1
|
Kong D, Duan J, Chen S, Wang Z, Ren J, Lu J, Chen T, Song Z, Wu D, Chang Y, Yin Z, Shen Z, Zheng H. Transplant oncology and anti-cancer immunosuppressants. Front Immunol 2025; 15:1520083. [PMID: 39840041 PMCID: PMC11747528 DOI: 10.3389/fimmu.2024.1520083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Organ transplantation is a life-saving intervention that enhances the quality of life for patients with end-stage organ failure. However, long-term immunosuppressive therapy is required to prevent allogeneic graft rejection, which inadvertently elevates the risk of post-transplant malignancies, especially for liver transplant recipients with a prior history of liver cancer. In response, the emerging field of transplant oncology integrates principles from oncology and immunology to improve outcomes for patients at high risk of tumor occurrence or recurrence following transplantation. Therefore, it is of substantial clinical significance to develop immunosuppressants that possess both immunosuppressive and anti-tumor properties. For instance, mTOR inhibitors demonstrate anti-tumor effects among antimetabolite immunosuppressive drugs, and recent studies indicate that capecitabine, an antimetabolite chemotherapeutic, may also exhibit immunosuppressive activity in the clinic for liver transplants suffering from hepatocellular carcinoma. This review systematically explores potential immunosuppressants with dual anti-tumor and immunosuppressive effects to support the management of transplant patients at elevated risk of tumor occurrence or recurrence.
Collapse
Affiliation(s)
- Dejun Kong
- Nankai University School of Medicine, Tianjin, China
| | - Jinliang Duan
- Nankai University School of Medicine, Tianjin, China
| | - Shaofeng Chen
- Nankai University School of Medicine, Tianjin, China
| | - Zhenglu Wang
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Jiashu Ren
- Tianjin First Central Clinical College, Tianjin, China
| | - Jianing Lu
- Tianjin First Central Clinical College, Tianjin, China
| | - Tao Chen
- Nankai University School of Medicine, Tianjin, China
| | - Zhuolun Song
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Di Wu
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Yuan Chang
- Nankai University School of Medicine, Tianjin, China
| | - Zhongqian Yin
- Tianjin First Central Clinical College, Tianjin, China
| | - Zhongyang Shen
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| | - Hong Zheng
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| |
Collapse
|
2
|
Liu Y, Zhao Y, Guo Q, Wang P, Li P, Du Q, Xu H, Yu Q, Zhao X, Zhang W, An S, Wu S. Sophoricoside reduces inflammation in type II collagen-induced arthritis by downregulating NLRP3 signaling. Biochem Biophys Rep 2024; 40:101867. [PMID: 39610833 PMCID: PMC11603010 DOI: 10.1016/j.bbrep.2024.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Immune responses, especially NLRP3 signaling in macrophages, play critical roles in rheumatoid arthritis (RA), an autoimmune and inflammatory disease. In this study, we aimed to identify novel therapies for RA. We focused on sophoricoside (SOP), an isoflavone glycoside isolated from Sophora japonica. We predicted the targets of SOP and performed a Gene Ontology analysis to assess its effects. The results suggested that SOP is related to inflammation regulation. We verified these findings by performing in vitro experiments with M1 macrophages differentiated from human peripheral blood monocytes (THP-1 cells). Sophoricoside administration reduced inflammatory activity and NLRP3, Caspase-1, and IL-1β protein levels in macrophages. In addition, SOP and triptolide (TP) was administered intragastrically to male SD rats (n = 40) in a collagen-induced arthritis model. We observed that SOP and TP reduced the inflammatory responses and symptoms of RA. Moreover, unlike TP, SOP showed no liver or kidney toxicity in rats. In conclusion, SOP reduces inflammation in type II collagen-induced arthritis by downregulating NLRP3 signaling and has potential for future clinical applications as an ideal therapy for RA.
Collapse
Affiliation(s)
- Youyang Liu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yunlu Zhao
- Department of Cardiovascular Diseases, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Qi Guo
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Pengfei Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Peixuan Li
- Department of Cardiovascular Diseases, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Qingqing Du
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Huazhou Xu
- Research Central, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Qingyin Yu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Xiaoyi Zhao
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, 050090, Hebei, China
| | - Weiya Zhang
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, 050090, Hebei, China
| | - Shengjun An
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, 050090, Hebei, China
| | - Shuhui Wu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, 050090, Hebei, China
| |
Collapse
|
3
|
Arjsri P, Srisawad K, Semmarath W, Umsumarng S, Rueankham L, Saiai A, Rungrojsakul M, Katekunlaphan T, Anuchapreeda S, Dejkriengkraikul P. Suppression of inflammation-induced lung cancer cells proliferation and metastasis by exiguaflavanone A and exiguaflavanone B from Sophora exigua root extract through NLRP3 inflammasome pathway inhibition. Front Pharmacol 2023; 14:1243727. [PMID: 38026959 PMCID: PMC10667455 DOI: 10.3389/fphar.2023.1243727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Objective: Non-small cell lung cancer (NSCLC) is recognized for its aggressive nature and propensity for high rates of metastasis. The NLRP3 inflammasome pathway plays a vital role in the progression of NSCLC. This study aimed to investigate the effects of S. exigua extract and its active compounds on NLRP3 regulation in NSCLC using an in vitro model. Methods: S. exigua was extracted using hexane, ethyl acetate and ethanol to obtain S. exigua hexane fraction (SE-Hex), S. exigua ethyl acetate fraction (SE-EA), and S. exigua ethanol fraction (SE-EtOH) respectively. The active compounds were identified using column chromatography and NMR analysis. A549 cells were primed with lipopolysaccharide (LPS) and adenosine triphosphate (ATP) for activated NLRP3 inflammasome. The anti-inflammatory properties were determined using ELISA assay. The anti-proliferation and anti-metastasis properties against LPS-ATP-induced A549 cells were determined by colony formation, cell cycle, wound healing, and trans-well migration and invasion assays. The inflammatory gene expressions and molecular mechanism were determined using RT-qPCR and Western blot analysis, respectively. Results: SE-EA exhibited the greatest anti-inflammation properties compared with other two fractions as evidenced by the significant inhibition of IL-1β, IL-18, and IL-6, cytokine productions from LPS-ATP-induced A549 cells in a dose-dependent manner (p < 0.05). The analysis of active compounds revealed exiguaflavanone A (EGF-A) and exiguaflavanone B (EGF-B) as the major compounds present in SE-EA. Then, SE-EA and its major compound were investigated for the anti-proliferation and anti-metastasis properties. It was found that SE-EA, EGF-A, and EGF-B could inhibit the proliferation of LPS-ATP-induced A549 cells through cell cycle arrest induction at the G0/G1 phase and reducing the expression of cell cycle regulator proteins. Furthermore, SE-EA and its major compounds dose-dependently suppressed migration and invasion of LPS-ATP-induced A549 cells. At the molecular level, SE-EA, EGF-A, and EGF-B significantly downregulated the mRNA expression of IL-1β, IL-18, IL-6, and NLRP3 in LPS-ATP-induced A549 cells. Regarding the mechanistic study, SE-EA, EGF-A, and EGF-B inhibited NLRP3 inflammasome activation through suppressing NLRP3, ASC, pro-caspase-1(p50 form), and cleaved-caspase-1(p20 form) expressions. Conclusion: Targeting NLRP3 inflammasome pathway holds promise as a therapeutic approach to counteract pro-tumorigenic inflammation and develop novel treatments for NSCLC.
Collapse
Affiliation(s)
- Punnida Arjsri
- Department of Biochemistry, Faculty Medicine, Chiang Mai University, Chiang Mai, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty Medicine, Chiang Mai University, Chiang Mai, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Warathit Semmarath
- Department of Biochemistry, Faculty Medicine, Chiang Mai University, Chiang Mai, Thailand
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sonthaya Umsumarng
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
- Division of Veterinary Preclinical Sciences, Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Lapamas Rueankham
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Aroonchai Saiai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Methee Rungrojsakul
- Department of Traditional Chinese Medicine, Faculty of Science, Chandrakasem Rajabhat University, Bangkok, Thailand
| | - Trinnakorn Katekunlaphan
- Department of Chemistry, Faculty of Science, Chandrakasem Rajabhat University, Bangkok, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty Medicine, Chiang Mai University, Chiang Mai, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Li X, He L, Ou Y, Wang S, Hu Y, Niu H. Oxymatrine inhibits melanoma development by modulating the immune microenvironment and targeting the MYC/PD-L1 pathway. Int Immunopharmacol 2023; 124:111000. [PMID: 37788594 DOI: 10.1016/j.intimp.2023.111000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
Oxymatrine, also known as ammothamnine or oxysophoridine, is a natural compound isolated from Sophora flavescens (in Chinese, Kushen), and many previous researchers have characterized its anti-inflammatory, anti-fibrotic and anti-tumor properties. However, the underlying anti-tumor immunological mechanism of oxymatrine remains elusive. In this study, we carried out experiments both in vitro and in vivo and investigated the anti-tumor effect of oxymatrine to inhibit the proliferation and migration of melanoma B16 cells, while promoting apoptosis. Oxymatrine upregulated CD4+ T, CD8+ T and NKT cells, downregulated Treg cells, promoted TNF-α secretion, and successfully modulated the immune microenvironment and ultimately suppressed melanoma development in subcutaneous tumor models established in mice. Evidence from network pharmacology and RNAseq suggested that possible targets of oxymatrine for melanoma treatment included PD-L1 and MYC. We observed oxymatrine inhibited PD-L1 and MYC expression in melanoma cells via qRT-PCR and western blotting analysis, and found MYC potentially regulated PD-L1 to mediate anti-tumor effects. These findings provide insight into the mechanism by which oxymatrine inhibits melanoma and enhances the anti-tumor immune effect. In summary, our study proposes a novel approach to suppress melanoma by targeting the MYC/PD-L1 pathway using oxymatrine, which may develop into a less toxic and more efficient anti-tumor agent for melanoma treatment.
Collapse
Affiliation(s)
- Xin Li
- School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, China; Guangzhou Key Laboratory for Germ-Free Animals and Microbiome Application, Guangzhou, China
| | - Lun He
- School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, China; Guangzhou Key Laboratory for Germ-Free Animals and Microbiome Application, Guangzhou, China
| | - Yanhua Ou
- School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, China; Guangzhou Key Laboratory for Germ-Free Animals and Microbiome Application, Guangzhou, China
| | - Shanshan Wang
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, China; Guangzhou Key Laboratory for Germ-Free Animals and Microbiome Application, Guangzhou, China; School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yaqian Hu
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, China; Guangzhou Key Laboratory for Germ-Free Animals and Microbiome Application, Guangzhou, China; School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Haitao Niu
- School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, China; Guangzhou Key Laboratory for Germ-Free Animals and Microbiome Application, Guangzhou, China; School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China.
| |
Collapse
|
5
|
Ahmed S, Keniry M, Anaya-Barbosa N, Padilla V, Javed MN, Gilkerson R, Narula AS, Ibrahim E, Lozano K. Oxymatrine Loaded Cross-Linked PVA Nanofibrous Scaffold: Design and Characterization and Anticancer Properties. Macromol Biosci 2023; 23:e2300098. [PMID: 37270675 DOI: 10.1002/mabi.202300098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Indexed: 06/05/2023]
Abstract
This study focuses on the fabrication, characterization and anticancer properties of biocompatible and biodegradable composite nanofibers consisting of poly(vinyl alcohol) (PVA), oxymatrine (OM), and citric acid (CA) using a facile and high-yield centrifugal spinning process known as Forcespinning. The effects of varying concentrations of OM and CA on fiber diameter and molecular cross-linking are investigated. The morphological and thermo-physical properties, as well as water absorption of the developed nanofiber-based mats are characterized using microscopical analysis, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. In vitro anticancer studies are conducted with HCT116 colorectal cancer cells. Results show a high yield of long fibers embedded with beads. Fiber average diameters range between 462 and 528 nm depending on OM concentration. The thermal analysis results show that the fibers are stable at room temperature. The anticancer study reveals that PVA nanofiber membrane with high concentrations of OM can suppress the proliferation of HCT116 colorectal cancer cells. The study provides a comprehensive investigation of OM embedded into nanosized PVA fibers and the prospective application of these membranes as a drug delivery system.
Collapse
Affiliation(s)
- Salahuddin Ahmed
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Megan Keniry
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Narcedalia Anaya-Barbosa
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Victoria Padilla
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Md Noushad Javed
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Robert Gilkerson
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | | | - Eman Ibrahim
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| |
Collapse
|
6
|
Yang Y, Guo Y, Luo H, Wang M, Chen F, Cui H, Chen P, Yin Z, Li L, Dai Y, Zeng J, Zhao J. Metabolomics-based discovery of XHP as a CYP3A4 inhibitor against pancreatic cancer. Front Pharmacol 2023; 14:1164827. [PMID: 37081969 PMCID: PMC10110895 DOI: 10.3389/fphar.2023.1164827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Xihuang Wan (XHW), a purgative and detoxifying agent, is commonly utilized in modern medicine as a treatment and adjuvant therapy for various malignancies, including breast cancer, liver cancer, and lung cancer. A clinical study demonstrated the potential usefulness of the combination of XHW and gemcitabine as a therapy for pancreatic cancer (PC), indicating that XHW’s broad-spectrum antitumor herbal combination could be beneficial in the treatment of PC. However, the precise therapeutic efficacy of XHW in treating pancreatic cancer remains uncertain.Aim: This study assessed the biological activity of XHW by optimizing the therapeutic concentration of XHW (Xihuang pills, XHP). We performed cell culture and developed an animal test model to determine whether XHP can inhibit pancreatic cancer (PC). We also applied the well-known widely targeted metabolomics analysis and conducted specific experiments to assess the feasibility of our method in PC therapy.Materials and Methods: We used UPLC/Q-TOF-MS to test XHP values to set up therapeutic concentrations for the in vivo test model. SW1990 pancreatic cancer cells were cultured to check the effect the anti-cancer effects of XHP by general in vitro cell analyses including CCK-8, Hoechst 33258, and flow cytometry. To develop the animal model, a solid tumor was subcutaneously formed on a mouse model of PC and assessed by immunohistochemistry and TUNEL apoptosis assay. We also applied the widely targeted metabolomics method following Western blot and RT-PCR to evaluate multiple metabolites to check the therapeutic effect of XHP in our cancer test model.Results: Quantified analysis from UPLC/Q-TOF-MS showed the presence of the following components of XHP: 11-carbonyl-β-acetyl-boswellic acid (AKBA), 11-carbonyl-β-boswellic acid (KBA), 4-methylene-2,8,8-trimethyl-2-vinyl-bicyclo [5.2.0]nonane, and (1S-endo)-2-methyl-3-methylene-2-(4-methyl-3-3-pentenyl)-bicyclo [2.2.1heptane]. The results of the cell culture experiments demonstrated that XHP suppressed the growth of SW1990 PC cells by enhancing apoptosis. The results of the animal model tests also indicated the suppression effect of XHP on tumor growth. Furthermore, the result of the widely targeted metabolomics analysis showed that the steroid hormone biosynthesis metabolic pathway was a critical factor in the anti-PC effect of XHP in the animal model. Moreover, Western blot and RT-PCR analyses revealed XHP downregulated CYP3A4 expression as an applicable targeted therapeutic approach.Conclusion: The results of this study demonstrated the potential of XHP in therapeutic applications in PC. Moreover, the widely targeted metabolomics method revealed CYP3A4 is a potential therapeutic target of XHP in PC control. These findings provide a high level of confidence that XHP significantly acts as a CYP3A4 inhibitor in anti-cancer therapeutic applications.
Collapse
Affiliation(s)
- Yuting Yang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Yanlei Guo
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Menglei Wang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Huawei Cui
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Ping Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Jin Zeng, ; Junning Zhao,
| | - Junning Zhao
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Jin Zeng, ; Junning Zhao,
| |
Collapse
|
7
|
Thang PNT, Tran VH, Vu TA, Vinh NN, Huynh DTM, Pham DT. Determination of Antioxidant, Cytotoxicity, and Acetylcholinesterase Inhibitory Activities of Alkaloids Isolated from Sophora flavescens Ait. Grown in Dak Nong, Vietnam. Pharmaceuticals (Basel) 2022; 15:1384. [PMID: 36355556 PMCID: PMC9696406 DOI: 10.3390/ph15111384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 04/16/2024] Open
Abstract
Traditional/herbal medicine has gained increasing interests recently, especially in Asian countries such as Vietnam, due to its diverse therapeutic actions. In the treasure of Vietnamese medicinal plants, one of the potential herbs is the roots of Sophora flavescens Ait. (SF, "Kho sam" in Vietnamese). However, limited information has been reported on the Vietnamese SF compositions and their respective alkaloids' anti-acetylcholinesterase action. Thus, this study investigated the extractions, isolations, identifications, and in-vitro antioxidant, cytotoxicity, and acetylcholinesterase inhibitory activities, of the SF root extracts and their purified alkaloid compounds. To this end, four pure compounds were successfully isolated, purity-tested by HPLC, and structurally identified by spectroscopic techniques of FTIR, MS, and NMR. These compounds, confirmed to be oxysophocarpine, oxymatrine, matrine, and sophoridine, were then determined their therapeutic actions. The SF extracts and the compounds did not possess significant antioxidant activity using the DPPH and MDA assays, and cytotoxicity action using the MTT assay on the MDA-MB-231 breast cancer cell line. On the other hand, the SF total extract yielded a moderate acetylcholinesterase inhibition effect, with an IC50 of 0.1077 ± 0.0023 mg/mL. In summary, the SF extract demonstrated potential effects as an anti-acetylcholinesterase agent and could be further researched to become a pharmaceutical product for diseases related to acetylcholine deficiency, such as dementia.
Collapse
Affiliation(s)
| | - Viet-Hung Tran
- Institute of Drug Quality Control Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Tran Anh Vu
- Faculty of Pharmacy, Hong Bang International University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Ngoc Vinh
- Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi My Huynh
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
| | - Duy Toan Pham
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam
| |
Collapse
|
8
|
Matrine induces autophagy in human neuroblastoma cells via blocking the AKT-mTOR pathway. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:167. [PMID: 35972593 PMCID: PMC9381455 DOI: 10.1007/s12032-022-01762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/31/2022] [Indexed: 01/18/2023]
Abstract
Neuroblastoma (NB) is one of the most common malignant solid tumors in children. Despite significant advances in the treatment strategy, the long-term survival rate of NB patients is only 50%. Developing new agents for NB patients deserves attention. Recent research indicates that matrine, a natural quinolizidine alkaloid component extracted from the traditional Chinese medicine Sophora root, is widely used for various diseases, including antitumor effects against a variety of cancers. However, the effect of matrine on NB is unknown. Herein, we found that matrine exerted antiproliferative activity in human NB cells in dose- and time-dependent manner. Matrine triggered autophagy in NB cells by blocking the AKT-mTOR signaling pathway and suppressing the phosphorylation of AKT and mTOR. 3-Methyladenine (3-MA), a PI3K inhibitor, protected against matrine-induced inhibition of cell proliferation, further supporting that the antitumor activity of matrine was at least partly autophagy-dependent. In vivo, matrine reduced tumor growth of SK-N-DZ cells in a dose-dependent manner. Matrine treatment significantly declined the phosphorylation of AKT and mTOR and enhanced the LC3 II/GAPDH ratio in NB xenografts. Altogether, our work uncovered the molecular mechanism underlying matrine-induced autophagy in NB and provided implications for matrine as a potential therapeutic agent against NB.
Collapse
|
9
|
Xue S, Ge W, Wang K, Mao T, Zhang X, Xu H, Wang Y, Yao J, Li S, Yue M, Ma J, Wang Y, Shentu D, Cui J, Wang L. Association of aging-related genes with prognosis and immune infiltration in pancreatic adenocarcinoma. Front Cell Dev Biol 2022; 10:942225. [PMID: 36003146 PMCID: PMC9393218 DOI: 10.3389/fcell.2022.942225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the deadliest malignancies. Aging is described as the degeneration of physiological function, which is complexly correlated with cancer. It is significant to explore the influences of aging-related genes (ARGs) on PAAD. Based on The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets, we used univariate Cox regression analysis and acquired eight differentially expressed ARGs with prognostic values. Two molecular subtypes were identified based on these ARGs to depict PAAD patients’ overall survival (OS) and immune microenvironments preliminarily. Cluster 1 had a poor OS as well as a worse immune microenvironment. Through least absolute shrinkage and selection operator (LASSO) regression analysis, we constructed a seven-ARG risk signature based on the TCGA dataset and verified it in Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC) to predict the prognoses, immune microenvironments, signal pathways, tumor mutations, and drug sensitivity of PAAD patients. The high-risk group possessed an unfavorable OS compared with that of the low-risk group. We also verified the independence and clinical availability of the risk signature by Cox regression analyses and the establishment of a nomogram, respectively. The higher risk score was associated with several clinical factors such as higher grade and advanced tumor stage as well as lower immunoscore and cluster 1. The negative associations of risk scores with immune, stroma, and estimate scores proved the terrible immune microenvironment in the high-risk group. Relationships between risk score and immune checkpoint gene expression as well as signal pathways provided several therapeutic targets. PAAD patients in the low-risk group possessed lower tumor mutations as well as a higher susceptibility to axitinib and vorinostat. The high-risk group bore a higher TMB and cisplatin and dasatinib may be better options. We used immunohistochemistry and qPCR to confirm the expression of key ARGs with their influences on OS. In conclusion, we identified two ARG-mediated molecular subtypes and a novel seven-ARG risk signature to predict prognoses, immune microenvironments, signal pathways, tumor mutations, and drug sensitivity of PAAD patients.
Collapse
Affiliation(s)
- Shengbai Xue
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weiyu Ge
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kexuan Wang
- Department of Nursing, School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Tiebo Mao
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaofei Zhang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haiyan Xu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yongchao Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiayu Yao
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shumin Li
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ming Yue
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jingyu Ma
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanling Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Daiyuan Shentu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiujie Cui
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Jiujie Cui, ; Liwei Wang,
| | - Liwei Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Jiujie Cui, ; Liwei Wang,
| |
Collapse
|
10
|
Usman M, Khan WR, Yousaf N, Akram S, Murtaza G, Kudus KA, Ditta A, Rosli Z, Rajpar MN, Nazre M. Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review. Molecules 2022; 27:molecules27123863. [PMID: 35744986 PMCID: PMC9230627 DOI: 10.3390/molecules27123863] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second-ranked disease and a cause of death for millions of people around the world despite many kinds of available treatments. Phytochemicals are considered a vital source of cancer-inhibiting drugs and utilize specific mechanisms including carcinogen inactivation, the induction of cell cycle arrest, anti-oxidant stress, apoptosis, and regulation of the immune system. Family Fabaceae is the second most diverse family in the plant kingdom, and species of the family are widely distributed across the world. The species of the Fabaceae family are rich in phytochemicals (flavonoids, lectins, saponins, alkaloids, carotenoids, and phenolic acids), which exhibit a variety of health benefits, especially anti-cancer properties; therefore, exploration of the phytochemicals present in various members of this family is crucial. These phytochemicals of the Fabaceae family have not been explored in a better way yet; therefore, this review is an effort to summarize all the possible information related to the phytochemical status of the Fabaceae family and their anti-cancer properties. Moreover, various research gaps have been identified with directions for future research.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Botany, Government College University Lahore, Katchery Road, Lahore 54000, Pakistan; (M.U.); (N.Y.)
| | - Waseem Razzaq Khan
- Institut Ekosains Borneo, Universiti Putra Malaysia Kampus Bintulu, Bintulu 97008, Malaysia;
| | - Nousheen Yousaf
- Department of Botany, Government College University Lahore, Katchery Road, Lahore 54000, Pakistan; (M.U.); (N.Y.)
| | - Seemab Akram
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
| | - Kamziah Abdul Kudus
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Upper Dir 18000, Pakistan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- Correspondence: or (A.D.); (M.N.)
| | - Zamri Rosli
- Department of Forestry Science, Faculty of Agriculture and Forestry Sciences, Universiti Putra Malaysia Kampus Bintulu, Bintulu 97008, Malaysia;
| | - Muhammad Nawaz Rajpar
- Department of Forestry, Faculty of Life Sciences, SBBU Sheringal, Dir Upper 18000, Pakistan;
| | - Mohd Nazre
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence: or (A.D.); (M.N.)
| |
Collapse
|
11
|
Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy. Front Oncol 2022; 12:834072. [PMID: 35299751 PMCID: PMC8921560 DOI: 10.3389/fonc.2022.834072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumors often progress to a more aggressive phenotype to resist drugs. Multiple dysregulated pathways are behind this tumor behavior which is known as cancer chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways involved in the resistance to chemotherapeutic agents and cancer immunotherapy. Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-κB (NF-κB)/Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation, progression, and development. Therefore, targeting TLR/NF-κB/NLRP signaling is a promising strategy to augment cancer chemotherapy and immunotherapy and to combat chemoresistance. Considering the potential of phytochemicals in the regulation of multiple dysregulated pathways during cancer initiation, promotion, and progression, such compounds could be suitable candidates against cancer chemoresistance. Objectives This is the first comprehensive and systematic review regarding the role of phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-κB/NLRP signaling pathway in chemotherapy and immunotherapy. Methods A comprehensive and systematic review was designed based on Web of Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to include papers on TLR/NF-κB/NLRP and chemotherapy/immunotherapy/chemoresistance by phytochemicals. Results Phytochemicals are promising multi-targeting candidates against the TLR/NF-κB/NLRP signaling pathway and interconnected mediators. Employing phenolic compounds, alkaloids, terpenoids, and sulfur compounds could be a promising strategy for managing cancer chemoresistance through the modulation of the TLR/NF-κB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer chemotherapy/immunotherapy are also highlighted. Conclusion Targeting TLR/NF-κB/NLRP signaling with bioactive phytocompounds reverses chemoresistance and improves the outcome for chemotherapy and immunotherapy in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Narimani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Carly E. Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
12
|
Hu XX, Wang SQ, Gan SQ, Liu L, Zhong MQ, Jia MH, Jiang F, Xu Y, Xiao CD, Shen XC. A Small Ligand That Selectively Binds to the G-quadruplex at the Human Vascular Endothelial Growth Factor Internal Ribosomal Entry Site and Represses the Translation. Front Chem 2021; 9:781198. [PMID: 34858949 PMCID: PMC8630693 DOI: 10.3389/fchem.2021.781198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
G-quadruplexes are believed to have important biological functions, so many small molecules have been screened or developed for targeting G-quadruplexes. However, it is still a major challenge to find molecules that recognize specific G-quadruplexes. Here, by using a combination of surface plasmon resonance, electrospray ionization mass spectrometry, circular dichroism, Western blot, luciferase assay, and reverse transcriptase stop assay, we observed a small molecule, namely, oxymatrine (OMT) that could selectively bind to the RNA G-quadruplex in 5′-untranslated regions (UTRs) of human vascular endothelial growth factor (hVEGF), but could not bind to other G-quadruplexes. OMT could selectively repress the translation of VEGF in cervical cancer cells. Furthermore, it could recognize VEGF RNA G-quadruplexes in special conformations. The results indicate that OMT may serve as a potentially special tool for studying the VEGF RNA G-quadruplex in cells and as a valuable scaffold for the design of ligands that recognize different G-quadruplexes.
Collapse
Affiliation(s)
- Xiao-Xia Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,Department of Physiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Sheng-Quan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Shi-Quan Gan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Lei Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Ming-Qing Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Meng-Hao Jia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Fei Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Chao-Da Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, China
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, China
| |
Collapse
|
13
|
Jiang L, Yang A, Li X, Liu K, Tan J. Down-regulation of VCAM-1 in bone mesenchymal stem cells reduces inflammatory responses and apoptosis to improve cardiac function in rat with myocardial infarction. Int Immunopharmacol 2021; 101:108180. [PMID: 34607225 DOI: 10.1016/j.intimp.2021.108180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bone mesenchymal stem cells (BMSCs) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). VCAM-1 can promote the migration of lymphocytes to the inflammatory zone. In the present study, we tried to explore whether VCAM-1 silenced-BMSCs have better therapeutic effects on MI. METHODS BMSCs were isolated and cultured followed by treatment of a lentivirus silencing VCAM-1 and NF-κB activator (PMA). Besides, MI rat models were also established and injected with treated BMSCs to detect the effect of VCAM-1 silenced-BMSCs in MI, as evidenced by detection of cardiac function, survival of rats within 72 h, infarct size and myocardial cell apoptosis. Moreover, the expression of NF-κB-regulated gene products was also determined. RESULTS The implantation of sh-VCAM-1 BMSCs into MI rats resulted in more reductions in myocardial infarct size as well as myocardial cell apoptosis, improved cardiac function, the number of survived rats within 72 h, and survival time within 72 h compared with the individual treatments of either BMSCs or control. In addition, transplanted BMSCs down-regulated the expression of NF-κB-p65, MMP-9, TNF-α, and Bax, and up-regulated VEGF and Bcl-2 in myocardial tissue, which could be further enhanced by sh-VCAM-1 and rescued by PMA. CONCLUSION Our study demonstrated that silencing VCAM-1 in BMSCs could inhibit inflammation and apoptosis, thus improving cardiac function in MI.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Aidi Yang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Operation Room, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Li
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Ke Liu
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jin Tan
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
14
|
Research updates on the clinical implication of long noncoding RNA in digestive system cancers and chemoresistance. 3 Biotech 2021; 11:423. [PMID: 34603923 DOI: 10.1007/s13205-021-02971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are implicated in various biological processes, such as cell proliferation, differentiation, apoptosis, migration, and invasion. They are also key players in various biological pathways. LncRNA was considered as 'translational noise' before 1980s. It has been reported that lncRNAs are aberrantly expressed in different cancers, either as oncogene or tumor suppressor gene. Therefore, more and more lncRNAs are recognized as potential diagnostic biomarkers and/or therapeutic targets. As competitive endogenous RNA, lncRNAs can interact with microRNA to alter the expression of target genes, which may have extensive clinical implications in cancers, including diagnosis, treatment, prognosis, and chemoresistance. This review comprehensively summarizes the functions and clinical relevance of lncRNAs in digestive system cancers, especially as a potential tool to overcome chemoresistance.
Collapse
|
15
|
Jin Y, Liu J, Liu Y, Liu Y, Guo G, Yu S, An R. Oxymatrine Inhibits Renal Cell Carcinoma Progression by Suppressing β-Catenin Expression. Front Pharmacol 2020; 11:808. [PMID: 32581789 PMCID: PMC7289957 DOI: 10.3389/fphar.2020.00808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/18/2020] [Indexed: 01/17/2023] Open
Abstract
Aims Oxymatrine (OMT) has been identified to possess immunomodulatory, antiinflammatory and anticancer properties. This study aimed to investigate its precise function and the underlying molecular mechanisms in renal cell carcinoma progression. Methods The antineoplastic effect of oxymatrine was investigated by CCK-8 assay, cell cycle analysis, apoptosis assay, wound healing experiment, transwell assay, and drug-sensitivity analysis in renal cancer cells following oxymatrine treatment. The modulation of oxymatrine on β-catenin was analyzed through western blot and immunofluorescence assay. β-catenin overexpression was employed to determine the key role of β-catenin in oxymatrine-inhibited renal cell carcinoma in vitro. In addition, animal model was established to investigate the effect of oxymatrine on tumor growth in vivo. Results Oxymatrine inhibited renal cell carcinoma progression in vitro, including cell proliferation, apoptosis, migration, invasion and chemotherapy sensitivity. Further mechanistic studies demonstrated that oxymatrine exerted its antineoplastic effect through suppressing the expression of β-catenin. Moreover, in nude mice model, oxymatrine exhibited remarkable inhibition of tumor growth, which was consistent with our in vitro results. Conclusions Our findings illuminate oxymatrine as an effective antitumor agent in renal cell carcinoma, and suggest it a promising therapeutic application in renal cell carcinoma treatment.
Collapse
Affiliation(s)
- Yinshan Jin
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiannan Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yadong Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guiying Guo
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shiliang Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruihua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Lan X, Zhao J, Zhang Y, Chen Y, Liu Y, Xu F. Oxymatrine exerts organ- and tissue-protective effects by regulating inflammation, oxidative stress, apoptosis, and fibrosis: From bench to bedside. Pharmacol Res 2020; 151:104541. [DOI: 10.1016/j.phrs.2019.104541] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
|
17
|
Efferth T, Oesch F. Repurposing of plant alkaloids for cancer therapy: Pharmacology and toxicology. Semin Cancer Biol 2019; 68:143-163. [PMID: 31883912 DOI: 10.1016/j.semcancer.2019.12.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/15/2019] [Indexed: 02/08/2023]
Abstract
Drug repurposing (or repositioning) is an emerging concept to use old drugs for new treatment indications. Phytochemicals isolated from medicinal plants have been largely neglected in this context, although their pharmacological activities have been well investigated in the past, and they may have considerable potentials for repositioning. A grand number of plant alkaloids inhibit syngeneic or xenograft tumor growth in vivo. Molecular modes of action in cancer cells include induction of cell cycle arrest, intrinsic and extrinsic apoptosis, autophagy, inhibition of angiogenesis and glycolysis, stress and anti-inflammatory responses, regulation of immune functions, cellular differentiation, and inhibition of invasion and metastasis. Numerous underlying signaling processes are affected by plant alkaloids. Furthermore, plant alkaloids suppress carcinogenesis, indicating chemopreventive properties. Some plant alkaloids reveal toxicities such as hepato-, nephro- or genotoxicity, which disqualifies them for repositioning purposes. Others even protect from hepatotoxicity or cardiotoxicity of xenobiotics and established anticancer drugs. The present survey of the published literature clearly demonstrates that plant alkaloids have the potential for repositioning in cancer therapy. Exploitation of the chemical diversity of natural alkaloids may enrich the candidate pool of compounds for cancer chemotherapy and -prevention. Their further preclinical and clinical development should follow the same stringent rules as for any other synthetic drug as well. Prospective randomized, placebo-controlled clinical phase I and II trials should be initiated to unravel the full potential of plant alkaloids for drug repositioning.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany.
| | - Franz Oesch
- Institute of Toxicology, Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
18
|
Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: Bioactivities, structure-activity relationships and preliminary molecular mechanisms. Eur J Med Chem 2019; 188:111972. [PMID: 31884408 DOI: 10.1016/j.ejmech.2019.111972] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn, have been well concerned in the past several decades owing to the unique structural features and numerous pharmacological activities. Quinolizidine alkaloids consist of matrine, oxymatrine, sophoridine, sophocarpine and aloperine etc. Additionally, quinolizidine alkaloids exert various excellent activities, including anti-cancer, anti-inflammation, anti-fibrosis, anti-virus and anti-arrhythmia regulations. In this review, we comprehensively clarify the pharmacological activities of quinolizidine alkaloids, as well as the relationship between biological function and structure-activity of substituted quinolizidine alkaloids. We believe that biological agents based on the pharmacological functions of quinolizidine alkaloids could be well applied in clinical practice.
Collapse
|
19
|
Guo L, Yang T. Oxymatrine Inhibits the Proliferation and Invasion of Breast Cancer Cells via the PI3K Pathway. Cancer Manag Res 2019; 11:10499-10508. [PMID: 31853201 PMCID: PMC6916680 DOI: 10.2147/cmar.s221950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 01/12/2023] Open
Abstract
Purpose Oxymatrine has been reported to possess anti-cancer activity, but its role in breast cancer (BC) is weakly defined. We investigated the anti-cancer effects of oxymatrine in human BC cells, and the underlying molecular mechanisms of these effects. Methods BC lines were treated with oxymatrine. The MTT assay was conducted to evaluate cell viability. The cell cycle and apoptosis of BC cells were analyzed using flow cytometry and Hoechst 33258 staining. Transwell™ assays were undertaken to measure the migratory and invasive abilities of MCF-7 or MDA-MB-231 cells. Expression of phosphatidylinositol 3-kinase (PI3K), Akt, cyclin D1, cluster of differentiation (CD)K2, PARP, Gsk3β, caspase-3, matrix metalloproteinase (MMP)2 and Bax at protein and RNA levels was measured by Western blotting and quantitative real-time polymerase chain reaction. Results Oxymatrine inhibited the proliferation of BC cells in a time-dependent manner. It induced apoptosis in a dose- and time-dependent way according to Annexin V and Hoechst 33258 staining. Oxymatrine could inhibit the invasion of BC cells as shown by the Transwell assay. Oxymatrine inhibited expression of B-cell lymphoma-2 while increasing that of Bax as well as increasing expression of caspase-3 and caspase-9. Addition of oxymatrine to BC cells attenuated the PI3K/Akt signaling pathway cascade, as evidenced by dephosphorylation of P13K and Akt. Conclusion Oxymatrine exerts its anti-tumor effects in BC cells by abolishing the PI3K pathway. Oxymatrine may be a new compound for BC treatment.
Collapse
Affiliation(s)
- Lin Guo
- Department of Gastrointestinal and Nutriology Surgery, Shengjing Hospital of China Medical University, Shenyang, LiaoNing 110004, People's Republic of China
| | - Tengfei Yang
- The Department of Social Service, Shengjing Hospital of China Medical University, Shenyang, LiaoNing 110004, People's Republic of China
| |
Collapse
|
20
|
Aly SH, Elissawy AM, Eldahshan OA, Elshanawany MA, Efferth T, Singab ANB. The pharmacology of the genus Sophora (Fabaceae): An updated review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153070. [PMID: 31514082 DOI: 10.1016/j.phymed.2019.153070] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND The genus Sophora (Fabaceae) represents one of the important medicinal plant genera regarding its chemical constituents and outstanding pharmacological activities. PURPOSE In this review, we surveyed the latest findings on the bioactivities of different Sophora extracts and isolated phytochemicals during the past 8 years (2011-2019) updating the latest review article in 2011. The aim of this review is to focus on the molecular pharmacology of Sophora species to provide the rationale basis for the development of novel drugs. RESULTS Sophora and its bioactive compounds possess outstanding pharmacological properties, especially as anticancer and anti-inflammatory drugs, in addition to its antioxidant, antibacterial, antifungal and antiviral properties. CONCLUSION Based on their use in traditional medicine, Sophora species exert a plethora of cellular and molecular activities, which render them as attractive candidates for rationale drug development. Randomized, placebo-controlled clinical trials are required for further integration of Sophora-based phototherapies into conventional medicine.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University, Cairo, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, 55128 Mainz, Germany.
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
21
|
Matrine inhibits the development and progression of ovarian cancer by repressing cancer associated phosphorylation signaling pathways. Cell Death Dis 2019; 10:770. [PMID: 31601793 PMCID: PMC6787190 DOI: 10.1038/s41419-019-2013-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023]
Abstract
Ovarian cancer remains the most lethal gynecologic malignancy with late detection and acquired chemoresistance. Advanced understanding of the pathophysiology and novel treatment strategies are urgently required. A growing body of proteomic investigations suggest that phosphorylation has a pivotal role in the regulation of ovarian cancer associated signaling pathways. Matrine has been extensively studied for its potent anti-tumor activities. However, its effect on ovarian cancer cells and underlying molecular mechanisms remain unclear. Herein we showed that matrine treatment inhibited the development and progression of ovarian cancer cells by regulating proliferation, apoptosis, autophagy, invasion and angiogenesis. Matrine treatment retarded the cancer associated signaling transduction by decreasing the phosphorylation levels of ERK1/2, MEK1/2, PI3K, Akt, mTOR, FAK, RhoA, VEGFR2, and Tie2 in vitro and in vivo. Moreover, matrine showed excellent antitumor effect on chemoresistant ovarian cancer cells. No obvious toxic side effects were observed in matrine-administrated mice. As the natural agent, matrine has the potential to be the targeting drug against ovarian cancer cells with the advantages of overcoming the chemotherapy resistance and decreasing the toxic side effects.
Collapse
|
22
|
Cang S, Liu R, Wang T, Jiang X, Zhang W, Bi K, Li Q. Simultaneous determination of five active alkaloids from Compound Kushen Injection in rat plasma by LC–MS/MS and its application to a comparative pharmacokinetic study in normal and NSCLC nude rats. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126-1127:121734. [DOI: 10.1016/j.jchromb.2019.121734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 02/02/2023]
|
23
|
Anti-cancer effects of oxymatrine are mediated through multiple molecular mechanism(s) in tumor models. Pharmacol Res 2019; 147:104327. [DOI: 10.1016/j.phrs.2019.104327] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/24/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
|
24
|
Chen K, Zhu P, Ye J, Liao Y, Du Z, Chen F, Juanjuan H, Zhang S, Zhai W. Oxymatrine inhibits the migration and invasion of hepatocellular carcinoma cells by reducing the activity of MMP-2/-9 via regulating p38 signaling pathway. J Cancer 2019; 10:5397-5403. [PMID: 31632484 PMCID: PMC6775708 DOI: 10.7150/jca.32875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/23/2019] [Indexed: 12/14/2022] Open
Abstract
As one of the major alkaloid components in Sophoraflavescensait (kushen), oxymatrine has been used widely across the world in anti-inflammatory and anti-cancer therapies. However, the effect in the metastasis of hepatocellular carcinoma (HCC) and related mechanism(s) are still unclear. The present study aimed to investigate the anti-metastatic effect of oxymatrine on HCC cells. Oxymatrine could also inhibit the protein levels of MMP-2/-9 in a dose-dependent relationship. Moreover, oxymatrine reduces the activity of p38 signaling pathway via inhibiting the phosphorylation of p38. The inhibition effect of oxymatrine on the expression of MMP-2/-9 and the phosphorylated of p38 was also detected in vivo. Combined treatment with p38 signaling pathway inhibitor and oxymatrine may have a synergistic effect on MMP-2/-9 and invasion of HCC cells. Therefore, oxymatrine may have inhibited GBC invasiveness by reducing the expression of MMP-2/-9 via inhibiting the activity of p38 signaling pathway. As a potentially novel therapeutic drug, oxymatrine may play an important role in the treatment of HCC.
Collapse
Affiliation(s)
- Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| | - Pengfei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| | - Jianwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| | - Yuan Liao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| | - Zhicheng Du
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| | - Fangfang Chen
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P.R. China
| | - He Juanjuan
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P.R. China
| | - Shaojin Zhang
- Department of Ueology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P.R. China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| |
Collapse
|
25
|
Izdebska M, Zielińska W, Hałas-Wiśniewska M, Mikołajczyk K, Grzanka A. The cytotoxic effect of oxymatrine on basic cellular processes of A549 non-small lung cancer cells. Acta Histochem 2019; 121:724-731. [PMID: 31262517 DOI: 10.1016/j.acthis.2019.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 12/28/2022]
Abstract
Oxymatrine is the alkaloid derived from the root of Sophora species. This compound is proven to exhibit anti-viral, anti-asthmatic, anti-fibrotic and anti-inflammatory properties. Additionally, oxymatrine is able to promote cancer cells apoptosis and inhibit their proliferation. The aim of this study was to present the influence of oxymatrine on non-small cell lung cancer cells. The results indicate, that this agent induces dose-dependent cell death mainly through ER stress-induced apoptosis pathway. We also suggest that the oxymatrine reduces the metastatic potential by inhibition of the EMT process, as A549 cells treated with chosen doses of the compound were characterized by a decrease in the expression of the N-cadherin, vimentin and the elevation of E-cadherin level. Moreover, the study broadens the knowledge on so far poorly understood aspect of the influence of oxymatrine on the cytoskeleton structure.
Collapse
Affiliation(s)
- Magdalena Izdebska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland.
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Klaudia Mikołajczyk
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| |
Collapse
|
26
|
Lakkakula BVKS, Farran B, Lakkakula S, Peela S, Yarla NS, Bramhachari PV, Kamal MA, Saddala MS, Nagaraju GP. Small molecule tyrosine kinase inhibitors and pancreatic cancer—Trials and troubles. Semin Cancer Biol 2019; 56:149-167. [PMID: 30314681 DOI: 10.1016/j.semcancer.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
|
27
|
Liu H, Zou M, Li P, Wang H, Lin X, Ye J. Oxymatrine‑mediated maturation of dendritic cells leads to activation of FOXP3+/CD4+ Treg cells and reversal of cisplatin‑resistance in lung cancer cells. Mol Med Rep 2019; 19:4081-4090. [PMID: 30896871 PMCID: PMC6471056 DOI: 10.3892/mmr.2019.10064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
The dendritic cell (DC)‑regulatory T (Treg) system serves a leading role in the immunosuppression of the tumor microenvironment, which is not conducive to radiotherapy and chemotherapy treatment for lung cancer. The present study aimed to investigate the effect of oxymatrine (OMT) on the DC‑Treg system in the tumor microenvironment in vitro and to examine its mechanism. The expressions of CD83 antigen, T‑lymphocyte activation antigen CD86, CD11 antigen‑like family member C and major histocompatibility complex II in DCs were increased upon treatment with 1 mg/ml OMT, as detected by flow cytometry. Following pretreatment with OMT, the DCs mediated the forkhead box protein P3 overexpression in primitive cluster of differentiation 4+ T cells at the protein and mRNA expression levels. The expression levels of anti‑inflammatory factors, including interleukin (IL)‑10, tumor growth factor‑β, IL‑35, and pro‑inflammatory cytokines, including interferon‑γ, IL‑12 and IL‑2, in the co‑culture supernatant were increased as measured by ELISA. When DCs and DC‑Tregs were co‑cultured with cisplatin‑resistant A549 cells, the proportion of apoptosis in the co‑culture groups was increased under treatment with cisplatin, which was detected by Annexin V/propidium Iodide staining and western blotting. The present results suggested that OMT may promote the maturation of DCs, mediate the differentiation of T cells into Treg cells, and reverse the resistance of tumor cells to cisplatin in vitro. It was suggested that OMT is an important adjunct to chemotherapy through the regulation of antitumor responses.
Collapse
Affiliation(s)
- Hui Liu
- Division of Pulmonary and Critical Care, Department of Internal Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 501630, P.R. China
| | - Manman Zou
- Division of Pulmonary and Critical Care, Department of Internal Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 501630, P.R. China
| | - Pei Li
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 501630, P.R. China
| | - Haifeng Wang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 501630, P.R. China
| | - Xijun Lin
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 501630, P.R. China
| | - Jin Ye
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 501630, P.R. China
| |
Collapse
|
28
|
Nourmohammadi S, Aung TN, Cui J, Pei JV, De Ieso ML, Harata-Lee Y, Qu Z, Adelson DL, Yool AJ. Effect of Compound Kushen Injection, a Natural Compound Mixture, and Its Identified Chemical Components on Migration and Invasion of Colon, Brain, and Breast Cancer Cell Lines. Front Oncol 2019; 9:314. [PMID: 31106149 PMCID: PMC6498862 DOI: 10.3389/fonc.2019.00314] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 01/03/2023] Open
Abstract
Traditional Chinese Medicines are promising sources of new agents for controlling cancer metastasis. Compound Kushen Injection (CKI), prepared from medicinal plants Sophora flavescens and Heterosmilax chinensis, disrupts cell cycle and induces apoptosis in breast cancer; however, effects on migration and invasion remained unknown. CKI, fractionated mixtures, and isolated components were tested in migration assays with colon (HT-29, SW-480, DLD-1), brain (U87-MG, U251-MG), and breast (MDA-MB-231) cancer cell lines. Human embryonic kidney (HEK-293) and human foreskin fibroblast (HFF) served as non-cancerous controls. Wound closure, transwell invasion, and live cell imaging showed CKI reduced motility in all eight lines. Fractionation and reconstitution of CKI demonstrated combinations of compounds were required for activity. Live cell imaging confirmed CKI strongly reduced migration of HT-29 and MDA-MB-231 cells, moderately slowed brain cancer cells, and had a small effect on HEK-293. CKI uniformly blocked invasiveness through extracellular matrix. Apoptosis was increased by CKI in breast cancer but not in non-cancerous lines. Cell viability was unaffected by CKI in all cell lines. Transcriptomic analyses of MDA-MB-231indicated down-regulation of actin cytoskeletal and focal adhesion genes with CKI treatment, consistent with observed impairment of cell migration. The pharmacological complexity of CKI is important for effective blockade of cancer migration and invasion.
Collapse
Affiliation(s)
- Saeed Nourmohammadi
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Thazin Nwe Aung
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jian Cui
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jinxin V. Pei
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | | | - Yuka Harata-Lee
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Zhipeng Qu
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - David L. Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Andrea J. Yool
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
29
|
Yang MH, Chang KJ, Li B, Chen WS. Arsenic Trioxide Suppresses Tumor Growth through Antiangiogenesis via Notch Signaling Blockade in Small-Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4647252. [PMID: 31093499 PMCID: PMC6481139 DOI: 10.1155/2019/4647252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Small-cell lung cancer (SCLC) is a highly malignant type of lung cancer with no effective second-line chemotherapy drugs. Arsenic trioxide (As2O3) was reported to exert antiangiogenesis activities against lung cancer and induce poor development of vessel structures, similar to the effect observed following the blockade of Notch signaling. However, there are no direct evidences on the inhibitory effects of As2O3 on tumor growth and angiogenesis via blockade of Notch signaling in SCLC. Here, we found that As2O3 significantly inhibited the tumor growth and angiogenesis in SCLC and reduced the microvessel density. As2O3 disturbed the morphological development of tumor vessels and downregulated the protein levels of delta-like canonical Notch ligand 4 (Dll4), Notch1, and Hes1 in vivo. DAPT, a Notch signaling inhibitor, exerted similar effects in SCLC. We found that both As2O3 treatment and Notch1 expression knockdown resulted in the interruption of tube formation by human umbilical vein endothelial cells (HUVECs) on Matrigel. As2O3 had no effects on Dll4 level in HUVECs but significantly inhibited the expression of Notch1 and its downstream gene Hes1 regardless of Dll4 overexpression or Notch1 knockdown. These findings suggest that the antitumor activity of As2O3 in SCLC was mediated via its antiangiogenic effect through the blockade of Notch signaling, probably owing to Notch1 targeting.
Collapse
Affiliation(s)
- Meng-Hang Yang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Ke-Jie Chang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wan-Sheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
30
|
PheWAS-Based Systems Genetics Methods for Anti-Breast Cancer Drug Discovery. Genes (Basel) 2019; 10:genes10020154. [PMID: 30781719 PMCID: PMC6409623 DOI: 10.3390/genes10020154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 11/21/2022] Open
Abstract
Breast cancer is a high-risk disease worldwide. For such complex diseases that are induced by multiple pathogenic genes, determining how to establish an effective drug discovery strategy is a challenge. In recent years, a large amount of genetic data has accumulated, particularly in the genome-wide identification of disorder genes. However, understanding how to use these data efficiently for pathogenesis elucidation and drug discovery is still a problem because the gene–disease links that are identified by high-throughput techniques such as phenome-wide association studies (PheWASs) are usually too weak to have biological significance. Systems genetics is a thriving area of study that aims to understand genetic interactions on a genome-wide scale. In this study, we aimed to establish two effective strategies for identifying breast cancer genes based on the systems genetics algorithm. As a result, we found that the GeneRank-based strategy, which combines the prognostic phenotype-based gene-dependent network with the phenotypic-related PheWAS data, can promote the identification of breast cancer genes and the discovery of anti-breast cancer drugs.
Collapse
|
31
|
Jung YY, Shanmugam MK, Narula AS, Kim C, Lee JH, Namjoshi OA, Blough BE, Sethi G, Ahn KS. Oxymatrine Attenuates Tumor Growth and Deactivates STAT5 Signaling in a Lung Cancer Xenograft Model. Cancers (Basel) 2019; 11:cancers11010049. [PMID: 30621055 PMCID: PMC6356594 DOI: 10.3390/cancers11010049] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/24/2022] Open
Abstract
Oxymatrine (OMT) is a major alkaloid found in radix Sophorae flavescentis extract and has been reported to exhibit various pharmacological activities. We elucidated the detailed molecular mechanism(s) underlying the therapeutic actions of OMT in non-small cell lung cancer (NSCLC) cells and a xenograft mouse model. Because the STAT5 signaling cascade has a significant role in regulating cell proliferation and survival in tumor cells, we hypothesized that OMT may disrupt this signaling cascade to exert its anticancer effects. We found that OMT can inhibit the constitutive activation of STAT5 by suppressing the activation of JAK1/2 and c-Src, nuclear localization, as well as STAT5 binding to DNA in A549 cells and abrogated IL-6-induced STAT5 phosphorylation in H1299 cells. We also report that a sub-optimal concentration of OMT when used in combination with a low dose of paclitaxel produced significant anti-cancer effects by inhibiting cell proliferation and causing substantial apoptosis. In a preclinical lung cancer mouse model, OMT when used in combination with paclitaxel produced a significant reduction in tumor volume. These results suggest that OMT in combination with paclitaxel can cause an attenuation of lung cancer growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | | | - Chulwon Kim
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Jong Hyun Lee
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Ojas A Namjoshi
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC 27616, USA.
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC 27616, USA.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Department of Korean Pathology, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
32
|
Huang Y, Zhang J, Wang G, Chen X, Zhang R, Liu H, Zhu J. Oxymatrine exhibits anti-tumor activity in gastric cancer through inhibition of IL-21R-mediated JAK2/STAT3 pathway. Int J Immunopathol Pharmacol 2018; 32:2058738418781634. [PMID: 30103640 PMCID: PMC6096673 DOI: 10.1177/2058738418781634] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxymatrine (OMT) as a type of alkaloids collected from Sophora flavescens Ait exerts some biological functions including anticancer properties. Here, we investigated the therapeutic effects of OMT in gastric cancer cells (HGC 27 and AGS). As a result, the exposure of gastric cancer (GC) cells to OMT contributed to the suppression of cell proliferation and invasion. Interleukin 21 receptor (IL-21R) was identified to be differentially expressed between OMT treatment group (4 mg/mL) and control group (0 mg/mL), and knockdown of IL-21R repressed cell proliferation and invasion via inactivation of the JAK2/STAT3 pathway. The rescue experiment showed that IL-21R overexpression attenuated the anti-tumor effects of OMT through activation of the JAK2/STAT3 pathway. Moreover, the expression of IL-21R was significantly upregulated in GC samples compared with the adjacent normal tissues and associated with overall survival (OS) and tumor recurrence of GC patients. Taken together, in this study, we evaluated the anti-tumor effects of OMT on GC by investigating proliferation and invasion ability changes, and our findings show that OMT exhibits effects via regulation of JAK/STAT signaling pathway. Through the mechanism study, we may enlighten the potential therapeutic target for treatment of GC.
Collapse
Affiliation(s)
- Yanxia Huang
- 1 Department of Traditional Chinese Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ge Wang
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoyu Chen
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Zhang
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui Liu
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinshui Zhu
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
33
|
Zhang W, Huai Y, Miao Z, Chen C, Shahen M, Rahman SU, Alagawany M, El-Hack MEA, Zhao H, Qian A. Systems pharmacology approach to investigate the molecular mechanisms of herb Rhodiola rosea L. radix. Drug Dev Ind Pharm 2018; 45:456-464. [PMID: 30449200 DOI: 10.1080/03639045.2018.1546316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rhodiola rosea L. radix (RRL) is one of the most popular medical herb which has been widely used for the treatment of different diseases effectively, including cardiovascular diseases and nerve system diseases. However, due to the multiple compounds in RRL, the underlying molecular mechanisms of RRL are remained unclear. To decipher the action mechanisms of RRL from a systematic perspective, a systems pharmacology approach integrated absorption, distribution, metabolism, and excretion (ADME) system, drug targeting, and network analysis was introduced. First, by the ADME screening system and the target fishing process, 56 potential active compounds and 62 targets were obtained, respectively. In addition, compound-target network demonstrated that most compounds interacted with multiple targets, indicating that RRL may enhance its therapeutic effects probably through hitting on multiple targets in a holistic level. Moreover, target-pathway network and gene ontology analysis showed that multiple targets of RRL were involved in several biological pathways, i.e. Neuroactive ligand-receptor interaction, calcium signaling pathway, adrenergic signaling in cardiomyocytes, and VEGF signaling pathway, which dissecting the therapeutic effects of RRL on various diseases, such as cardiovascular diseases, depression, adaptation diseases, etc. In summary, this work successfully explains the potential active compounds and the multi-scale curative action mechanisms of RRL for treating various diseases; meanwhile, it implies that RRL could be applied as a novel therapeutic agent in arthritic diseases. Most importantly, this work provides an in silico strategy to understand the action mechanisms of herbal medicines from molecular/system levels, which will promote the new drug development of traditional Chinese medicine.
Collapse
Affiliation(s)
- Wenjuan Zhang
- a Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences , Northwestern Polytechnical University , Xi'an , People's Republic of China
| | - Ying Huai
- a Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences , Northwestern Polytechnical University , Xi'an , People's Republic of China
| | - Zhiping Miao
- a Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences , Northwestern Polytechnical University , Xi'an , People's Republic of China
| | - Chu Chen
- b Clinical Laboratory of Honghui Hospital , Xi'an JiaoTong University College of Medicine , Xi'an , Shaanxi , People's Republic of China
| | - Mohamed Shahen
- c Zoology Department, Faculty of Science , Tanta University , Tanta , Egypt
| | - Siddiq Ur Rahman
- d College of Life Sciences , Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Mahmoud Alagawany
- e Department of Poultry, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| | - Mohamed E Abd El-Hack
- e Department of Poultry, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| | - Heping Zhao
- b Clinical Laboratory of Honghui Hospital , Xi'an JiaoTong University College of Medicine , Xi'an , Shaanxi , People's Republic of China
| | - Airong Qian
- a Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences , Northwestern Polytechnical University , Xi'an , People's Republic of China
| |
Collapse
|
34
|
Liu Y, Qin L, Bi T, Dai W, Liu W, Gao Q, Shen G. Oxymatrine Synergistically Potentiates the Antitumor Effects of Cisplatin in Human Gastric Cancer Cells. J Cancer 2018; 9:4527-4535. [PMID: 30519359 PMCID: PMC6277667 DOI: 10.7150/jca.28532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/03/2018] [Indexed: 12/24/2022] Open
Abstract
Cisplatin (CDDP) has been extensively used for gastric cancer (GC) treatment but limited by drug resistance and severe toxicity. The chemo-sensitizers that enhance its efficiency and overcome its limitation are urgently needed. Oxymatrine (OMT), a primary active ingredient from the dry roots of Sophora favescens, has shown powerful anti-cancer property with little side-effect. In this study, we explored the chemo-sensitization of OMT to potentiate the anti-tumor effect of CDDP. GC cell lines were dealt with OMT and/or CDDP and then subjected to different experimental methods. We found that OMT could significantly potentiate the CDDP-caused BGC-823 and SGC7901 cells viability loss, and OMT acts synergistically with CDDP. The combinative treatment could arrest cell cycle in G0/G1 phase by increasing p21, p27 and decreasing cyclin D1, and induced apoptosis by ROS generation and AKT/ERK inactivation. Inhibition of ROS respectively reversed the cell death induced by OMT and/or CDDP, suggesting the pivotal roles of ROS in the process. Moreover, OMT enhanced the antitumor effects of CDDP in nude mice bearing BGC823 tumor xenografts in vivo. Taken together, this study highlights that the co-treatment with OMT and CDDP exerted synergistic antitumor effects in GC cells, and that these effects may be mediated by ROS generation and inactivation of the AKT/ERK pathways.
Collapse
Affiliation(s)
- Yan Liu
- Department of General Surgery, Wujiang No.1 People's Hospital affiliated to Nantong University, Suzhou, Jiangsu 215200, PR China.,Department of General Surgery, Hepatobiliary surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215200, PR China
| | - Lei Qin
- Department of General Surgery, Hepatobiliary surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215200, PR China
| | - Tingting Bi
- Department of General Surgery, Wujiang No.1 People's Hospital affiliated to Nantong University, Suzhou, Jiangsu 215200, PR China
| | - Wei Dai
- Department of General Surgery, Wujiang No.1 People's Hospital affiliated to Nantong University, Suzhou, Jiangsu 215200, PR China
| | - Wei Liu
- Department of General Surgery, Wujiang No.1 People's Hospital affiliated to Nantong University, Suzhou, Jiangsu 215200, PR China
| | - Quangen Gao
- Department of General Surgery, Wujiang No.1 People's Hospital affiliated to Nantong University, Suzhou, Jiangsu 215200, PR China
| | - Genhai Shen
- Department of General Surgery, Wujiang No.1 People's Hospital affiliated to Nantong University, Suzhou, Jiangsu 215200, PR China
| |
Collapse
|
35
|
Yao F, Zhang L, Jiang G, Liu M, Liang G, Yuan Q. Osthole attenuates angiogenesis in an orthotopic mouse model of hepatocellular carcinoma via the downregulation of nuclear factor-κB and vascular endothelial growth factor. Oncol Lett 2018; 16:4471-4479. [PMID: 30214582 PMCID: PMC6126190 DOI: 10.3892/ol.2018.9213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
Abstract
Osthole has been demonstrated to have antitumor activity. Previous studies by our group indicated that osthole effectively inhibited tumor growth in hepatocellular carcinoma (HCC) through the induction of apoptosis and enhancement of antitumor immune responses in mice. The importance of angiogenesis in the proliferation, invasion and metastasis of tumor cells in HCC is well established. The present study aimed to investigate the effects of osthole on angiogenesis in an orthotopic mouse model of HCC. Orthotopic HCC in mice was established, and osthole at 61, 122 and 244 mg/kg was administered intraperitoneally once daily to the tumor-bearing mice for 14 consecutive days. Immunohistochemistry was performed to analyze the microvessel density (MVD) of tissues, and the level of vascular endothelial growth factor (VEGF) was measured by ELISA. The protein levels of nuclear factor-κB (NF-κB) p65 and IκB-α were also detected by western blotting. MVD was positively correlated with tumor weight in the orthotopic mouse model of HCC. Osthole administration significantly decreased MVD in tumor and adjacent tissues, and inhibited tumor growth. Furthermore, osthole downregulated the expression of VEGF and NF-κB p65, and upregulated IκB-α expression in tumor and adjacent tissues. To the best of our knowledge, the results of the present study demonstrated for the first time that osthole inhibits angiogenesis in an orthotopic mouse model of HCC, which may be one of the mechanisms underlying the anti-HCC activity of osthole, which in turn may be mediated by the NF-κB/VEGF signaling pathway. Therefore, osthole, a potential angiogenesis inhibitor and immune system enhancer, may be a promising lead compound for the treatment of HCC.
Collapse
Affiliation(s)
- Fei Yao
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China
| | - Lurong Zhang
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China.,Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Guorong Jiang
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China.,Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Min Liu
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China
| | - Guoqiang Liang
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China
| | - Qin Yuan
- Laboratory of Clinical Pharmacy of Chinese Herb, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
36
|
Zhang C, Wang N, Tan HY, Guo W, Li S, Feng Y. Targeting VEGF/VEGFRs Pathway in the Antiangiogenic Treatment of Human Cancers by Traditional Chinese Medicine. Integr Cancer Ther 2018; 17:582-601. [PMID: 29807443 PMCID: PMC6142106 DOI: 10.1177/1534735418775828] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bearing in mind the doctrine of tumor angiogenesis hypothesized by Folkman
several decades ago, the fundamental strategy for alleviating numerous cancer
indications may be the strengthening application of notable antiangiogenic
therapies to inhibit metastasis-related tumor growth. Under physiological
conditions, vascular sprouting is a relatively infrequent event unless when
specifically stimulated by pathogenic factors that contribute to the
accumulation of angiogenic activators such as the vascular endothelial growth
factor (VEGF) family and basic fibroblast growth factor (bFGF). Since VEGFs have
been identified as the principal cytokine to initiate angiogenesis in tumor
growth, synthetic VEGF-targeting medicines containing bevacizumab and sorafenib
have been extensively used, but prominent side effects have concomitantly
emerged. Traditional Chinese medicines (TCM)–derived agents with distinctive
safety profiles have shown their multitarget curative potential by impairing
angiogenic stimulatory signaling pathways directly or eliciting synergistically
therapeutic effects with anti-angiogenic drugs mainly targeting VEGF-dependent
pathways. This review aims to summarize (a) the up-to-date
understanding of the role of VEGF/VEGFR in correlation with proangiogenic
mechanisms in various tissues and cells; (b) the elaboration of
antitumor angiogenesis mechanisms of 4 representative TCMs, including
Salvia miltiorrhiza, Curcuma longa, ginsenosides, and
Scutellaria baicalensis; and (c)
circumstantial clarification of TCM-driven therapeutic actions of suppressing
tumor angiogenesis by targeting VEGF/VEGFRs pathway in recent years, based on
network pharmacology.
Collapse
Affiliation(s)
- Cheng Zhang
- 1 The University of Hong Kong, Hong Kong SAR
| | - Ning Wang
- 1 The University of Hong Kong, Hong Kong SAR
| | - Hor-Yue Tan
- 1 The University of Hong Kong, Hong Kong SAR
| | - Wei Guo
- 1 The University of Hong Kong, Hong Kong SAR
| | - Sha Li
- 1 The University of Hong Kong, Hong Kong SAR
| | - Yibin Feng
- 1 The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
37
|
Identification of candidate anti-cancer molecular mechanisms of Compound Kushen Injection using functional genomics. Oncotarget 2018; 7:66003-66019. [PMID: 27602759 PMCID: PMC5323210 DOI: 10.18632/oncotarget.11788] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
Compound Kushen Injection (CKI) has been clinically used in China for over 15 years to treat various types of solid tumours. However, because such Traditional Chinese Medicine (TCM) preparations are complex mixtures of plant secondary metabolites, it is essential to explore their underlying molecular mechanisms in a systematic fashion. We have used the MCF-7 human breast cancer cell line as an initial in vitro model to identify CKI induced changes in gene expression. Cells were treated with CKI for 24 and 48 hours at two concentrations (1 and 2 mg/mL total alkaloids), and the effect of CKI on cell proliferation and apoptosis were measured using XTT and Annexin V/Propidium Iodide staining assays respectively. Transcriptome data of cells treated with CKI or 5-Fluorouracil (5-FU) for 24 and 48 hours were subsequently acquired using high-throughput Illumina RNA-seq technology. In this report we show that CKI inhibited MCF-7 cell proliferation and induced apoptosis in a dose-dependent fashion. We integrated and applied a series of transcriptome analysis methods, including gene differential expression analysis, pathway over-representation analysis, de novo identification of long non-coding RNAs (lncRNA) as well as co-expression network reconstruction, to identify candidate anti-cancer molecular mechanisms of CKI. Multiple pathways were perturbed and the cell cycle was identified as the potential primary target pathway of CKI in MCF-7 cells. CKI may also induce apoptosis in MCF-7 cells via a p53 independent mechanism. In addition, we identified novel lncRNAs and showed that many of them might be expressed as a response to CKI treatment.
Collapse
|
38
|
Xiong Y, Wang J, Zhu H, Liu L, Jiang Y. Chronic oxymatrine treatment induces resistance and epithelial‑mesenchymal transition through targeting the long non-coding RNA MALAT1 in colorectal cancer cells. Oncol Rep 2018; 39:967-976. [PMID: 29328404 PMCID: PMC5802036 DOI: 10.3892/or.2018.6204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/05/2017] [Indexed: 01/30/2023] Open
Abstract
A major reason for colorectal cancer (CRC) chemoresistance is the enhanced migration and invasion of cancer cells, such as the cell acquisition of epithelial-mesenchymal transition (EMT). Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been considered as a pro-oncogene in multiple cancers. However, the precise functional mechanism of lncRNA MALAT1 in chemoresistance and EMT is not well known. In the present study, we focused on the effect of oxymatrine on CRC cells and further investigated the role of MALAT1 in oxymatrine-induced resistance and EMT process. The human CRC cell line HT29 was exposed to increasing doses of oxymatrine to establish stable cell lines resistant to oxymatrine. The established HT29 oxymatrine resistant cells showed an EMT phenotype including specific morphologic changes, enhanced migratory and invasive capacity, and downregulation of E-cadherin protein expression. Subsequently, high-throughput HiSeq sequencing and RT-qPCR showed that lncRNA MALAT1 was significantly upregulated in the oxymatrine resistant cells (P<0.01), while knockdown of MALAT1 partially reversed the EMT phenotype in HT29 resistant cells. Furthermore, oxymatrine treatment suppressed the migration and invasion ability of CRC cells, however, this effect was significantly reversed by overexpression of MALAT1. Finally, we investigated the clinical role of MALAT1 and found that high lncRNA MALAT1 expression level is associated with poor prognosis in CRC patients receiving oxymatrine treatment (P<0.01). In conclusion, we demonstrate that lncRNA MALAT1 is a stimulator for oxymatrine resistance in CRC and it may provide therapeutic and prognostic information for CRC patients.
Collapse
Affiliation(s)
- Yibai Xiong
- Department of Oncology, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| | - Jun Wang
- Department of Anorectal Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Huirong Zhu
- Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| | - Lingshuang Liu
- Department of Oncology, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| | - Yi Jiang
- Department of Oncology, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| |
Collapse
|
39
|
Li Q, Yang G, Feng M, Zheng S, Cao Z, Qiu J, You L, Zheng L, Hu Y, Zhang T, Zhao Y. NF-κB in pancreatic cancer: Its key role in chemoresistance. Cancer Lett 2018; 421:127-134. [PMID: 29432846 DOI: 10.1016/j.canlet.2018.02.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/18/2018] [Accepted: 02/06/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is considered a lethal disease with a high mortality and an extremely low five-year survival rate. Chemotherapy plays a pivotal role in pancreatic cancer treatment both in an adjuvant setting after complete resection and in the case of unresectable metastatic disease. However, none of the available combination chemotherapy regimens has resulted in satisfactory survival outcomes. Recent studies have revealed that both constitutive and induced activation of nuclear factor kappa B (NF-κB) in pancreatic cancer cells are closely associated with cell proliferation, invasion, anti-apoptosis, inflammation, angiogenesis and chemotherapeutic resistance. Therefore, NF-κB inhibitors in combination with cytotoxic compounds have been reported as novel agents that improve chemotherapy sensitivity in pancreatic cancer. In this review, we outline recent developments in the understanding of the role of the NF-κB signaling pathway and its associated genes in the progression of pancreatic cancer and highlight some potentially effective strategies for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Quanxiao Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China.
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Suli Zheng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Ya Hu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
40
|
Qian L, Li X, Ye P, Wang G, Dai W, Liu Y, Gao Q, Shen G. Oxymatrine induces apoptosis and inhibits invasion in Gallbladder carcinoma via PTEN/PI3K/AKT pathway. Cytotechnology 2018; 70:83-94. [PMID: 29170841 PMCID: PMC5809667 DOI: 10.1007/s10616-017-0153-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/12/2017] [Indexed: 12/31/2022] Open
Abstract
Oxymatrine extracted from Sophora flavescens Ait as a natural polyphenolic phytochemical has been demonstrated to exhibit anti-tumor effects on various cancers, including Gallbladder carcinoma (GBC). However, its underlying mechanisms of function are largely unknown in GBC cells. The present study is conducted to investigate the anti-tumor effects and the underlying mechanisms of oxymatrine on GBC cells in vitro and in vivo. The results showed that oxymatrine inhibited cell viability, metastatic ability and induced cell apoptosis in dose-dependent manners. Furthermore, we found that the expression of p-AKT, MMP-2, MMP-9 and the ratio of Bcl-2/Bax were significantly down-regulated, while the expression of PTEN was up-regulated in GBC cells. In addition, pretreatment with a specific PI3K/AKT activator (IGF-1) significantly antagonized the oxymatrine-mediated inhibition of GBC-SD cells. Subsequently, our in vivo studies showed that administration of oxymatrine induced a significant dose-dependent decrease in tumor growth. In conclusion, these findings indicated that the inhibition of cells proliferation, migration, invasion and the induction of apoptosis in response to oxymatrine in GBC cells, may function through the suppression of PTEN/PI3K/AKT pathway, which was considered as the vital signaling pathway in regulating tumorigenesis. These results suggested that oxymatrine might be a novel effective candidate as chemotherapeutic agent against GBC.
Collapse
Affiliation(s)
- Liqiang Qian
- Department of General Surgery, Wujiang No.1 People's Hospital, Suzhou, 215200, China
| | - Xiaqin Li
- Department of Gynaecology and Obstetrics, Health Center of Songling, Suzhou, 215200, China
| | - Penghui Ye
- Department of General Surgery, Wujiang No.1 People's Hospital, Suzhou, 215200, China
| | - Gang Wang
- Department of General Surgery, Wujiang No.1 People's Hospital, Suzhou, 215200, China
| | - Wei Dai
- Department of General Surgery, Wujiang No.1 People's Hospital, Suzhou, 215200, China
| | - Yan Liu
- Department of General Surgery, Wujiang No.1 People's Hospital, Suzhou, 215200, China
| | - Quangen Gao
- Department of General Surgery, Wujiang No.1 People's Hospital, Suzhou, 215200, China.
| | - Genhai Shen
- Department of General Surgery, Wujiang No.1 People's Hospital, Suzhou, 215200, China.
| |
Collapse
|
41
|
Oxymatrine synergistically enhances antitumor activity of oxaliplatin in colon carcinoma through PI3K/AKT/mTOR pathway. Apoptosis 2018; 21:1398-1407. [PMID: 27671687 DOI: 10.1007/s10495-016-1297-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oxymatrine (OMT), one of the main active components of extracts from the dry roots of Sophora flavescens, has been reported to possess many pharmacological properties including cancer-preventive and anti-cancer effects. The aim of the present study is to explore the efficiency of combination therapy with OMT and oxaliplatin (OXA) and identify the in vitro and in vivo cytotoxicity on colon cancer lines (HT29 and SW480) and mice model. Cells were treated with OMT and/or OXA and subjected to cell viability, colony formation, apoptosis, cell cycle, western blotting, xenograft tumorigenicity assay and immunohistochemistry. The results demonstrated that OMT and OXA inhibited the proliferation of colon cancer cells, and combination therapy of OMT and OXA resulted in a combination index < 1, indicating a synergistic effect. Co-treatment with OMT and OXA caused G0/G1 phase arrest by upregulating P21, P27 and downregulating cyclin D, and induced apoptosis through decreasing the expression of p-PI3K, p-AKT, p-mTOR, p-p70S6K. In addition, pretreatment with a specific PI3K/AKT activator (IGF-1) significantly neutralized the pro-apoptotic activity of OXA + OMT, demonstrating the important role of PI3K/AKT in this process. Moreover, in nude mice model, co-treatment displayed more efficient inhibition of tumor weight and volume on SW480 xenograft mouse model than single-agent treatment with OXA or OMT. Immunohistochemistry analysis suggests the combinations greatly suppressed tumor proliferation, which consistent with our in vitro results. In conclusion, our findings highlight that the combination therapy with OMT and OXA exerted synergistic antitumor effects in colon cancer cells through PI3K/AKT/mTOR pathway and combination treatment with OMT and OXA would be a promising therapeutic strategy for colon carcinoma treatment.
Collapse
|
42
|
Li W, Yu X, Tan S, Liu W, Zhou L, Liu H. Oxymatrine inhibits non-small cell lung cancer via suppression of EGFR signaling pathway. Cancer Med 2017; 7:208-218. [PMID: 29239135 PMCID: PMC5773973 DOI: 10.1002/cam4.1269] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/03/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) plays a crucial role in human non–small cell lung cancer (NSCLC) tumorigenesis. In this study, oxymatrine was identified as an EGFR signaling pathway inhibitor in NSCLC. Oxymatrine inhibited anchorage‐dependent and independent growth of NSCLC cell lines but had no cytotoxicity in normal lung cells. We found that exposure to oxymatrine not only suppressed the activity of wild‐type EGFR but also inhibited the activation of exon 19 deletion and L858R/T790M mutated EGFR. Flow cytometry analysis suggested that oxymatrine‐induced cell cycle G0/G1 arrest was dependent on EGFR‐Akt signaling. Exogenous overexpression of Myr‐Akt rescued cyclin D1 expression in HCC827 cells. Moreover, oxymatrine prominently suppressed tumor growth in a xenograft mouse model. Thus, oxymatrine appears to be a novel therapeutic agent for NSCLC treatment.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China.,Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, 44195, USA
| | - Shiming Tan
- Department of Hemopathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
43
|
Emerging Cytotoxic Alkaloids in the Battle against Cancer: Overview of Molecular Mechanisms. Molecules 2017; 22:molecules22020250. [PMID: 28208712 PMCID: PMC6155614 DOI: 10.3390/molecules22020250] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/24/2022] Open
Abstract
Considered as the second deadliest disease globally, cancer has captured the attention of researchers who have been trying with perseverance to decode its hidden aspects, to find new prognosis methods, and to develop better and more effective treatments. Plants have continuously offered an excess of unique secondary metabolites with remarkable biological applications. Alkaloids, one of the most abundant metabolites, constitute a large conglomerate of basic heterocyclic nitrogen-containing natural compounds which are normally produced by plants as toxic substances. Out of the 27,000 different alkaloids, more than 17,000 have displayed diversified pharmacological properties including anticancer activities. These metabolites have been classified either according to their chemical structures or their taxonomic origin. None of the researched alkaloids have been classified according to their molecular mechanism of action against cancer. In fact, only a fraction of the tremendous number of anticancer alkaloids has been copiously mentioned in journals. Here, we aim to provide a summary of the literature on some of the promising anticancer alkaloids that have not been well discussed previously and to classify them according to their molecular mechanisms of action. This review will provide a better understanding of the anticancer mechanisms of these promising natural products that are a rich reservoir for drug discovery.
Collapse
|
44
|
Cai Y, Xu P, Yang L, Xu K, Zhu J, Wu X, Jiang C, Yuan Q, Wang B, Li Y, Qiu Y. HMGB1-mediated autophagy decreases sensitivity to oxymatrine in SW982 human synovial sarcoma cells. Sci Rep 2016; 6:37845. [PMID: 27897164 PMCID: PMC5126735 DOI: 10.1038/srep37845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022] Open
Abstract
Oxymatrine (OMT) is a type of alkaloid extracted from a traditional Chinese medicinal herb, Sophora flavescens. Although the antitumor activities of OMT have been observed in various cancers, there are no reports regarding the effects of OMT on human synovial sarcoma. In the present study, we analyzed the antitumor activities of OMT in SW982 human synovial sarcoma cells and determine whether high mobility group box protein 1 (HMGB1)-mediated autophagy was associated with its therapeutic effects. We found that OMT exhibited antitumor activity in SW982 cells and facilitated increases in autophagy. Inhibition of autophagy by 3-MA or ATG7 siRNA increased the level of apoptosis, which indicated that OMT-induced autophagy protected cells from the cytotoxicity of OMT. Administration of OMT to SW982 cells increased the expression of HMGB1. When HMGB1 was inhibited via HMGB1-siRNA, OMT-induced autophagy was decreased, and apoptosis was increased. Furthermore, we found that HMGB1-siRNA significantly increased the expression of p-Akt and p-mTOR. OMT-induced autophagy may be mediated by the Akt/mTOR pathway, and HMGB1 plays a vital role in the regulation of autophagy. Therefore, we believe that combining OMT with an inhibitor of autophagy or HMGB1 may make OMT more effective in the treatment of human synovial sarcoma.
Collapse
Affiliation(s)
- Yongsong Cai
- Department of Orthopaedics of the First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Peng Xu
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Le Yang
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Ke Xu
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Jialin Zhu
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Xiaoqing Wu
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Qiling Yuan
- Department of Orthopaedics of the First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Bo Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Yuanbo Li
- Department of Joint Surgery, Xi’an Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
| | - Yusheng Qiu
- Department of Orthopaedics of the First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| |
Collapse
|
45
|
Liang L, Huang J. Oxymatrine inhibits epithelial-mesenchymal transition through regulation of NF-κB signaling in colorectal cancer cells. Oncol Rep 2016; 36:1333-8. [PMID: 27430890 DOI: 10.3892/or.2016.4927] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/08/2016] [Indexed: 11/06/2022] Open
Abstract
Oxymatrine, a traditional Chinese herb extracted from Sophora flavescens Ait., displays strong anti-inflammatory and anticancer activities, but how oxymatrine exhibits anticarcinogenic effects in human colorectal cancer (CRC) remains uncertain. The present study aimed to elucidate the exact mechanism by which oxymatrine exhibits anticarcinogenic effects in CRC using the human colon cancer RKO cell line as the experimental model. CRC cells were treated with oxymatrine, and cell proliferation, migration and invasion were examined by colorimetric MTT, Transwell chamber and wound healing assays, respectively. In addition, epithelial-mesenchymal transition (EMT) markers and p65 were assessed by western blot analysis. Our study demonstrated that oxymatrine hindered the proliferation, migration and invasion of the CRC cells. Mechanistically, we found that oxymatrine modulated the expression of EMT markers including E-cadherin, Snail and N-cadherin, and reduced expression of p65 which is crucial to NF-κB activation. In conclusion, our results indicate that oxymatrine reduces the activation of the NF-κB signaling pathway and inhibits CRC invasion by modulating EMT.
Collapse
Affiliation(s)
- Li Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiean Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
46
|
He X, Bai Y, Zhao Z, Wang X, Fang J, Huang L, Zeng M, Zhang Q, Zhang Y, Zheng X. Local and traditional uses, phytochemistry, and pharmacology of Sophora japonica L.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:160-182. [PMID: 27085938 DOI: 10.1016/j.jep.2016.04.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora japonica (Fabaceae), also known as Huai (Chinese: ), is a medium-sized deciduous tree commonly found in China, Japan, Korea, Vietnam, and other countries. The use of this plant has been recorded in classical medicinal treatises of ancient China, and it is currently recorded in both the Chinese Pharmacopoeia and European Pharmacopoeia. The flower buds and fruits of S. japonica, also known as Flos Sophorae Immaturus and Fructus Sophorae in China, are most commonly used in Asia (especially in China) to treat hemorrhoids, hematochezia, hematuria, hematemesis, hemorrhinia, uterine or intestinal hemorrhage, arteriosclerosis, headache, hypertension, dysentery, dizziness, and pyoderma. To discuss feasible trends for further research on S. japonica, this review highlights the botany, ethnopharmacology, phytochemistry, biological activities, and toxicology of S. japonica based on studies published in the last six decades. MATERIALS AND METHODS Information on the S. japonica was collected from major scientific databases (SciFinder, PubMed, Elsevier, SpringerLink, Web of Science, Google Scholar, Medline Plus, China Knowledge Resource Integrated (CNKI), and "Da Yi Yi Xue Sou Suo (http://www.dayi100.com/login.jsp)" for publications between 1957 and 2015 on S. japonica. Information was also obtained from local classic herbal literature, government reports, conference papers, as well as PhD and MSc dissertations. RESULTS Approximately 153 chemical compounds, including flavonoids, isoflavonoids, triterpenes, alkaloids, polysaccharides, amino acids, and other compounds, have been isolated from the leaves, branches, flowers, buds, pericarps, and/or fruits of S. japonica. Among these compounds, several flavonoids and isoflavonoids comprise the active constituents of S. japonica, which exhibit a wide range of biological activities in vitro and in vivo such as anti-inflammatory, antibacterial, antiviral, anti-osteoporotic, antioxidant, radical scavenging, antihyperglycemic, antiobesity, antitumor, and hemostatic effects. Furthermore, flavonoids and isoflavonoids can be used as quality control markers for quality identification and evaluation of medicinal materials and their preparations. Information on evaluating the safety of S. japonica is very limited, so further study is required. To enable safer, more effective, and controllable therapeutic preparations, more in-depth information is urgently needed on the quality control, toxicology data, and clinical value of crude extract and active compounds of S. japonica. CONCLUSIONS S. japonica has long been used in traditional Chinese medicine (TCM) due to its wide range of biological activities, and is administered orally. Phytochemical and pharmacological studies of S. japonica have increased in the past few years, and the extract and active components of this plant can be used to develop new drugs based on their traditional application as well as their biological activities. Therefore, this review on the ethnopharmacology, phytochemistry, biological activities, and toxicity of S. japonica offers promising data for further studies as well as the commercial exploitation of this traditional medicine.
Collapse
Affiliation(s)
- Xirui He
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China; Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, PR China
| | - Yajun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China
| | - Zefeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China
| | - Xiaoxiao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China
| | - Jiacheng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China
| | - Linhong Huang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, PR China.
| | - Min Zeng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China
| | - Qiang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China
| | - Yajun Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China.
| |
Collapse
|
47
|
Lu ML, Xiang XH, Xia SH. Potential Signaling Pathways Involved in the Clinical Application of Oxymatrine. Phytother Res 2016; 30:1104-12. [PMID: 27165263 DOI: 10.1002/ptr.5632] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/29/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Oxymatrine, an alkaloid component extracted from the roots of Sophora species, has been shown to have antiinflammatory, antifibrosis, and antitumor effects and the ability to protect against myocardial damage, etc. The potential signaling pathways involved in the clinical application of oxymatrine might include the TGF-β/Smad, toll-like receptor 4/nuclear factor kappa-light-chain-enhancer of activated B cells, toll-like receptor9/TRAF6, Janus kinase/signal transduction and activator of transcription, phosphatidylinositol-3 kinase/Akt, delta-opioid receptor-arrestinl-Bcl-2, CD40, epidermal growth factor receptor, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 signaling pathways, and dimethylarginine dimethylaminohydrolase/asymmetric dimethylarginine metabolism pathway. In this review, we summarize the recent investigations of the signaling pathways related to oxymatrine to provide clues and references for further studies on its clinical application. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mei-Li Lu
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Tianjin, 300162, China
| | - Xiao-Hui Xiang
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Tianjin, 300162, China
| | - Shi-Hai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Tianjin, 300162, China
| |
Collapse
|
48
|
Liu Y, Bi T, Dai W, Wang G, Qian L, Gao Q, Shen G. Oxymatrine synergistically enhances the inhibitory effect of 5-fluorouracil on hepatocellular carcinoma in vitro and in vivo. Tumour Biol 2015; 37:7589-97. [PMID: 26687645 DOI: 10.1007/s13277-015-4642-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/13/2015] [Indexed: 12/27/2022] Open
Abstract
Oxymatrine (OMT), one of the main active components of extracts from the dry roots of Sophora flavescens, has long been employed clinically to treat cancers. Here, we investigated the synergistic effect of OMT with 5-fluorouracil (5-Fu) on the tumor growth inhibition of hepatocellular carcinoma cells (HCC; Hep-G2 and SMMC-7721) and explored the underlying mechanism. Cells were treated with OMT and/or 5-Fu and subjected to cell viability, colony formation, apoptosis, cell cycle, western blotting, xenograft tumorigenicity assay, and immunohistochemistry. OMT and 5-Fu inhibited the proliferation of Hep-G2 and SMMC-7721 cells, and combination treatment with OMT and 5-Fu resulted in a combination index <1, indicating a synergistic effect. Co-treatment with OMT and 5-Fu caused G0/G1 phase arrest by upregulating P21 and P27 and downregulating cyclin D, and induced apoptosis through increasing the production of reactive oxygen species (ROS) and decreasing the levels of p-ERK. In addition, the inhibition of ROS respectively reversed the cell death induced by 5-Fu + OMT, suggesting the key roles of ROS in the process. More importantly, 5-Fu and OMT in combination exhibit much superior tumor weight and volume inhibition on SMMC-7721 xenograft mouse model in comparison to 5-Fu or OMT alone. Immunohistochemistry analysis suggests the combinations greatly suppressed tumor proliferation, which was consistent with our in vitro results. Taken together, our findings indicated that OMT sensitizes HCC to 5-Fu treatment by the suppression of ERK activation through the overproduction of ROS, and combination treatment with OMT and 5-Fu would be a promising therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Yan Liu
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, 215200, China
| | - Tingting Bi
- Department of Geriatric Ward, Wujiang No. 1 People's Hospital, Suzhou, 215200, China
| | - Wei Dai
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, 215200, China
| | - Gang Wang
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, 215200, China
| | - Liqiang Qian
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, 215200, China
| | - Quangen Gao
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, 215200, China.
| | - Genhai Shen
- Department of General Surgery, Wujiang No. 1 People's Hospital, Suzhou, 215200, China.
| |
Collapse
|
49
|
Abstract
Oxymatrine is a kind of alkaloid extracted from traditional Chinese herb Sophora flavescens Ait. It has been proved to exert various biological activities such as anti-angiogenesis, proliferation-inhibiting, apoptosis-promoting, analgesic-strengthening, and anti-metastasis. The biological activities are related with inhibition of angiogenesis-associated factors, regulation of related signaling pathway and protein expression, synergistic effects with chemotherapy drug, cell cycle arrest and inhibition of voltage-activated K+ channel. In this review, we summarize the recent investigations of oxymatrine in cancer therapy so as to provide references for further study and clinical therapy.
Collapse
Affiliation(s)
- WW Lu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - R Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - JS Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - LQ Xia
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - J Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| |
Collapse
|
50
|
Li J, Jiang K, Zhao F. Oxymatrine suppresses proliferation and facilitates apoptosis of human ovarian cancer cells through upregulating microRNA‑29b and downregulating matrix metalloproteinase‑2 expression. Mol Med Rep 2015; 12:5369-74. [PMID: 26099492 DOI: 10.3892/mmr.2015.3977] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 05/21/2015] [Indexed: 11/06/2022] Open
Abstract
Oxymatrine, an alkaloid extracted from medicinal plants of the genus Sophora, has a wide range of pharmacological effects. Previous studies have revealed that oxymatrine can inhibit proliferation and metastasis of tumor cells through reducing matrix metalloproteinase‑2 (MMP‑2) mRNA expression. However, the expression of MMP‑2 in ovarian cancer is significantly higher than that in normal ovaries. Furthermore, the expression of microRNA‑29b (miR‑29b) in ovarian carcinoma is significantly lower than that in normal ovaries. Therefore, MMP‑2 and miR‑29b are tumor suppressor factors involved in ovarian cancer. To evaluate the anti-cancer effects of oxymatrine the OVCAR‑3 ovary cancer cell line was treated with oxymatrine at the concentrations of 0, 0.5, 1 and 2 mg/ml. Assessment of the proliferation and apoptosis of OVCAR‑3 cells showed that oxymatrine had an inhibitory effect on ovarian cancer cells. Furthermore, oxymatrine decreased the protein levels of MMP‑2 and increased the expression levels of miR‑29b in OVCAR‑3 cells. Through transfection of miR‑29b precursor into OVCAR‑3 cells, it was demonstrated that miR‑29b regulated MMP‑2 expression in OVCAR‑3 cells. In addition, anti‑miR‑29b antibodies were used to verify that the apoptotic effect of oxymatrine was due to upregulating miR‑29b and downregulating MMP‑2 expression. These results showed that oxymatrine suppresses the proliferation and facilitates apoptosis of human ovarian cancer cells through upregulating miR‑29b and downregulating MMP‑2 expression.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Kailei Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Fujie Zhao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|