulin-like growth factor receptor 1 messenger RNA and protein. Besides, miR-205 or insulin-like growth factor receptor 1 expression is an independent prognostic factor. Mechanically, ectopic expression of miR-205 decreased proliferation, colony formation, and some proliferation/apoptosis-related proteins in cervical cancer cells. Ectopic expression of miR-205 caused G1 arrest. Luciferase reporter assays confirmed that binding of miR-205 to the 3' untranslated region of insulin-like growth factor receptor 1 may potentially decrease the expression of insulin-like growth factor receptor 1. Notably, insulin-like growth factor receptor 1 overexpression attenuated the inhibitory effects of miR-205 on cell proliferation and invasion, while small interfering RNA-insulin-like growth factor receptor 1 enhanced the inhibitory effects of miR-205 on cell proliferation and invasion. In conclusion, our findings suggested that miR-205 serves as a prognostic factor and suppresses proliferation and invasion by targeting insulin-like growth factor receptor 1 in human cervical cancer. Thus, miR-205/insulin-like growth factor receptor 1 pathway may be of great benefit to cervical cancer patients.
Collapse
Affiliation(s)
- Hui Pang
- Department of Gynecology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Xiuying Yue
- Department of Gynecology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| |
Collapse
|
32
|
Flores CP, García-Vázquez R, Rincón DG, Ruiz-García E, De La Vega HA, Marchat LA, Salinas Vera YM, López-Camarillo C. MicroRNAs driving invasion and metastasis in ovarian cancer: Opportunities for translational medicine (Review). Int J Oncol 2017; 50:1461-1476. [DOI: 10.3892/ijo.2017.3948] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/15/2017] [Indexed: 11/06/2022] Open
|
33
|
Jin C, Liang R. miR-205 promotes epithelial-mesenchymal transition by targeting AKT signaling in endometrial cancer cells. J Obstet Gynaecol Res 2016; 41:1653-60. [PMID: 26446417 DOI: 10.1111/jog.12756] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/10/2015] [Accepted: 04/08/2015] [Indexed: 01/11/2023]
Abstract
AIM AKT signaling regulates multiple biological processes and expresses in various cancers. miR-205 plays complex roles in tumorigenesis and tumor progression by acting either as a tumor suppressor or an oncogene depending on the tumor type. Here we describe the molecular mechanism of miR-205 regulating epithelial-mesenchymal transition by activation of AKT signaling in endometrial cancer cells HEC-50B and HEC-1-A. MATERIAL AND METHODS The proliferation of HEC-50B cells transfected with miR-205 mimic was assessed by WST-1 assay. The migration and invasion were evaluated by BD transwell migration and matrigel invasion assays. The EMT markers were detected by Western blot. RESULTS We found that miR-205 increased the proliferation in HEC-50B cells. The migration and invasion of HEC-50B cells and HEC-1-A cells were enhanced by miR-205. When HEC-50B cells and HEC-1-A cells were treated with anti-miR-205 inhibitor, the migration and invasion were decreased as compared with the negative control. The overexpression of miR-205 inhibited E-cadherin expression and promoted Snail expression by activation of AKT and downregulation of glycogen synthase kinase 3β. However, after the HEC-50B cells and HEC-1-A cells were treated with anti-miR-205 inhibitor, E-cadherin expression was increased and Snail protein level was decreased by inhibition of AKT expression. CONCLUSION Our data strongly suggest that miR-205 plays an important role in endometrial cancer migration and invasion by targeting the AKT pathway. Our data highlight miR-205 as a potential molecular target for endometrial cancer treatment.
Collapse
Affiliation(s)
- Chenyu Jin
- School of Medicine International Healthcare Center, Second Affiliated Hospital Zhejiang University, HangZhou, China
| | - Ruojia Liang
- Department of Gynaecology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, HangZhou, China
| |
Collapse
|
34
|
Wilczynski M, Danielska J, Dzieniecka M, Szymanska B, Wojciechowski M, Malinowski A. Prognostic and Clinical Significance of miRNA-205 in Endometrioid Endometrial Cancer. PLoS One 2016; 11:e0164687. [PMID: 27737015 PMCID: PMC5063284 DOI: 10.1371/journal.pone.0164687] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/29/2016] [Indexed: 01/09/2023] Open
Abstract
Endometrial cancer is one of the most common malignancies of the reproductive female tract, with endometrioid endometrial cancer being the most frequent type. Despite the relatively favourable prognosis in cases of endometrial cancer, there is a necessity to evaluate clinical and prognostic utility of new molecular markers. MiRNAs are small, non-coding RNA molecules that take part in RNA silencing and post-transcriptional regulation of gene expression. Altered expression of miRNAs may be associated with cancer initiation, progression and metastatic capabilities. MiRNA-205 seems to be one of the key regulators of gene expression in endometrial cancer. In this study, we investigated clinical and prognostic role of miRNA-205 in endometrioid endometrial cancer. After total RNA extraction from 100 archival formalin-fixed paraffin-embedded tissues, real-time quantitative RT-PCR was used to define miRNA-205 expression levels. The aim of the study was to evaluate miRNA-205 expression levels in regard to patients' clinical and histopathological features, such as: survival rate, recurrence rate, staging, myometrial invasion, grading and lymph nodes involvement. Higher levels of miRNA-205 expression were observed in tumours with less than half of myometrial invasion and non-advanced cancers. Kaplan-Maier analysis revealed that higher levels of miRNA-205 were associated with better overall survival (p = 0,034). These results indicate potential clinical utility of miRNA-205 as a prognostic marker.
Collapse
Affiliation(s)
- Milosz Wilczynski
- Department of Operative Gynecology, Endoscopy and Gynecologic Oncology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | | | - Monika Dzieniecka
- Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Bozena Szymanska
- The Central Laboratory of Medical University in Lodz, Lodz, Poland
| | - Michal Wojciechowski
- Department of Operative Gynecology, Endoscopy and Gynecologic Oncology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Andrzej Malinowski
- Department of Surgical and Endoscopic Gynecology, Medical University in Lodz, Lodz, Poland
| |
Collapse
|
35
|
Xie W, Qin W, Kang Y, Zhou Z, Qin A. MicroRNA-340 Inhibits Tumor Cell Proliferation and Induces Apoptosis in Endometrial Carcinoma Cell Line RL 95-2. Med Sci Monit 2016; 22:1540-6. [PMID: 27153225 PMCID: PMC4917329 DOI: 10.12659/msm.898121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The purpose of our study was to investigate the functional role of microRNA-340 (miR-340) in endometrial carcinoma (EC). MATERIAL AND METHODS Human EC cell line RL 95-2 was transfected with miR-340 mimics, inhibitors, or controls. After 48 h of transfection, the cell viability was determined by 3-(4, 5-dimethyl-2- thiazolyl)-2, 5-diphenyl -2-H-tetrazolium bromide (MTT) assay. The BrdU assay and apoptosis assay were performed to determine the effects of miR-340 mimics or inhibitors on cell proliferation and apoptosis, respectively. The underlying mechanisms involved in cell proliferation and apoptosis were explored by measuring the protein levels of cell cycle regulators (p27 kinase inhibition protein (KIP) 1 and p21) and apoptosis-related factors (B-cell lymphoma-2 (Bcl-2), Bax, pro-Caspase 3, and active-Caspase-3). RESULTS Overexpression of miR-340 significantly inhibited the cell viability (P<0.05) and cell proliferation (P<0.01) of RL 95-2 cells compared with the control group, but increased the apoptosis (P<0.01). However, suppression of miR-340 had opposite results. Moreover, the protein levels of p27 KIP1, Bax, pro-Caspase 3, and active-Caspase-3 were significantly increased by overexpression of miR-340 but were statistically decreased by suppression of miR-340. Contrary results were found in the protein levels of Bcl-2. However, no significant differences were found in p21 expression. CONCLUSIONS MiRNA-340 acts as an anti-oncogene in EC cell line RL 95-2 by inhibition of tumor cell proliferation and induction of apoptosis.
Collapse
Affiliation(s)
- Wei Xie
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Wen Qin
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yalin Kang
- , Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ziyan Zhou
- , Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Aiping Qin
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
36
|
Makker A, Goel MM. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update. Endocr Relat Cancer 2016; 23:R85-R111. [PMID: 26538531 DOI: 10.1530/erc-15-0218] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
Endometrioid endometrial carcinoma (EEC), also known as type 1 endometrial cancer (EC), accounts for over 70-80% of all cases that are usually associated with estrogen stimulation and often develops in a background of atypical endometrial hyperplasia. The increased incidence of EC is mainly confined to this type of cancer. Most EEC patients present at an early stage and generally have a favorable prognosis; however, up to 30% of EEC present as high risk tumors, which have invaded deep into the myometrium at diagnosis and progressively lead to local or extra pelvic metastasis. The poor survival of advanced EC is related to the lack of effective therapies, which can be attributed to poor understanding of the molecular mechanisms underlying the progression of disease toward invasion and metastasis. Multiple lines of evidence illustrate that epithelial-mesenchymal transition (EMT)-like events are central to tumor progression and malignant transformation, endowing the incipient cancer cell with invasive and metastatic properties. The aim of this review is to summarize the current knowledge on molecular events associated with EMT in progression, invasion, and metastasis of EEC. Further, the role of epigenetic modifications and microRNA regulation, tumor microenvironment, and microcystic elongated and fragmented glands like invasion pattern have been discussed. We believe this article may perhaps stimulate further research in this field that may aid in identifying high risk patients within this clinically challenging patient group and also lead to the recognition of novel targets for the prevention of metastasis - the most fatal consequence of endometrial carcinogenesis.
Collapse
Affiliation(s)
- Annu Makker
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Madhu Mati Goel
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
37
|
Montes-Grajales D, Bernardes GJL, Olivero-Verbel J. Urban Endocrine Disruptors Targeting Breast Cancer Proteins. Chem Res Toxicol 2016; 29:150-61. [PMID: 26700111 DOI: 10.1021/acs.chemrestox.5b00342] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Humans are exposed to a huge amount of environmental pollutants called endocrine disrupting chemicals (EDCs). These molecules interfere with the homeostasis of the body, usually through mimicking natural hormones leading to activation or blocking of their receptors. Many of these compounds have been associated with a broad range of diseases including the development or increased susceptibility to breast cancer, the most prevalent cancer in women worldwide, according to the World Health Organization. Thus, this article presents a virtual high-throughput screening (vHTS) to evaluate the affinity of proteins related to breast cancer, such as ESR1, ERBB2, PGR, BCRA1, and SHBG, among others, with EDCs from urban sources. A blind docking strategy was employed to screen each protein-ligand pair in triplicate in AutoDock Vina 2.0, using the computed binding affinities as ranking criteria. The three-dimensional structures were previously obtained from EDCs DataBank and Protein Data Bank, prepared and optimized by SYBYL X-2.0. Some of the chemicals that exhibited the best affinity scores for breast cancer proteins in each category were 1,3,7,8-tetrachlorodibenzo-p-dioxin, bisphenol A derivatives, perfluorooctanesulfonic acid, and benzo(a)pyrene, for catalase, several proteins, sex hormone-binding globulin, and cytochrome P450 1A2, respectively. An experimental validation of this approach was performed with a complex that gave a moderate binding affinity in silico, the sex hormone binding globulin (SHBG), and bisphenol A (BPA) complex. The protein was obtained using DNA recombinant technology and the physical interaction with BPA assessed through spectroscopic techniques. BPA binds on the recombinant SHBG, and this results in an increase of its α helix content. In short, this work shows the potential of several EDCs to bind breast cancer associated proteins as a tool to prioritize compounds to perform in vitro analysis to benefit the regulation or exposure prevention by the general population.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena , Cartagena 130015, Colombia.,Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena , Cartagena 130015, Colombia
| |
Collapse
|
38
|
Hezova R, Kovarikova A, Srovnal J, Zemanova M, Harustiak T, Ehrmann J, Hajduch M, Sachlova M, Svoboda M, Slaby O. MiR-205 functions as a tumor suppressor in adenocarcinoma and an oncogene in squamous cell carcinoma of esophagus. Tumour Biol 2015; 37:8007-18. [DOI: 10.1007/s13277-015-4656-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
|
39
|
MiR-205 promotes motility of ovarian cancer cells via targeting ZEB1. Gene 2015; 574:330-6. [DOI: 10.1016/j.gene.2015.08.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023]
|
40
|
Zhong G, Xiong X. miR-205 promotes proliferation and invasion of laryngeal squamous cell carcinoma by suppressing CDK2AP1 expression. Biol Res 2015; 48:60. [PMID: 26515287 PMCID: PMC4625464 DOI: 10.1186/s40659-015-0052-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022] Open
Abstract
Background The aberrant expression of microRNAs (miRNAs) has been found in various types of cancer. miR-205 was reported to be upregulated in laryngeal squamous cell carcinoma (LSCC) tissues, however, the mechanisms by which miR-205 functions as a regulator of LSCC are largely unknown. Results In this study, Real-time qPCR and Western blot assay showed that expression of miR-205 was upregulated and expression of cyclin-dependent kinase 2-associated protein 1 (CDK2AP1) was downregulated in LSCC tissues. The expression levels of miR-205 were negatively related to those of CDK2AP1 in LSCC tissues and cell lines. Moreover, we found that miR-205 was the upstream regulator of CDK2AP1 and could suppress the CDK2AP1 expression in LSCC cells. 3-(4,5-dimethylthiazal-2-yl)-2,5-diphenyl-tetrazolium bromide assays and transwell invasion assay were performed to test the proliferation and invasion of LSCC cells. Gelatin zymography was used to detect the activity of MMP2 and MMP9. CDK2AP1, c-Myc and CyclinD1 expression in cells was assessed with Western blotting. We found that miR-205 was the upstream regulator of CDK2AP1 and could suppress the expression of CDK2AP1 in LSCC cells. In addition, miR-205 significantly induced cell proliferation and invasion by suppressing CDK2AP1 expression. Consistent with miR-205 inhibitors, overexpressed CDK2AP1 suppressed the activity of MMP2 and MMP9 and c-Myc and CyclinD1 expression in LSCC cells. Conclusion These findings help us to better elucidate the molecular mechanisms of LSCC progression and provide a new theoretical basis to further investigate miR-205 as a potential biomarker and a promising approach for LSCC treatment.
Collapse
Affiliation(s)
- Gang Zhong
- Department of Hematology, Wuhan Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan , China.
| | - Xingao Xiong
- Department of Otolaryngology, Wuhan Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, China.
| |
Collapse
|
41
|
NIE GUOHUI, DUAN HONGFANG, LI XIAOQING, YU ZHENDONG, LUO LIANG, LU RUIJING, JI ZILIANG, ZHANG WEI. MicroRNA‑205 promotes the tumorigenesis of nasopharyngeal carcinoma through targeting tumor protein p53-inducible nuclear protein 1. Mol Med Rep 2015; 12:5715-22. [PMID: 26252115 PMCID: PMC4581759 DOI: 10.3892/mmr.2015.4181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 07/07/2015] [Indexed: 02/05/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common type of cancer in southern China, miRNAs have been shown to be involved in the tumorigenesis of multiple cancer types. The present study aimed to explore the potential role of miR‑205 in NPC. Reverse transcription quantitative polymerase chain reaction was used to determine the expression levels of miR‑205 in 20 fresh NPC specimens and 20 normal nasopharyngeal tissues. The function of miR‑205 in the proliferation, migration, invasion and apoptosis of NPC‑derived cells was detected by MTT assay, colony formation assay, wound healing assay, Transwell assay and flow cytometry. Furthermore, a target gene of miR‑205 was identified using the luciferase reporter assay. The expression of miR‑205 was increased in NPC tissues compared with that in normal tissues. Overexpression of miR‑205 was found to promote the proliferation, migration and invasion of NPC‑derived cells, while apoptosis was suppressed. Tumor protein p53-inducible nuclear protein 1 was identified as a target gene of miR‑205. Overall, the present study demonstrated that miR‑205 may function as an oncogene in NPC tumorigenesis.
Collapse
Affiliation(s)
- GUOHUI NIE
- Department of Otolaryngology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Correspondence to: Dr Guohui Nie, Department of Otolaryngology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| | - HONGFANG DUAN
- Department of Otolaryngology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - XIAOQING LI
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - ZHENDONG YU
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - LIANG LUO
- Department of Otolaryngology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - RUIJING LU
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - ZILIANG JI
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - WEI ZHANG
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, P.R. China
- Dr Wei Zhang, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| |
Collapse
|
42
|
Nurul-Syakima AM, Learn-Han L, Yoke-Kqueen C. miR-205 in situ expression and localization in head and neck tumors - a tissue array study. Asian Pac J Cancer Prev 2015; 15:9071-5. [PMID: 25422181 DOI: 10.7314/apjcp.2014.15.21.9071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND microRNAs are small non-coding RNA that control gene expression by mRNA degradation or translational inhibition. These molecules are known to play essential roles in many biological and physiological processes. miR-205 may be differentially expressed in head and neck cancers; however, there are conflicting data and localization of expression has yet to be determined. MATERIALS AND METHODS miR-205 expression was investigated in 48 cases of inflammatory, benign and malignant tumor tissue array of the neck, oronasopharynx, larynx and salivary glands by Locked Nucleic Acid in situ hybridization (LNA-ISH) technology. RESULTS miR-205 expression was significantly differentially expressed across all of the inflammatory, benign and malignant tumor tissues of the neck. A significant increase in miR-205 staining intensity (p<0.05) was observed from inflammation to benign and malignant tumors in head and neck tissue array, suggesting that miR-205 could be a biomarker to differentiate between cancer and non-cancer tissues. CONCLUSIONS LNA-ISH revealed that miR-205 exhibited significant differential cytoplasmic and nuclear staining among inflammation, benign and malignant tumors of head and neck. miR-205 was not only exclusively expressed in squamous epithelial malignancy. This study offers information and a basis for a comprehensive study of the role of miR-205 that may be useful as a biomarker and/or therapeutic target in head and neck tumors.
Collapse
Affiliation(s)
- Ab Mutalib Nurul-Syakima
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia E-mail :
| | | | | |
Collapse
|
43
|
Zhuang J, Gao R, Wu H, Wu X, Pan F. Signal transducer and activator of transcription 3 regulates CCAAT-enhancer-binding homologous protein expression in osteoblasts through upregulation of microRNA-205. Exp Ther Med 2015; 10:295-299. [PMID: 26170952 DOI: 10.3892/etm.2015.2464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 12/18/2014] [Indexed: 12/11/2022] Open
Abstract
The transcription factor, CCAAT-enhancer-binding protein homologous protein (CHOP), is induced by endoplasmic reticulum-stress and mediates programmed cell death. In osteoblasts, CHOP overexpression increases the rate of apoptosis, leading to osteoblastic dysfunction. However, the regulatory mechanisms underlying CHOP expression remain unclear. In the present study, western blot analysis was used to demonstrate that the activation of signal transducer and activator of transcription 3 (STAT3) inhibited the levels of the CHOP protein, whereas small interfering RNA-mediated the knockdown of STAT3 upregulated CHOP expression. Furthermore, STAT3 was shown to increase the expression level of microRNA (miR)-205. A luciferase reporter assay revealed that miR-205 was able to directly target the 3'-untranslated region of the CHOP gene to inhibit its protein expression. The miR-205 antisense largely abolished the inhibitory effect of STAT3 activation on the levels of CHOP protein. Therefore, the results demonstrated a previously unknown STAT3/miR-205/CHOP signaling pathway in osteoblasts, which may aid the understanding of the pathogenic mechanisms of associated diseases, including osteoporosis.
Collapse
Affiliation(s)
- Jian Zhuang
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Rufeng Gao
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Haihui Wu
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Xiao Wu
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Fugen Pan
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| |
Collapse
|
44
|
Zhu L, Liu R, Zhang W, Qian S, Wang JH. MicroRNA-205 regulates ubiquitin specific peptidase 7 protein expression in hepatocellular carcinoma cells. Mol Med Rep 2015; 12:4652-4656. [PMID: 26129839 DOI: 10.3892/mmr.2015.3998] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 01/09/2015] [Indexed: 11/05/2022] Open
Abstract
Ubiquitin specific peptidase 7 (UPS7) has a critical role in the development and progression of cancer, at least in part, through its regulation of p53 protein stability. However, its molecular determinants remain to be elucidated. In the present study, it was identified that microRNA‑205 (miR‑205) may negatively regulate UPS7 protein levels through targeting its 3'‑untranslated region in hepatocellular carcinoma (HCC) cells. As a result, miR‑205 mimics inhibited USP7 protein levels while antisense miR‑205 enhanced USP7 protein levels, thereby modulating the p53 signaling pathway and cell proliferation levels. In conclusion, the data presents a novel molecule for the dysregulated expression of USP7 in HCC, which may assist in elucidating mechanisms underlying the tumorigenesis of HCC.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Rong Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Sheng Qian
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian-Hua Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
45
|
Sianou A, Galyfos G, Moragianni D, Andromidas P, Kaparos G, Baka S, Kouskouni E. The role of microRNAs in the pathogenesis of endometrial cancer: a systematic review. Arch Gynecol Obstet 2015; 292:271-82. [PMID: 25697925 DOI: 10.1007/s00404-015-3660-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Epigenetics seem to play a primary role in the current research on the pathogenesis of different types of endometrial cancer. Data so far indicate that microRNAs regulate different pathways that could lead to carcinogenesis when not functioning properly. The aim of this review is to summarize current knowledge on microRNAs that have been associated with endometrial cancer development. MATERIAL AND METHODS From July 2014 to August 2014, we conducted a comprehensive research utilizing major online search engines (Pubmed, Crossref, Google Scholar). The main keywords used in our search were endometrial cancer/carcinoma; microRNA; epigenetics; novel biomarkers; pathogenesis. RESULTS Overall, we identified 155 studies, although only 77 were eligible for this review. Different miRNAs were identified to contribute either promoting the carcinogenesis in the endometrium or inhibiting different steps of endometrial cancer development. Tumour growth, cell proliferation, apoptosis and invasion metastasis have been identified as the main processes where miRNAs seem to be implicated. CONCLUSIONS microRNAs are effective regulators of gene expression that has a significant role in the pathogenesis of endometrial cancer. Research concerning possible therapeutic implications has been promising, although there is still a significant distance to be covered between research observations and clinical results. Extensive preclinical and translational research is still required to improve the efficacy and minimize unwanted effects of miRNAs-based therapy.
Collapse
Affiliation(s)
- Argiri Sianou
- Department of Microbiology, Areteion Hospital, University of Athens Medical School, Athens, Greece,
| | | | | | | | | | | | | |
Collapse
|
46
|
Li J, Li L, Li Z, Gong G, Chen P, Liu H, Wang J, Liu Y, Wu X. The role of miR-205 in the VEGF-mediated promotion of human ovarian cancer cell invasion. Gynecol Oncol 2015; 137:125-33. [PMID: 25597268 DOI: 10.1016/j.ygyno.2015.01.531] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Our objective was to investigate a miRNA pathway that acts downstream of VEGF-induced invasion of ovarian cancer cells. METHOD We used two paired high and low metastatic serous ovarian cancer cells to demonstrate the role of miR-205 in VEGF-induced invasion of ovarian cancer cells and to investigate the gene targets of miR-205. RESULTS Our previous comparative proteomics studies showed that VEGF decreased the expression of Ezrin and Lamin A/C, and this result was validated in the present study using qPCR and Western blotting. Then we found that VEGF enhanced the invasiveness of and inhibited apoptosis in ovarian cancer cells as assessed by transwell invasion assays and Annexin V-FITC immunostaining, respectively. VEGFR was also expressed in ovarian cancer cells, as assessed by immunocytochemical staining. Furthermore, using the dual-luciferase report assay system, we demonstrated that miR-205 targeted Ezrin and Lamin A/C. MiR-205 was up-regulated in ovarian cancer cells exposed to VEGF, as determined by miRNA microarray analysis and verified by qPCR. MiR-205 promoted the invasion and proliferation of ovarian cancer cells. CONCLUSION Our data reveal a new potential pathway in which VEGF promotes the invasion of ovarian cancer cells, partially via the down-regulation of Ezrin and Lamin A/C caused by increased expression of miR-205.
Collapse
Affiliation(s)
- Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Long Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Zexia Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Microarray Core Facility, University of Texas Southwestern Medical Center, 75070, USA
| | - Guanghui Gong
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Puxiang Chen
- Department of Gynecology and Obstetrics, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hailing Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Ying Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Xiaoying Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha 410013, China.
| |
Collapse
|
47
|
Role of microRNAs in cancers of the female reproductive tract: insights from recent clinical and experimental discovery studies. Clin Sci (Lond) 2014; 128:153-80. [PMID: 25294164 DOI: 10.1042/cs20140087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
microRNAs (miRNAs) are small RNA molecules that represent the top of the pyramid of many tumorigenesis cascade pathways as they have the ability to affect multiple, intricate, and still undiscovered downstream targets. Understanding how miRNA molecules serve as master regulators in these important networks involved in cancer initiation and progression open up significant innovative areas for therapy and diagnosis that have been sadly lacking for deadly female reproductive tract cancers. This review will highlight the recent advances in the field of miRNAs in epithelial ovarian cancer, endometrioid endometrial cancer and squamous-cell cervical carcinoma focusing on studies associated with actual clinical information in humans. Importantly, recent miRNA profiling studies have included well-characterized clinical specimens of female reproductive tract cancers, allowing for studies correlating miRNA expression with clinical outcomes. This review will summarize the current thoughts on the role of miRNA processing in unique miRNA species present in these cancers. In addition, this review will focus on current data regarding miRNA molecules as unique biomarkers associated with clinically significant outcomes such as overall survival and chemotherapy resistance. We will also discuss why specific miRNA molecules are not recapitulated across multiple studies of the same cancer type. Although the mechanistic contributions of miRNA molecules to these clinical phenomena have been confirmed using in vitro and pre-clinical mouse model systems, these studies are truly only the beginning of our understanding of the roles miRNAs play in cancers of the female reproductive tract. This review will also highlight useful areas for future research regarding miRNAs as therapeutic targets in cancers of the female reproductive tract.
Collapse
|
48
|
Orang AV, Safaralizadeh R, Hosseinpour Feizi MA. Insights into the diverse roles of miR-205 in human cancers. Asian Pac J Cancer Prev 2014; 15:577-83. [PMID: 24568460 DOI: 10.7314/apjcp.2014.15.2.577] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The recent discovery of tiny microRNAs (miRNAs) has brought about awareness of a new class of regulators of diverse pathways in many physiological and pathological processes, such as tumorigenesis. They modulate gene expression by targeting plethora of mRNAs, mostly reducing the protein yield of a targeted mRNA. With accumulation of information on characteristics of miR-205, complex and in some cases converse roles of miR-205 in tumor initiation, progression and metastasis are emerging. miR-205 acts either as an oncogene via facilitating tumor initiation and proliferation, or in some cases as a tumor suppressor through inhibiting proliferation and invasion. The aim of this review is to discuss miR-205 roles in different types of cancers. Given the critical effects of deregulated miR-205 on processes involved in tumorigenesis, they hold potential as novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ayla Valinezhad Orang
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Islamic Republic of Iran E-mail :
| | | | | |
Collapse
|
49
|
MiR-205 inhibits cell apoptosis by targeting phosphatase and tensin homolog deleted on chromosome ten in endometrial cancer Ishikawa cells. BMC Cancer 2014; 14:440. [PMID: 24929707 PMCID: PMC4073515 DOI: 10.1186/1471-2407-14-440] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are frequently dysregulated in human cancers and can act as either potent oncogenes or tumor suppressor genes. In the present study, we intend to prove that the gene PTEN (phosphatase and tensin homolog deleted on chromosome ten) is a target gene of miR-205 and to investigate the suppressive effects on PTEN transcriptional activity by enhancing miR-205 expression in endometrial cancer Ishikawa cells. METHODS Using Ishikawa cells as model systems, we up-regulated miR-205 expression by transient transfection with miR-205 mimics. A luciferase reporter assay, qRT-PCR and western blotting assays were used to verify whether PTEN is a direct target of miR-205. Meanwhile, the modulatory role of miR-205 in the AKT (protein kinase B) pathway was evaluated by determining the AKT phosphorylation. As a biological counterpart, we investigated cell apoptosis using flow cytometry. RESULTS Our data indicate that miR-205 down-regulates the expression of PTEN through direct interaction with the putative binding site in the 3'-untranslated region (3'-UTR) of PTEN. Moreover, we documented the functional interactions of miR-205 and PTEN, which have a downstream effect on the regulation of the AKT pathway, explaining, at least in part, the inhibitory effects on Ishikawa cell apoptosis of enhancing miR-205 expression. CONCLUSIONS For the first time, we demonstrate that the expression of PTEN is directly regulated by miR-205 in endometrial cancer cells and leads the inhibition of cellular apoptosis. This relationship could be targeted for new therapeutic strategies for endometrial cancer.
Collapse
|
50
|
Tsukamoto O, Miura K, Mishima H, Abe S, Kaneuchi M, Higashijima A, Miura S, Kinoshita A, Yoshiura KI, Masuzaki H. Identification of endometrioid endometrial carcinoma-associated microRNAs in tissue and plasma. Gynecol Oncol 2014; 132:715-21. [DOI: 10.1016/j.ygyno.2014.01.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 01/18/2023]
|