1
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
2
|
Doghish AS, El-Husseiny AA, Abdelmaksoud NM, El-Mahdy HA, Elsakka EGE, Abdel Mageed SS, Mahmoud AMA, Raouf AA, Elballal MS, El-Dakroury WA, AbdelRazek MMM, Noshy M, El-Husseiny HM, Abulsoud AI. The interplay of signaling pathways and miRNAs in the pathogenesis and targeted therapy of esophageal cancer. Pathol Res Pract 2023; 246:154529. [PMID: 37196470 DOI: 10.1016/j.prp.2023.154529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Globally, esophageal cancer (EC) is the 6th leading cause of cancer-related deaths and the second deadliest gastrointestinal cancer. Multiple genetic and epigenetic factors, such as microRNAs (miRNAs), influence its onset and progression. miRNAs are short nucleic acid molecules that can regulate multiple cellular processes by regulating gene expression. Therefore, EC initiation, progression, apoptosis evasions, invasion capacity, promotion, angiogenesis, and epithelial-mesenchymal transition (EMT) enhancement are associated with miRNA expression dysregulation. Wnt/-catenin signaling, Mammalian target of rapamycin (mTOR)/P-gp, phosphoinositide-3-kinase (PI3K)/AKT/c-Myc, epidermal growth factor receptor (EGFR), and transforming growth factor (TGF)-β signaling are crucial pathways in EC that are controlled by miRNAs. This review was conducted to provide an up-to-date assessment of the role of microRNAs in EC pathogenesis and their modulatory effects on responses to various EC treatment modalities.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed M M AbdelRazek
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
3
|
Mbatha S, Hull R, Dlamini Z. Exploiting the Molecular Basis of Oesophageal Cancer for Targeted Therapies and Biomarkers for Drug Response: Guiding Clinical Decision-Making. Biomedicines 2022; 10:biomedicines10102359. [PMID: 36289620 PMCID: PMC9598679 DOI: 10.3390/biomedicines10102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Worldwide, oesophageal cancer is the sixth leading cause of deaths related to cancer and represents a major health concern. Sub-Saharan Africa is one of the regions of the world with the highest incidence and mortality rates for oesophageal cancer and most of the cases of oesophageal cancer in this region are oesophageal squamous cell carcinoma (OSCC). The development and progression of OSCC is characterized by genomic changes which can be utilized as diagnostic or prognostic markers. These include changes in the expression of various genes involved in signaling pathways that regulate pathways that regulate processes that are related to the hallmarks of cancer, changes in the tumor mutational burden, changes in alternate splicing and changes in the expression of non-coding RNAs such as miRNA. These genomic changes give rise to characteristic profiles of altered proteins, transcriptomes, spliceosomes and genomes which can be used in clinical applications to monitor specific disease related parameters. Some of these profiles are characteristic of more aggressive forms of cancer or are indicative of treatment resistance or tumors that will be difficult to treat or require more specialized specific treatments. In Sub-Saharan region of Africa there is a high incidence of viral infections such as HPV and HIV, which are both risk factors for OSCC. The genomic changes that occur due to these infections can serve as diagnostic markers for OSCC related to viral infection. Clinically this is an important distinction as it influences treatment as well as disease progression and treatment monitoring practices. This underlines the importance of the characterization of the molecular landscape of OSCC in order to provide the best treatment, care, diagnosis and screening options for the management of OSCC.
Collapse
Affiliation(s)
- Sikhumbuzo Mbatha
- SAMRC Precision Oncology Research Unit (PORU), SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
- Department of Surgery, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
- Correspondence: (S.M.); (Z.D.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
- Correspondence: (S.M.); (Z.D.)
| |
Collapse
|
4
|
Cui D, Qu R, Liu D, Xiong X, Liang T, Zhao Y. The Cross Talk Between p53 and mTOR Pathways in Response to Physiological and Genotoxic Stresses. Front Cell Dev Biol 2021; 9:775507. [PMID: 34869377 PMCID: PMC8638743 DOI: 10.3389/fcell.2021.775507] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor p53 is activated upon multiple cellular stresses, including DNA damage, oncogene activation, ribosomal stress, and hypoxia, to induce cell cycle arrest, apoptosis, and senescence. Mammalian target of rapamycin (mTOR), an evolutionarily conserved serine/threonine protein kinase, serves as a central regulator of cell growth, proliferation, and survival by coordinating nutrients, energy, growth factors, and oxygen levels. p53 dysfunction and mTOR pathway hyperactivation are hallmarks of human cancer. The balance between response to stresses or commitment to cell proliferation and survival is governed by various regulatory loops between the p53 and mTOR pathways. In this review, we first briefly introduce the tumor suppressor p53 and then describe the upstream regulators and downstream effectors of the mTOR pathway. Next, we discuss the role of p53 in regulating the mTOR pathway through its transcriptional and non-transcriptional effects. We further describe the complicated role of the mTOR pathway in modulating p53 activity. Finally, we discuss the current knowledge and future perspectives on the coordinated regulation of the p53 and mTOR pathways.
Collapse
Affiliation(s)
- Danrui Cui
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Ruirui Qu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Luo P, Jiang C, Ji P, Wang M, Xu J. Exosomes of stem cells from human exfoliated deciduous teeth as an anti-inflammatory agent in temporomandibular joint chondrocytes via miR-100-5p/mTOR. Stem Cell Res Ther 2019; 10:216. [PMID: 31358056 PMCID: PMC6664713 DOI: 10.1186/s13287-019-1341-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/07/2019] [Accepted: 07/14/2019] [Indexed: 12/20/2022] Open
Abstract
Objectives Temporomandibular joint osteoarthritis (TMJOA) is an inflammatory joint disease. This study investigated whether exosomes (Exos) of stem cells from human exfoliated deciduous teeth (SHEDs) have a therapeutic effect on TMJ inflammation and elucidated the underlying mechanisms. Materials and methods SHEDs were verified by flow cytometry. SHED-Exos were identified by western blotting, nanoparticle tracking analysis, and transmission electron microscopy. Western blot and RT-qPCR were performed to verify the anti-inflammatory effects of SHED-Exos. MicroRNA (miRNA) array analysis was conducted to determine the miRNA expression profiles of SHED-Exos, and the key pathways were analyzed. After chondrocytes were treated with an miR-100-5p mimic or rapamycin, relative expression of genes was measured by RT-qPCR and western blotting. A luciferase reporter assay was performed to reveal the molecular role of the exosomal miR-100 target, mTOR. Results MiR-100-5p was enriched in the SHED-Exos. Treatment with SHED-Exos suppressed the expression of interleukin-6 (IL-6), IL-8, matrix metalloproteinase 1 (MMP1), MMP3, MMP9, MMP13, and disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5). Chondrocytes treated with the miR-100 mimic showed lower expression of MMP1, MMP9, MMP13, ADAMTS5, and mTOR. In contrast, miR-100 downregulation upregulated the MMPs and mTOR. Rapamycin treatment upregulated miR-100 and downregulated MMPs and ADAMTS5. Furthermore, the luciferase reporter assay demonstrated that miR-100-5p directly targeted the mTOR 3′ untranslated region and that SHED-Exos miR-100-5p repressed mTOR expression. Conclusions This study demonstrated that SHED-Exos suppress inflammation in TMJ chondrocytes and may thus be a novel therapeutic agent for TMJ inflammation.
Collapse
Affiliation(s)
- Ping Luo
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chao Jiang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Menghong Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China. .,Pediatric Dentistry Department, The Affiliated Hospital of Stomatology, Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, China.
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China. .,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Stomatology, Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
6
|
Xiao Y, Su M, Ou W, Wang H, Tian B, Ma J, Tang J, Wu J, Wu Z, Wang W, Zhou Y. Involvement of noncoding RNAs in epigenetic modifications of esophageal cancer. Biomed Pharmacother 2019; 117:109192. [PMID: 31387188 DOI: 10.1016/j.biopha.2019.109192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Esophageal cancer (EC) is a serious digestive malignancy and is a leading cause of cancer-related mortality. Apart from genetic mutations, many epigenetic alterations including DNA methylation and histone modifications associated with chromatin remodeling have been identified in the regulation of gene expression in EC. Recently, noncoding RNAs, and mainly lncRNAs and miRNAs, have been revealed to be involved in the epigenetic regulation of EC. In this review, we focus on describing new insights on epigenetic processes associated with noncoding RNAs, which have been characterized to be responsible for the development and progression of EC.
Collapse
Affiliation(s)
- Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Min Su
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Wei Ou
- Department of Pharmacy, The First People's Hospital of Yue Yang, Yue Yang, PR China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Bo Tian
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Junliang Ma
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Jinming Tang
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Jie Wu
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Zhining Wu
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Wenxiang Wang
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China.
| | - Yong Zhou
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China.
| |
Collapse
|
7
|
Li X, Guo S, Min L, Guo Q, Zhang S. miR-92a-3p promotes the proliferation, migration and invasion of esophageal squamous cell cancer by regulating PTEN. Int J Mol Med 2019; 44:973-981. [PMID: 31257524 PMCID: PMC6657975 DOI: 10.3892/ijmm.2019.4258] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/10/2019] [Indexed: 01/18/2023] Open
Abstract
Esophageal squamous cell cancer (ESCC) has a high mortality rate. MicroRNA (miR)-92a-3p is considered to be a tumor promotor and an oncomiR. The aim of the present study was to investigate the effect of miR-92a-3p and its target gene on ESCC in terms of proliferation, migration and invasion. Higher expression of miR-92a-3p was detected in the tissues of patients with ESCC, compared with that in normal tissues. In addition, ESCC cell lines had a higher expression of miR-92a-3p compared with normal esophageal cells. A miR-92a-3p mimic was found to promote ESCC cell proliferation and a miR-92a-3p inhibitor was found to reduce ESCC cell proliferation. miR-92a-3p mimic transfection accelerated ESCC cell migration and invasion and decreased ESCC cell apoptosis via the Bax/Bcl-2 pathway and cleaved caspase-3. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was detected as a target of miR-92a-3p by a dual luciferase reporter assay. The overexpression of PTEN not only inhibited ESCC proliferation, migration and invasion, but also promoted ESCC cell apoptosis. PTEN and the miR-92a-3p mimic inhibited and promoted ESCC proliferation, respectively, which may be associated with the PI3K/Akt pathway. The results of the study revealed that miR-92a-3p promoted the proliferation, migration and invasion of ESCC, and the effect of miR-92a-3p on ESCC was realized by regulating PTEN.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Shuilong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| |
Collapse
|
8
|
Shi Y, Guo Z, Fang N, Jiang W, Fan Y, He Y, Ma Z, Chen Y. hsa_circ_0006168 sponges miR-100 and regulates mTOR to promote the proliferation, migration and invasion of esophageal squamous cell carcinoma. Biomed Pharmacother 2019; 117:109151. [PMID: 31229921 DOI: 10.1016/j.biopha.2019.109151] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Circle RNAs (circRNAs) are the novel noncoding RNAs with the covalent closed-loop structure, which play a crucial role in a variety of pathological processes, including cancer. Nevertheless, the expression profiles and functions of circRNAs in esophageal squamous cell cancer (ESCC) remain largely unknown. In this paper, 10 pairs of ESCC tissues were utilized to screen the circRNA expression profiles by means of microarray assay; further, a novel circular RNA named hsa_circ_0006168 was investigated. Meanwhile, the expression of hsa_circ_0006168 was measured in 52 ESCC tissues and in cell lines. Our results suggested that, hsa_circ_0006168 was remarkably increased not only in ESCC tissues but also in cell lines compared with those in normal cases. Besides, high hsa_circ_0006168 expression was positively connected with lymph node metastasis and TNM stage of ESCC patients. In vitro, the proliferation, invasion and migration capacities of ESCC cells were suppressed through down-regulating hsa_circ_0006168 expression. Besides, RNase R digestion assay confirmed that hsa_circ_0006168 was more stable than its linear CNOT6L mRNA form. Moreover, nuclear and cytoplasmic fraction assay indicated that hsa_circ_0006168 was mainly distributed in the cytoplasm of Kyse450 and TE13 cells. Mechanically, it was discovered in this study that hsa_circ_0006168 might regulate the expression of Mammalian Target of Rapamycin (mTOR) by sponging microRNA-100 (miR-100). Taken together, hsa_circ_0006168 can promote ESCC proliferation, migration and invasion through the competing endogenous RNA (ceRNA) mechanism, which has been first confirmed in our results. In ESCC, hsa_circ_0006168 can serve as a potential diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yijun Shi
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Zizhang Guo
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Na Fang
- Institute of Molecular Biology & Translational Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Wei Jiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Yu Fan
- Institute of Molecular Biology & Translational Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Yaozhou He
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Zijian Ma
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Yijiang Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| |
Collapse
|
9
|
Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N, Javan M. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr) 2017; 40:457-470. [PMID: 28741069 DOI: 10.1007/s13402-017-0335-7] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human mesenchymal stem cells (MSCs) have been shown to be involved in the formation and modulation of tumor stroma and in interacting with tumor cells, partly through their secretome. Exosomes are nano-sized intraluminal multi-vesicular bodies secreted by most types of cells and have been found to mediate intercellular communication through the transfer of genetic information via coding and non-coding RNAs to recipient cells. Since exosomes are considered as protective and enriched sources of shuttle microRNAs (miRNAs), we hypothesized that exosomal transfer of miRNAs from MSCs may affect tumor cell behavior, particularly angiogenesis. METHODS Exosomes derived from MSCs were isolated and characterized by scanning electron microscopy analyses, dynamic light scattering measurements, and Western blotting. Fold changes in miR-100 expression levels were calculated in exosomes and their corresponding donor cells by qRT-PCR. The effects of exosomal transfer of miR-100 from MSCs were assessed by qRT-PCR and Western blotting of the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. The quantification of secreted VEGF protein was determined by enzyme-linked immunosorbent assay. The putative paracrine effects of MSC-derived exosomes on tumor angiogenesis were explored by in vitro angiogenesis assays including endothelial cell proliferation, migration and tube formation assays. RESULTS We found that MSC-derived exosomes induce a significant and dose-dependent decrease in the expression and secretion of vascular endothelial growth factor (VEGF) through modulating the mTOR/HIF-1α signaling axis in breast cancer-derived cells. We also found that miR-100 is enriched in MSC-derived exosomes and that its transfer to breast cancer-derived cells is associated with the down-regulation of VEGF in a time-dependent manner. The putative role of exosomal miR-100 transfer in regulating VEGF expression was substantiated by the ability of anti-miR-100 to rescue the inhibitory effects of MSC-derived exosomes on the expression of VEGF in breast cancer-derived cells. In addition, we found that down-regulation of VEGF mediated by MSC-derived exosomes can affect the vascular behavior of endothelial cells in vitro. CONCLUSIONS Overall, our findings suggest that exosomal transfer of miR-100 may be a novel mechanism underlying the paracrine effects of MSC-derived exosomes and may provide a means by which these vesicles can modulate vascular responses within the microenvironment of breast cancer cells.
Collapse
Affiliation(s)
- Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | | | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
10
|
Zhang Y, Huang B, Wang HY, Chang A, Zheng XFS. Emerging Role of MicroRNAs in mTOR Signaling. Cell Mol Life Sci 2017; 74:2613-2625. [PMID: 28238105 DOI: 10.1007/s00018-017-2485-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022]
Abstract
Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase that plays a critical role in the control of cellular growth and metabolism. Hyperactivation of mTOR pathway is common in human cancers, driving uncontrolled proliferation. MicroRNA (miRNA) is a class of short noncoding RNAs that regulate the expression of a wide variety of genes. Deregulation of miRNAs is a hallmark of cancer. Recent studies have revealed interplays between miRNAs and the mTOR pathway during cancer development. Such interactions appear to provide a fine-tuning of various cellular functions and contribute qualitatively to the behavior of cancer. Here we provide an overview of current knowledge regarding the reciprocal relationship between miRNAs and mTOR pathway: regulation of mTOR signaling by miRNAs and control of miRNA biogenesis by mTOR. Further research in this area may prove important for the diagnosis and therapy of human cancer.
Collapse
Affiliation(s)
- Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201999, China.
| | - Bo Huang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201999, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Augustus Chang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - X F Steven Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA. .,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
11
|
Gallo S, Gili M, Lombardo G, Rossetti A, Rosso A, Dentelli P, Togliatto G, Deregibus MC, Taverna D, Camussi G, Brizzi MF. Stem Cell-Derived, microRNA-Carrying Extracellular Vesicles: A Novel Approach to Interfering with Mesangial Cell Collagen Production in a Hyperglycaemic Setting. PLoS One 2016; 11:e0162417. [PMID: 27611075 PMCID: PMC5017750 DOI: 10.1371/journal.pone.0162417] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) that are derived from stem cells are proving to be promising therapeutic options. We herein investigate the therapeutic potential of EVs that have been derived from different stem cell sources, bone-marrow (MSC) and human liver (HLSC), on mesangial cells (MCs) exposed to hyperglycaemia. By expressing a dominant negative STAT5 construct (ΔNSTAT5) in HG-cultured MCs, we have demonstrated that miR-21 expression is under the control of STAT5, which translates into Transforming Growth Factor beta (TGFβ) expression and collagen production. A number of approaches have been used to show that both MSC- and HLSC-derived EVs protect MCs from HG-induced damage via the transfer of miR-222. This resulted in STAT5 down-regulation and a decrease in miR-21 content, TGFβ expression and matrix protein synthesis within MCs. Moreover, we demonstrate that changes in the balance between miR-21 and miR-100 in the recipient cell, which are caused by the transfer of EV cargo, further contribute to providing beneficial effects. Interestingly, these effects were only detected in HG-cultured cells. Finally, it was found that HG reduced the expression of the nuclear encoded mitochondrial electron transport chain (ETC) components, CoxIV. It is worth noting that EV administration can rescue CoxIV expression in HG-cultured MCs. These results thus demonstrate that both MSC- and HLSC-derived EVs transfer the machinery needed to preserve MCs from HG-mediated damage. This occurs via the horizontal transfer of functional miR-222 which directly interferes with damaging cues. Moreover, our data indicate that the release of EV cargo into recipient cells provides additional therapeutic advantages against harmful mitochondrial signals.
Collapse
Affiliation(s)
- Sara Gallo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maddalena Gili
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giusy Lombardo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alberto Rossetti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Arturo Rosso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | | | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
12
|
Abstract
MicroRNAs (miRNA) are 22-nucleotide non-coding RNAs that post-transcriptionally regulate gene expression by base pairing to partially complementary sequences in the 3'-untranslated region of their target messenger RNA. Altered miRNA expression also changes the expression of oncogenes and tumor suppressors, affecting the proliferation, apoptosis, motility and invasibility of gastrointestinal cancer cells, including the cells of esophageal squamous cell carcinoma (ESCC). It has been suggested that various miRNA expression profiles may provide useful biomarkers and therapeutic targets, but to date few studies have been published on the role of miRNA in ESCC. In this review we summarize the identification and characterization of miRNAs involved in ESCC and discuss their potential as biomarkers and therapeutic targets.
Collapse
|
13
|
Zhou SM, Zhang F, Chen XB, Jun CM, Jing X, Wei DX, Xia Y, Zhou YB, Xiao XQ, Jia RQ, Li JT, Sheng W, Zeng Y. miR-100 suppresses the proliferation and tumor growth of esophageal squamous cancer cells via targeting CXCR7. Oncol Rep 2016; 35:3453-9. [PMID: 27035873 DOI: 10.3892/or.2016.4701] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 09/14/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs are highly conserved non-coding RNAs that regulate gene expression at the post-transcriptional level, and play pivotal roles in cancer development and progression. miR-100 has been reported to be significantly downregulated in a variety of cancers, including esophageal cancer. However, the role of miR-100 in human esophageal cancer has not been fully elucidated. We demonstrated that overexpression of miR-100 in esophageal cancer cells markedly inhibited cell proliferation, migration and invasion as well as tumor growth. We subsequently showed that CXCR7 is a direct target gene of miR-100. Our results indicated that miR-100 plays a tumor-suppressor role in esophageal cancer and suggest its potential application for esophageal cancer treatment.
Collapse
Affiliation(s)
- Shao-Mei Zhou
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Fang Zhang
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Xue-Bin Chen
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Cao-Ming Jun
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Xin Jing
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Deng-Xiong Wei
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Yang Xia
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Yu-Bai Zhou
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Xiang-Qian Xiao
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Run-Qing Jia
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Jing-Tao Li
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Wang Sheng
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Yi Zeng
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| |
Collapse
|
14
|
Noncoding RNA Expression Aberration Is Associated with Cancer Progression and Is a Potential Biomarker in Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2015; 16:27824-34. [PMID: 26610479 PMCID: PMC4661918 DOI: 10.3390/ijms161126060] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023] Open
Abstract
Esophageal cancer is one of the most common cancers worldwide. Esophageal squamous cell carcinoma (ESCC) is the major histological type of esophageal cancer in Eastern Asian countries. Several types of noncoding RNAs (ncRNAs) function as key epigenetic regulators of gene expression and are implicated in various physiological processes. Unambiguous evidence indicates that dysregulation of ncRNAs is deeply implicated in carcinogenesis, cancer progression and metastases of various cancers, including ESCC. The current review summarizes recent findings on the ncRNA-mediated mechanisms underlying the characteristic behaviors of ESCC that will help support the development of biomarkers and the design of novel therapeutic strategies.
Collapse
|
15
|
Wang AP, Li XH, Gong SX, Li WQ, Hu CP, Zhang Z, Li YJ. miR-100 suppresses mTOR signaling in hypoxia-induced pulmonary hypertension in rats. Eur J Pharmacol 2015; 765:565-73. [DOI: 10.1016/j.ejphar.2015.09.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022]
|
16
|
Biomolecular bases of the senescence process and cancer. A new approach to oncological treatment linked to ageing. Ageing Res Rev 2015; 23:125-38. [PMID: 25847820 DOI: 10.1016/j.arr.2015.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 01/07/2023]
Abstract
Human ageing is associated with a gradual decline in the physiological functions of the body at multiple levels and it is a key risk factor for many diseases, including cancer. Ageing process is intimately related to widespread cellular senescence, characterised by an irreversible loss of proliferative capacity and altered functioning associated with telomere attrition, accumulation of DNA damage and compromised mitochondrial and metabolic function. Tumour and senescent cells may be generated in response to the same stimuli, where either cellular senescence or transformation would constitute two opposite outcomes of the same degenerative process. This paper aims to review the state of knowledge on the biomolecular relationship between cellular senescence, ageing and cancer. Importantly, many of the cell signalling pathways that are found to be altered during both cellular senescence and tumourigenesis are regulated through shared epigenetic mechanisms and, therefore, they are potentially reversible. MicroRNAs are emerging as pivotal players linking ageing and cancer. These small RNA molecules have generated great interest from the point of view of future clinical therapy for cancer because successful experimental results have been obtained in animal models. Micro-RNA therapies for cancer are already being tested in clinical phase trials. These findings have potential importance in cancer treatment in aged people although further research-based knowledge is needed to convert them into an effective molecular therapies for cancer linked to ageing.
Collapse
|
17
|
WANG YUE, XIN HUA, HAN ZHIFENG, SUN HONGBING, GAO NAN, YU HAIXIANG. MicroRNA-374a promotes esophageal cancer cell proliferation via Axin2 suppression. Oncol Rep 2015; 34:1988-94. [DOI: 10.3892/or.2015.4182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/18/2015] [Indexed: 11/06/2022] Open
|
18
|
Xia H, Chen S, Chen K, Huang H, Ma H. MiR-96 promotes proliferation and chemo- or radioresistance by down-regulating RECK in esophageal cancer. Biomed Pharmacother 2014; 68:951-8. [PMID: 25465153 DOI: 10.1016/j.biopha.2014.10.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/18/2014] [Indexed: 12/18/2022] Open
Abstract
The involvement of miR-96 in esophageal cancer (EC) remains unclear. The aim of this study is to explore the functional role of miR-96 and determine whether miR-96 could be a potential therapeutic target for human esophageal cancer. MiR-96 up-regulation was demonstrated in 145 EC samples and RECK down-regulation was validated in EC cell lines. Moreover, ectopic overexpression of miR-96 in TE-1 or ECa-109 contributed to tumor growth in xenograft mouse models. Furthermore, up-regulation of miR-96 could reduce the susceptibilities of EC cells to chemotherapy or radiotherapy. RECK was identified as a target of miR-96 and RECK overexpressing could abrogate the growth of EC cells induced by miR-96. Taken together, miR-96 serves as an oncogene role in EC cells through downregulating RECK.
Collapse
Affiliation(s)
- Haifeng Xia
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province, People's Republic of China
| | - Shaomu Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province, People's Republic of China
| | - Ke Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province, People's Republic of China
| | - Haitao Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province, People's Republic of China
| | - Haitao Ma
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province, People's Republic of China.
| |
Collapse
|