1
|
Tang L, Cheng H, Yang Q, Xie Y, Zhang Q. Umbelliferone as an effective component of Rhodiola for protecting the cerebral microvascular endothelial barrier in cSVD. Front Pharmacol 2025; 16:1552579. [PMID: 40166460 PMCID: PMC11955776 DOI: 10.3389/fphar.2025.1552579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Objective Rhodiola is a common Chinese herb in the treatment of cerebral small vessel disease (cSVD). Umbelliferone, one of the effective components of Rhodiola, can protect the endothelial barrier. But its mechanisms are still unclear. Therefore, this study is aimed to explore mechanisms of umbelliferone of an effective component of Rhodiola in protecting the cerebral microvascular endothelial barrier in cSVD. Methods Firstly, ETCM, SwissTargetPrediction and literatures were used to screen components and targets of Rhodiola. GeneCards was used to obtain targets of cSVD. STRING and Cytoscape were utilized for building the PPI and C-T network. Metascape was utilized to construct GO and KEGG enrichment analysis. Then, molecular docking was employed to evaluate the binding ability of the compounds for their respective target molecules. Ultimately, the endothelial cell damage caused by OGD was employed to explore the protective impact of umbelliferone, a bioactive constituent of Rhodiola, on the endothelial barrier. Endothelial cell leakage and migration assays were used to assess the permeability and migration ability of endothelial cells. IF and WB techniques were employed to ascertain the expression of endothelial tight junction protein. The major target proteins and related pathways were validated by WB. Results Six effective components and 106 potential targets were identified and 1885 targets of cSVD were obtained. Nine key targets were selected. GO and KEGG enrichment analysis suggested that effects of Rhodiola in cSVD were associated with PI3K-Akt, Ras, Rap1 and MAPK signal pathways. Molecular docking results showed good binding ability between 28 pairs of key proteins and compounds. Umbelliferone of an effective component of Rhodiola can protect tight junction proteins and improve the permeability and migration ability of endothelial cells damaged by OGD through MMP9, MMP2, CCND1, PTGS2 and PI3K-Akt, Ras, Rap1 signaling pathways. Conclusion Our study systematically clarified mechanisms of Rhodiola in treating cSVD by network pharmacology and molecular docking, characterized by its multi-component, multi-target and multi-pathway effects. This finding was validated through in vitro tests, which demonstrated that umbelliferone of an effective component in Rhodiola can protect the brain microvascular endothelial barrier. It provided valuable ideas and references for additional research.
Collapse
Affiliation(s)
| | | | | | | | - Qiuxia Zhang
- College of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Wang L, Wu M, Gu B, Wang E, Wu F, Yang J, Guo B, Li X, Zhang P. Landscapes of the main components, metabolic and microbial signatures, and their correlations during stack "sweating" of Eucommiae Cortex. Front Microbiol 2025; 16:1550337. [PMID: 40092042 PMCID: PMC11906693 DOI: 10.3389/fmicb.2025.1550337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction "Sweating," a key step in the processing and production of Eucommiae Cortex (EC), which plays a vital role in the formation of the medicinal quality of EC. However, the mechanism of the effect of this traditional treatment of herbs on the quality of herbs is still unclear. Methods In this study, high performance liquid chromatography (HPLC), UPLC/MS-based untargeted metabolomics and high-throughput sequencing were applied to investigate the dynamic changes of the main active ingredients, differential metabolites and bacterial communities in the process of "sweating" in EC. The samples were prepared by the traditional stacking "sweating" method, and the samples were collected once a day for five consecutive days. Results The results showed that the contents of the main active constituents, geniposidic acid (GPA), chlorogenic acid (CA), rutin (AU), pinoresinol diglucoside (PD) and total flavonoids (TFS), increased significantly after steaming, followed by a slight decrease. Furthermore, 807 metabolites were identified as crucial factors contributing to the metabolic alterations induced by the "sweating" process. Microbial diversity analysis showed considerable changes in microbiota characteristics, and the main functional microorganisms before and after "sweating" of EC were Gluconobacter, unclassified_c_Gammaproteobacteria, Pseudomonas, Pantoea, Pedobacter, and Parecoccus, which were involved in the five metabolic pathways of other secondary metabolites leading to significant changes in alkaloids, amino acid related compounds, flavonoids, phenylpropanoids and terpenoids. Discussion The correlation network established between core bacterial communities, active ingredients, and metabolic pathways elucidates the microbial regulation of EC quality during sweating. These findings provide a scientific foundation for optimizing processing duration and advancing quality control strategies through targeted microbial community management.
Collapse
Affiliation(s)
- Linfeng Wang
- School of Life Sciences, Institute of Microbial Engineering, Henan University, Kaifeng, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China
| | - Mengxian Wu
- School of Life Sciences, Institute of Microbial Engineering, Henan University, Kaifeng, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China
| | - Bingnan Gu
- School of Life Sciences, Institute of Microbial Engineering, Henan University, Kaifeng, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China
| | - Erfeng Wang
- School of Life Sciences, Institute of Microbial Engineering, Henan University, Kaifeng, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China
| | - Faliang Wu
- School of Life Sciences, Institute of Microbial Engineering, Henan University, Kaifeng, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China
| | - Jiapeng Yang
- Henan Yangchen Pharmaceutical Company Limited, Sanmenxia, China
| | - Bing Guo
- Henan Sanweiqi Food Limited Liability Company, Sanmenxia, China
| | - Xingke Li
- School of Life Sciences, Institute of Microbial Engineering, Henan University, Kaifeng, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China
| | - Pengpai Zhang
- School of Life Sciences, Institute of Microbial Engineering, Henan University, Kaifeng, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China
| |
Collapse
|
3
|
Zheng G, Liu X, Abuduwufuer A, Yu H, He S, Ji W. Poria cocos inhibits the invasion, migration, and epithelial-mesenchymal transition of gastric cancer cells by inducing ferroptosis in cells. Eur J Med Res 2024; 29:531. [PMID: 39497198 PMCID: PMC11536948 DOI: 10.1186/s40001-024-02110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
OBJECTIVE Gastric cancer (GC) is one of the most prevalent malignant tumors of the digestive system. The advanced metastasis of gastric cancer severely limits the conventional approaches for its treatment, while certain traditional Chinese medicinal compounds have been reported to possess promising abilities in inhibiting tumor metastasis. Such as Poria (PA), known as Fu Ling in Chinese, is a commonly used traditional Chinese medicinal herb derived from Poria cocos, a fungus belonging to the polyporaceae family. METHODS The proliferation capacity of cells was measured using the MTT assay, while the invasion and migration abilities of cells after treatment with different concentrations of PA were evaluated through wound healing assay and Transwell assay. The differential expression of mRNA was analyzed using qPCR. The in vivo growth of tumors was assessed by subcutaneous tumor formation in mice. RESULTS Both in vivo and in vitro experiments have demonstrated that PA significantly inhibits the proliferation of GC. Moreover, in vitro experiments have revealed that PA not only suppresses the invasion and migration of GC cells but also reverses TNF-β-induced EMT. Further experiments have revealed that PA inhibits cell invasion, migration and EMT by inducing ferroptosis in GC cells. CONCLUSION In brief, the present study shows that PA inhibits tumor metastasis by inducing ferroptosis in GC cells. Our findings suggest that PA may have therapeutic potential in GC.
Collapse
Affiliation(s)
- Guangtao Zheng
- Department of Gastrointestinal Surgery, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Xiaoyan Liu
- Department of Gastroenterology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Abudukelimu Abuduwufuer
- Department of Gastroenterology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Haiye Yu
- Department of Gastroenterology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Sirui He
- Department of Gastroenterology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Wei Ji
- Department of Coronary Heart Disease, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
- Department of Vascular Intervention, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
4
|
Zhao J, Tian XC, Zhang JQ, Huang C, Sun Y, Qiao S, Jiang SL. Mechanism Exploration of Euphorbia fischeriana Steud. for Liver Cancer Based on Aspartic Acid Identification in Metabolomics. Chin J Integr Med 2024; 30:507-514. [PMID: 37861961 DOI: 10.1007/s11655-023-3706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE To investigate the anti-liver cancer effects and aspartic acid (Asp)-related action mechanism of Euphorbia fischeriana Steud. (Lang Du, LD). METHODS The mice model of liver cancer was established by injection of H22 cells. After 5 days, mice were randomly divided into model group, sorafenib group (20 mg/kg), LD high-dose (LDH, 1.36 g/kg) group, LD medium-dose (LDM, 0.68 g/kg) group, and LD low-dose (LDL, 0.34 g/kg) group, 10 mice each group. Drugs were intragastrically administered to the mice once daily for 10 days, respectively. Body weight, tumor size and tumor weight were recorded. Hepatic index was calculated. Pathological changes of liver cancer tissues were evaluated by hematoxylin and eosin staining and TUNEL staining. Liquid chromatography-mass spectrometer was used to analyze different metabolites between the model and LDH groups. RESULTS After LD treatment, tumor weight, tumor size and hepatic index were reduced compared with the model group. Necrocytosis and karyorrhexis of tumor cells were found. Moreover, 61 differential metabolites (18 up-regulated, 43 down-regulated) were affirmed and 20 pathways of KEGG (P<0.05) were gotten. In addition, Bel-7402, HepG2 and H22 cell viabilities were significantly increased after adding Asp into the medium. And then, the cell proliferation effect induced by Asp was ameliorated by LD. CONCLUSION The anti-liver cancer efficacy of LD extract was validated in H22 mice model, and inhibition of Asp level might be the underlying mechanism.
Collapse
Affiliation(s)
- Jing Zhao
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Xin-Chen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Jia-Qi Zhang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Chen Huang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Yan Sun
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Sen Qiao
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Shu-Long Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250000, China.
| |
Collapse
|
5
|
Feng RQ, Li DH, Liu XK, Zhao XH, Wen QE, Yang Y. Traditional Chinese Medicine for Breast Cancer: A Review. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:747-759. [PMID: 37915543 PMCID: PMC10617532 DOI: 10.2147/bctt.s429530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023]
Abstract
A total of 18% of global breast cancer (BC) deaths are attributed to BC in China, making it one of the five most common cancers there. There has been a steady rise in BC morbidity and mortality in women in the last few years and it is now a leading cancer among Chinese women. Conventional treatments for BC are currently effective but have several limitations and disadvantages, and Traditional Chinese medicine (TCM) plays a vital role in the overall process of cancer prevention and therapy. It is known that TCM can treat a variety of conditions at a variety of sites and targets. In recent years, increasingly, research has been conducted on TCM's ability to treat BC. TCM has shown positive results in the treatment of breast cancer and the adverse effects of radiotherapy and chemotherapy. This review describes the progress of clinical observation and mechanism research of TCM in the treatment of breast cancer in recent years. It provides some ideas and theoretical basis for the treatment of BC with TCM.
Collapse
Affiliation(s)
- Rui-Qi Feng
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - De-Hui Li
- Oncology Department II, the First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Shijiazhuang, Hebei Province, People’s Republic of China
| | - Xu-Kuo Liu
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Xiao-Hui Zhao
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Qian-Er Wen
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Ying Yang
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| |
Collapse
|
6
|
Bhat P, Patil VS, Anand A, Bijjaragi S, Hegde GR, Hegde HV, Roy S. Ethyl gallate isolated from phenol-enriched fraction of Caesalpinia mimosoides Lam. Promotes cutaneous wound healing: a scientific validation through bioassay-guided fractionation. Front Pharmacol 2023; 14:1214220. [PMID: 37397484 PMCID: PMC10311562 DOI: 10.3389/fphar.2023.1214220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
The tender shoots of Caesalpinia mimosoides Lam. are used ethnomedically by the traditional healers of Uttara Kannada district, Karnataka (India) for the treatment of wounds. The current study was aimed at exploring phenol-enriched fraction (PEF) of crude ethanol extract of tender shoots to isolate and characterize the most active bio-constituent through bioassay-guided fractionation procedure. The successive fractionation and sub-fractionation of PEF, followed by in vitro scratch wound, antimicrobial, and antioxidant activities, yielded a highly active natural antioxidant compound ethyl gallate (EG). In vitro wound healing potentiality of EG was evidenced by a significantly higher percentage of cell migration in L929 fibroblast cells (97.98 ± 0.46% at 3.81 μg/ml concentration) compared to a positive control group (98.44 ± 0.36%) at the 48th hour of incubation. A significantly higher rate of wound contraction (98.72 ± 0.41%), an elevated tensile strength of the incised wound (1,154.60 ± 1.42 g/mm2), and increased quantity of connective tissue elements were observed in the granulation tissues of the 1% EG ointment treated animal group on the 15th post-wounding day. The accelerated wound healing activity of 1% EG was also exhibited by histopathological examinations through Hematoxylin and Eosin, Masson's trichome, and Toluidine blue-stained sections. Significant up-regulation of enzymatic and non-enzymatic antioxidant contents (reduced glutathione, superoxide dismutase, and catalase) and down-regulation of oxidative stress marker (lipid peroxidation) clearly indicates the effective granular antioxidant activity of 1% EG in preventing oxidative damage to the skin tissues. Further, in vitro antimicrobial and antioxidant activities of EG supports the positive correlation with its enhanced wound-healing activity. Moreover, molecular docking and dynamics for 100 ns revealed the stable binding of EG with cyclooxygenase-2 (-6.2 kcal/mol) and matrix metalloproteinase-9 (-4.6 kcal/mol) and unstable binding with tumor necrosis factor-α (-7.2 kcal/mol), suggesting the potential applicability of EG in inflammation and wound treatment.
Collapse
Affiliation(s)
- Pradeep Bhat
- Indian Council of Medical Research-National Institute of Traditional Medicine, Belagavi, India
- Post Graduate Department of Studies in Botany, Karnatak University, Dharwad, India
| | - Vishal S. Patil
- Indian Council of Medical Research-National Institute of Traditional Medicine, Belagavi, India
| | - Ashish Anand
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, India
| | - Subhas Bijjaragi
- KLE’s SCP Arts, Science and D. D. Shirol Commerce College, Bagalkot, India
| | - Ganesh R. Hegde
- Post Graduate Department of Studies in Botany, Karnatak University, Dharwad, India
| | - Harsha V. Hegde
- Indian Council of Medical Research-National Institute of Traditional Medicine, Belagavi, India
| | - Subarna Roy
- Indian Council of Medical Research-National Institute of Traditional Medicine, Belagavi, India
| |
Collapse
|
7
|
Chougule PR, Sangaraju R, Patil PB, Qadri SSYH, Panpatil VV, Ghosh S, Mungamuri SK, Bhanoori M, Sinha SN. Effect of ethyl gallate and propyl gallate on dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6 J mice: preventive and protective. Inflammopharmacology 2023:10.1007/s10787-023-01254-5. [PMID: 37266812 DOI: 10.1007/s10787-023-01254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/29/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE AND DESIGN Inflammatory bowel disease (IBD) is an idiopathic inflammatory condition of the digestive system marked by oxidative stress, leukocyte infiltration, and elevation of inflammatory mediators. In this study, we demonstrate the protective effect of ethyl gallate (EG), a phytochemical, and propyl gallate (PG), an anti-oxidant, given through normal drinking water (DW) and copper water (CW) in various combinations, which had a positive effect on the amelioration of DSS-induced ulcerative colitis in C57BL/6 J mice. MATERIALS AND METHODS We successfully determined the levels of proinflammatory cytokines and anti-oxidant enzymes by ELISA, tracked oxidative/nitrosative stress (RO/NS) by in vivo imaging (IVIS) using L-012 chemiluminescent probe, disease activity index (DAI), and histopathological and morphometric analysis of colon in DSS-induced colitis in a model. RESULTS The results revealed that oral administration of ethyl gallate and propyl gallate at a dose of 50 mg/kg considerably reduced the severity of colitis and improved both macroscopic and microscopic clinical symptoms. The level of proinflammatory cytokines (TNF-α, IL-6, IL-1β, and IFN-γ) in colonic tissue was considerably reduced in the DSS + EG-treated and DSS + PG-treated groups, compared to the DSS alone-treated group. IVIS imaging of animals from the DSS + EG and DSS + PG-treated groups showed a highly significant decrease in RO/NS species relative to the DSS control group, with the exception of the DSS + PG/CW and DSS + EG + PG/CW-treated groups. We also observed lower levels of myeloperoxidase (MPO), nitric oxide (NO), and lipid peroxidation (LPO), and restored levels of GST and superoxide dismutase (SOD) in DSS + EG-DW/CW, DSS + PG/DW, and DSS + EG + PG/DW groups compared to DSS alone-treated group. In addition, we showed that the EG, PG, and EG + PG treatment significantly reduced the DAI score, and counteracted the body weight loss and colon shortening in mice compared to DSS alone-treated group. In this 21-day study, mice were treated daily with test substances and were challenged to DSS from day-8 to 14. CONCLUSION Our study highlights the protective effect of ethyl gallate and propyl gallate in various combinations which, in pre-clinical animals, serve as an anti-inflammatory drug against the severe form of colitis, indicating its potential for the treatment of IBD in humans. In addition, propyl gallate was investigated for the first time in this study for its anti-colitogenic effect with normal drinking water and reduced effect with copper water.
Collapse
Affiliation(s)
- Priyanka Raju Chougule
- Division of Food Safety, Indian Council of Medical Research - National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, 500007, India
- Department of Biochemistry, Osmania University, Hyderabad, Telangana, 500027, India
| | - Rajendra Sangaraju
- Division of Food Safety, Indian Council of Medical Research - National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, 500007, India
| | - Pradeep B Patil
- Animal Facility, ICMR - National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, 500007, India
| | - S S Y H Qadri
- Animal Facility, ICMR - National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, 500007, India
| | - Virendra V Panpatil
- Molecular Biology Division, National Institute of Nutrition-ICMR, Jamai-Osmania, Hyderabad, 500007, India
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition-ICMR, Jamai-Osmania, Hyderabad, 500007, India
| | - Sathish Kumar Mungamuri
- Division of Food Safety, Indian Council of Medical Research - National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, 500007, India
| | - Manjula Bhanoori
- Department of Biochemistry, Osmania University, Hyderabad, Telangana, 500027, India
| | - Sukesh Narayan Sinha
- Division of Food Safety, Indian Council of Medical Research - National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, 500007, India.
| |
Collapse
|
8
|
Liao Y, Li S, An J, Yu X, Tan X, Gui Y, Wang Y, Huang L, Zhou S, Wang D. Ethyl acetate extract of Antenoron Filiforme inhibits the proliferation of triple negative breast cancer cells via suppressing Skp2/p21 signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154856. [PMID: 37187035 DOI: 10.1016/j.phymed.2023.154856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Triple negative breast cancer (TNBC) has the worst prognosis of the any breast cancer subtype, and the efficient therapeutical treatment is extremely limited. Antenoron filiforme (Thunb.) Roberty & Vautier (AF) is a Traditional Chinese Medicine (TCM), which is well-known for a diverse array of pharmacological activities, including but not limited to anti-inflammatory, antioxidant and anti-tumors properties. Clinically, AF is commonly prescribed for the treatment of gynecological diseases. PURPOSE Since TNBC is one of the worst gynecological diseases, the objective of this research is to study the anti-TNBC function of the ethyl acetate extract (EAE) of AF (AF-EAE) and disclose its mechanism of action. MATERIALS AND METHODS With the aim of elucidating the underlying molecular mechanism and possible chemical basis of AF-EAE in the treatment of TNBC, a comprehensive approach combining system pharmacology and transcriptomic analysis, functional experimental validation, and computational modeling was implemented. Firstly, the potential therapeutic targets of AF-EAE treating TNBC were analyzed by systemic pharmacology and transcriptome sequencing. Subsequently, cell viability assays, cell cycle assays, and transplantation tumor assays were employed to detect the inhibitory effect of AF-EAE on TNBC. Apart from that, the western blot and RT-qPCR assays were adopted to verify its mechanism of action. Finally, the potential chemical basis of anti-TNBC function of AF-EAE was screened through molecular docking and validated by molecular dynamics. RESULTS This study analyzed the differentially expressed genes after AF-EAE treatment by RNA-sequencing (RNA-seq). It was found that most of the genes were abundant in the gene set termed "cell cycle". Besides, AF-EAE could suppress the proliferation of TNBC cells in vitro and in vivo by inhibiting the function of Skp2 protein. AF-EAE could also lead to the accumulation of p21 and a decrease of CDK6/CCND1 protein, thereby stalling the cycle of cell in the G1/S stage. Notably, clinical data survival analysis clearly demonstrated that Skp2 overexpression has been negatively correlated with survival rates in breast cancer (BC) patients. Further, as suggested by molecular docking and molecular dynamics, the quercetin and its analogues of AF-EAE might bind to Skp2 protein. CONCLUSION In summary, AF-EAE inhibits the growth of TNBC in vitro and in vivo through targeting Skp2/p21 signaling pathway. While providing a novel potential drug for treating TNBC, this study might establish a method to delve into the action mechanism of TCM.
Collapse
Affiliation(s)
- Yile Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shengrong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun An
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiankuo Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Gui
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yumei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijun Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiyi Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Wang M, Tang B, Huang H, Wu X, Deng H, Chen H, Mei L, Chen X, Burgering B, Lu C. Deciphering the mechanism of PSORI-CM02 in suppressing keratinocyte proliferation through the mTOR/HK2/glycolysis axis. Front Pharmacol 2023; 14:1152347. [PMID: 37089953 PMCID: PMC10119413 DOI: 10.3389/fphar.2023.1152347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Hyperplasia of epidermal keratinocytes that depend on glycolysis is a new hallmark of psoriasis pathogenesis. Our previous studies demonstrated that PSORI-CM02 could halt the pathological progression of psoriasis by targeting inflammatory response and angiogenesis, but its effect(s) and mechanism(s) on proliferating keratinocytes remained unclear. In this study, we aim to identify components of PSORI-CM02 that are absorbed into the blood and to determine the effect(s) of PSORI-CM02 on keratinocyte proliferation and its molecular mechanism(s). We used the immortalized human epidermal keratinocyte cell line, HaCaT, as an in vitro model of proliferating keratinocytes and the imiquimod-induced psoriasis mouse (IMQ) as an in vivo model. Metabolite profiles of vehicle pharmaceutic serum (VPS), PSORI-CM02 pharmaceutic serum (PPS), and water extraction (PWE) were compared, and 23 components of PSORI-CM02 were identified that were absorbed into the blood of mice. Both PPS and PWE inhibited the proliferation of HaCaT cells and consequently reduced the expression of the proliferation marker ki67. Additionally, PPS and PWE reduced phosphorylation levels of mTOR pathway kinases. Seahorse experiments demonstrated that PPS significantly inhibited glycolysis, glycolytic capacity, and mitochondrial respiration, thus reducing ATP production in HaCaT cells. Upon treatments of PPS or PWE, hexokinase 2 (HK2) expression was significantly decreased, as observed from the set of glycolytic genes we screened. Finally, in the IMQ model, we observed that treatment with PSORI-CM02 or BPTES, an inhibitor of mTOR signaling, reduced hyperproliferation of epidermal keratinocytes, inhibited the expression of p-S6 and reduced the number of proliferating cell nuclear antigen (PCNA)-positive cells in lesioned skin. Taken together, we demonstrate that PSORI-CM02 has an anti-proliferative effect on psoriatic keratinocytes, at least in part, by inhibiting the mTOR/HK2/glycolysis axis.
Collapse
Affiliation(s)
- Maojie Wang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Molecular Cancer Research, Center of Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, Utrecht, Netherlands
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Tang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Huanjie Huang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Molecular Cancer Research, Center of Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, Utrecht, Netherlands
| | - Xiaodong Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Hao Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Haiming Chen
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Liyan Mei
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xiumin Chen
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Boudewijn Burgering
- Molecular Cancer Research, Center of Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, Utrecht, Netherlands
- *Correspondence: Boudewijn Burgering, ; Chuanjian Lu,
| | - Chuanjian Lu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Boudewijn Burgering, ; Chuanjian Lu,
| |
Collapse
|
10
|
Ahn D, Kim J, Nam G, Zhao X, Kwon J, Hwang JY, Kim JK, Yoon SY, Chung SJ. Ethyl Gallate Dual-Targeting PTPN6 and PPARγ Shows Anti-Diabetic and Anti-Obese Effects. Int J Mol Sci 2022; 23:ijms23095020. [PMID: 35563411 PMCID: PMC9105384 DOI: 10.3390/ijms23095020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
The emergence of the high correlation between type 2 diabetes and obesity with complicated conditions has led to the coinage of the term “diabesity”. AMP-activated protein kinase (AMPK) activators and peroxisome proliferator-activated receptor (PPARγ) antagonists have shown therapeutic activity for diabesity, respectively. Hence, the discovery of compounds that activate AMPK as well as antagonize PPARγ may lead to the discovery of novel therapeutic agents for diabesity. In this study, the knockdown of PTPN6 activated AMPK and suppressed adipogenesis in 3T3-L1 cells. By screening a library of 1033 natural products against PTPN6, we found ethyl gallate to be the most selective inhibitor of PTPN6 (Ki = 3.4 μM). Subsequent assay identified ethyl gallate as the best PPARγ antagonist (IC50 = 5.4 μM) among the hit compounds inhibiting PTPN6. Ethyl gallate upregulated glucose uptake and downregulated adipogenesis in 3T3-L1 cells as anticipated. These results strongly suggest that ethyl gallate, which targets both PTPN6 and PPARγ, is a potent therapeutic candidate to combat diabesity.
Collapse
Affiliation(s)
- Dohee Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (D.A.); (J.K.); (G.N.); (X.Z.); (J.Y.H.); (J.K.K.)
| | - Jinsoo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (D.A.); (J.K.); (G.N.); (X.Z.); (J.Y.H.); (J.K.K.)
| | - Gibeom Nam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (D.A.); (J.K.); (G.N.); (X.Z.); (J.Y.H.); (J.K.K.)
| | - Xiaodi Zhao
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (D.A.); (J.K.); (G.N.); (X.Z.); (J.Y.H.); (J.K.K.)
| | - Jihee Kwon
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Korea;
| | - Ji Young Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (D.A.); (J.K.); (G.N.); (X.Z.); (J.Y.H.); (J.K.K.)
| | - Jae Kwan Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (D.A.); (J.K.); (G.N.); (X.Z.); (J.Y.H.); (J.K.K.)
| | - Sun-Young Yoon
- Department of Cosmetic Science, Kwangju Women’s University, Gwangju 62396, Korea;
| | - Sang J. Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (D.A.); (J.K.); (G.N.); (X.Z.); (J.Y.H.); (J.K.K.)
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: ; Tel.: +82-31-290-7703
| |
Collapse
|
11
|
The Evolution of Pharmacological Activities Bouea macrophylla Griffith In Vivo and In Vitro Study: A Review. Pharmaceuticals (Basel) 2022; 15:ph15020238. [PMID: 35215350 PMCID: PMC8880147 DOI: 10.3390/ph15020238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Bouea macrophylla Griffith (B. macrophylla) is one of the many herbal plants found in Asia, and its fruit is plum mango. This plant is rich in secondary metabolites, including flavonoids, tannins, polyphenolic compounds, and many others. Due to its bioactive components, plum mango has powerful antioxidants that have therapeutic benefits for many common ailments, including cardiovascular disease, diabetes, and cancer. This review describes the evolution of plum mango’s phytochemical properties and pharmacological activities including in vitro and in vivo studies. The pharmacological activities of B. macrophylla Griffith reviewed in this article are antioxidant, anticancer, antihyperglycemic, antimicrobial, and antiphotoaging. Each of these pharmacological activities described and studied the possible cellular and molecular mechanisms of action. Interestingly, plum mango seeds show good pharmacological activity where the seed is the part of the plant that is a waste product. This can be an advantage because of its economic value as a herbal medicine. Overall, the findings described in this review aim to allow this plant to be explored and utilized more widely, especially as a new drug discovery.
Collapse
|
12
|
Liu W, Liu J, Xing S, Pan X, Wei S, Zhou M, Li Z, Wang L, Bielicki JK. The benzoate plant metabolite ethyl gallate prevents cellular- and vascular-lipid accumulation in experimental models of atherosclerosis. Biochem Biophys Res Commun 2021; 556:65-71. [PMID: 33839416 DOI: 10.1016/j.bbrc.2021.03.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 11/18/2022]
Abstract
Ethyl gallate (EG) is a well-known constituent of medicinal plants, but its effects on atherosclerosis development are not clear. In the present study, the anti-atherosclerosis effects of EG and the underlying mechanisms were explored using macrophage cultures, zebrafish and apolipoprotein (apo) E deficient mice. Treatment of macrophages with EG (20 μM) enhanced cellular cholesterol efflux to HDL, and reduced net lipid accumulation in response to oxidized LDL. Secretion of monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) from activated macrophages was also blunted by EG. Fluorescence imaging techniques revealed EG feeding of zebrafish reduced vascular lipid accumulation and inflammatory responses in vivo. Similar results were obtained in apoE-/- mice 6.5 months of age, where plaque lesions and monocyte infiltration into the artery wall were reduced by 70% and 42%, respectively, after just 6 weeks of injections with EG (20 mg/kg). HDL-cholesterol increased 2-fold, serum cholesterol efflux capacity increased by ∼30%, and the levels of MCP-1 and IL-6 were reduced with EG treatment of mice. These results suggest EG impedes early atherosclerosis development by reducing the lipid and macrophage-content of plaque. Underlying mechanisms appeared to involve HDL cholesterol efflux mechanisms and suppression of pro-inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Wenjie Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianmin Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shu Xing
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xuefang Pan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Sheng Wei
- Behavioral Phenotyping Core Facility, Shandong University of Traditional Chinese Medicine, Jinan 250353, China.
| | - Mingyang Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zifa Li
- Behavioral Phenotyping Core Facility, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| | - Ling Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - John Kevin Bielicki
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
13
|
Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother 2020; 133:111044. [PMID: 33378952 DOI: 10.1016/j.biopha.2020.111044] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, slight side effects and good therapeutic effects. Good anti-tumor effects are shown by Traditional Chinese Medicine prescription, Chinese patent medicine, single Traditional Chinese Medicine and Traditional Chinese medicine monomer compound. Clinically, TCM prolonged the survival time of patients and improved the life quality of patients, due to less side effects. Cancer metastasis is a complex process involving numerous steps, multiple genes and their products. During the process of tumor metastasis, firstly, cancer cell increases its proliferative capacity by reducing autophagy and apoptosis, and then the cancer cell capacity is stimulated by increasing the ability of tumors to absorb nutrients from the outside through angiogenesis. Both of the two steps can increase tumor migration and invasion. Finally, the purpose of tumor metastasis is achieved. By inhibiting autophagy and apoptosis of tumor cells, angiogenesis and EMT outside the tumor can inhibit the invasion and migration of cancer, and consequently achieve the purpose of inhibiting tumor metastasis. This review explores the research achievements of Traditional Chinese Medicine on breast cancer, lung cancer, hepatic carcinoma, colorectal cancer, gastric cancer and other cancer metastasis in the past five years, summarizes the development direction of TCM on cancer metastasis research in the past five years and makes a prospect for the future.
Collapse
|
14
|
Kantapan J, Paksee S, Chawapun P, Sangthong P, Dechsupa N. Pentagalloyl Glucose- and Ethyl Gallate-Rich Extract from Maprang Seeds Induce Apoptosis in MCF-7 Breast Cancer Cells through Mitochondria-Mediated Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5686029. [PMID: 32382295 PMCID: PMC7193289 DOI: 10.1155/2020/5686029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 01/26/2023]
Abstract
Bouea macrophylla Griffith, locally known as maprang, has important economic value as a Thai fruit tree. The maprang seed extract (MPSE) has been shown to exhibit antibacterial and anticancer activities. However, the bioactive constituents in MPSE and the molecular mechanisms underlying these anticancer activities remain poorly understood. This study aims to identify the active compounds in MPSE and to investigate the mechanisms involved in MPSE-induced apoptosis in MCF-7 treated cancer cells. The cytotoxic effect was determined by MTT assay. The apoptosis induction of MPSE was evaluated in terms of ROS production, mitochondrial membrane potential depolarization, and apoptosis-related gene expression. The compounds identified by HPLC and LC/MS analysis were pentagalloyl glucose, ethyl gallate, and gallic acid. MPSE treatment decreased cell proliferation in MCF-7 cells, and MPSE was postulated to induce G2/M phase cell cycle arrest. MPSE was found to promote intracellular ROS production in MCF-7 treated cells and to also influence the depolarization of mitochondrial membrane potential. In addition, MPSE treatment can lead to increase in the Bax/Bcl-2 gene expression ratio, suggesting that MPSE-induced apoptosis is mitochondria-dependent pathway. Our results suggest that natural products obtained from maprang seeds have the potential to target the apoptosis pathway in breast cancer treatments.
Collapse
Affiliation(s)
- Jiraporn Kantapan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siwaphon Paksee
- Department of Radiological Technology, Kanchanabhishek Institute of Medical and Public Health Technology, Nonthaburi 11150, Thailand
| | - Pornthip Chawapun
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nathupakorn Dechsupa
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
15
|
Pan Y, Wang X, Zhang Y, Qiao J, Sasano H, McNamara K, Zhao B, Zhang D, Fan Y, Liu L, Jia X, Liu M, Song S, Wang L. Estradiol-Induced MMP-9 Expression via PELP1-Mediated Membrane-Initiated Signaling in ERα-Positive Breast Cancer Cells. Discov Oncol 2020; 11:87-96. [PMID: 32037484 DOI: 10.1007/s12672-020-00380-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 02/08/2023] Open
Abstract
Proline-, glutamic acid-, leucine-rich protein 1 (PELP1) is a novel estrogen receptor (ER) coregulator, demonstrated distinctive characters from other ERα coregulators, and has been suggested to be involved in metastasis of several cancers. In ERα-positive breast cancer, PELP1 overexpression enhanced ruffles and filopodium-like structure stimulated by estradiol (E2) through extranuclear cell signaling transduction hereby increased cell motility. However, whether PELP1 is also involved in extracellular matrix remodeling of ERα-positive breast cancer cells is still unknown. In this study, we investigated the role of PELP1 in E2-induced MMP-9 expression and the underlined mechanism. The results demonstrated the following: E2-induced ERα-positive MCF-7 breast cancer cell MMP-9 mRNA and protein expression in a rapid response and concentration-dependent manner. Knocked down PELP1 significantly suppressed E2-induced MMP-9 expression. E2-bovine serum albumin (BSA), a large molecular membrane-impenetrable conjugate of E2, can also upregulate MMP-9 protein expression in MCF-7, and the action of E2-BSA can be abolished by PI3K inhibitor LY294002; treating MCF-7 simultaneously with PELP1-shRNA and LY294002 did not show synergetic inhibitory effect on E2-BSA-induced MMP-9 expression. Our results indicated that estrogen-induced MMP-9 expression in ER-positive breast cancer cells may be through PELP1-mediated PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yu Pan
- Department of Anatomy, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, China
| | - Xiuli Wang
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, China
| | - Yanzhi Zhang
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, China
| | - Juanjuan Qiao
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, China
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine of Medicine, Sendai, Miyagi, 3600107, Japan
| | - Keely McNamara
- Department of Pathology, Tohoku University School of Medicine of Medicine, Sendai, Miyagi, 3600107, Japan
| | - Baoshan Zhao
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, China
| | - Dongmei Zhang
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, China
| | - Yuhua Fan
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, China
| | - Lili Liu
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, China
| | - Xueling Jia
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, China
| | - Ming Liu
- Department of Pathology, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163319, Heilongjiang, China
| | - Sihang Song
- Department of Histology and Embryology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, China
| | - Lin Wang
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, China.
| |
Collapse
|
16
|
Potential of Thai Herbal Extracts on Lung Cancer Treatment by Inducing Apoptosis and Synergizing Chemotherapy. Molecules 2020; 25:molecules25010231. [PMID: 31935933 PMCID: PMC6983161 DOI: 10.3390/molecules25010231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/18/2022] Open
Abstract
The incidence of lung cancer has increased while the mortality rate has continued to remain high. Effective treatment of this disease is the key to survival. Therefore, this study is a necessity in continuing research into new effective treatments. In this study we determined the effects of three different Thai herbs on lung cancer. Bridelia ovata, Croton oblongifolius, and Erythrophleum succirubrum were extracted by ethyl acetate and 50% ethanol. The cytotoxicity was tested with A549 lung cancer cell line. We found four effective extracts that exhibited toxic effects on A549 cells. These extracts included ethyl acetate extracts of B. ovata (BEA), C. oblongifolius (CEA), and E. succirubrum (EEA), and an ethanolic extract of E. succirubrum (EE). Moreover, these effective extracts were tested in combination with chemotherapeutic drugs. An effective synergism of these treatments was found specifically through a combination of BEA with methotrexate, EE with methotrexate, and EE with etoposide. Apoptotic cell death was induced in A549 cells by these effective extracts via the mitochondria-mediated pathway. Additionally, we established primary lung cancer and normal epithelial cells from lung tissue of lung cancer patients. The cytotoxicity results showed that EE had significant potential to be used for lung cancer treatment. In conclusion, the four effective extracts possessed anticancer effects on lung cancer. The most effective extract was found to be E. succirubrum (EE).
Collapse
|
17
|
Zhou Y, Zhou C, Zou Y, Jin Y, Han S, Liu Q, Hu X, Wang L, Ma Y, Liu Y. Multi pH-sensitive polymer–drug conjugate mixed micelles for efficient co-delivery of doxorubicin and curcumin to synergistically suppress tumor metastasis. Biomater Sci 2020; 8:5029-5046. [DOI: 10.1039/d0bm00840k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Multi pH-responsive polymer-drug conjugate mixed micelles were fabricated to co-deliver doxorubicin and curcumin for synergistic suppression tumor metastasis via inhibiting the invasion, migration, intravasation and extravasation of tumor cells.
Collapse
|
18
|
Chen H, Wu X, Duan Y, Zhi D, Zou M, Zhao Z, Zhang X, Yang X, Zhang J. Ursolic acid isolated from Isodon excisoides induces apoptosis and inhibits invasion of GBC-SD gallbladder carcinoma cells. Oncol Lett 2019; 18:1467-1474. [PMID: 31423212 DOI: 10.3892/ol.2019.10397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 03/21/2019] [Indexed: 12/26/2022] Open
Abstract
Gallbladder carcinoma (GBC) is a relatively rare but terminal malignancy, and drug/chemical development is an important aspect of prevention and treatment of GBC. Ursolic acid (UA), a pentacyclic triterpenoid, has been reported to exhibit various pharmaceutical effects. In the present study, the antiproliferative and anti-invasive effects of UA and the associated mechanisms in GBC were examined. UA was isolated from Isodon excisoides. The GBC cells (GBC-SD and NOZ) were treated with UA and subjected to a Cell Counting Kit-8 assay. The GBC-SD cells were subsequently selected for an Annexin V-FITC/propidium iodide assay, Transwell chamber assay, RT2 profiler polymerase chain reaction (PCR) array and western blot analysis. The results indicated that UA inhibited the proliferation and invasion and induced the apoptosis of GBC-SD cells in a dose-dependent manner. Furthermore, the PCR arrays demonstrated that there were 24 differentially expressed genes between the UA-treated and untreated groups. These differentially expressed genes suggested that UA induced the apoptosis of GBC-SD cells through activation of the cell extrinsic pathway. According to Kyoto Encyclopedia of Genes and Genomes pathway analysis of these differentially expressed genes, the suppression of nuclear factor (NF)-κB and protein kinase B (Akt) signaling pathways was further validated. In summary, UA induces the apoptosis and inhibits the invasion of GBC-SD cells, which may be associated with the suppression of NF-κB and Akt signaling pathways. These results may offer a potential therapeutic strategy for the chemoprevention or chemotherapy of GBC in humans.
Collapse
Affiliation(s)
- Huiping Chen
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiujuan Wu
- Department of Cardiology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan 450003, P.R. China
| | - Yitao Duan
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Dexian Zhi
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, P.R. China
| | - Min Zou
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhihong Zhao
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaojun Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaoang Yang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jianying Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
19
|
Liu F, Zu X, Xie X, Liu K, Chen H, Wang T, Liu F, Bode AM, Zheng Y, Dong Z, Kim DJ. Ethyl gallate as a novel ERK1/2 inhibitor suppresses patient-derived esophageal tumor growth. Mol Carcinog 2018; 58:533-543. [PMID: 30499613 DOI: 10.1002/mc.22948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Feifei Liu
- China-US (Henan) Hormel Cancer Institute; Henan China
| | - Xueyin Zu
- China-US (Henan) Hormel Cancer Institute; Henan China
- The Pathophysiology Department; The School of Basic Medical Sciences; Zhengzhou University; Zhengzhou Henan China
| | - Xiaomeng Xie
- China-US (Henan) Hormel Cancer Institute; Henan China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute; Henan China
- The Pathophysiology Department; The School of Basic Medical Sciences; Zhengzhou University; Zhengzhou Henan China
- The Affiliated Cancer Hospital; Zhengzhou University; Zhengzhou Henan China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention; Zhengzhou Henan China
| | - Hanyong Chen
- The Hormel Institute; University of Minnesota; Austin Minnesota
| | - Ting Wang
- China-US (Henan) Hormel Cancer Institute; Henan China
| | - Fangfang Liu
- China-US (Henan) Hormel Cancer Institute; Henan China
- The Pathophysiology Department; The School of Basic Medical Sciences; Zhengzhou University; Zhengzhou Henan China
| | - Ann M. Bode
- The Hormel Institute; University of Minnesota; Austin Minnesota
| | - Yan Zheng
- The Affiliated Cancer Hospital; Zhengzhou University; Zhengzhou Henan China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute; Henan China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention; Zhengzhou Henan China
- The Hormel Institute; University of Minnesota; Austin Minnesota
| | - Dong Joon Kim
- China-US (Henan) Hormel Cancer Institute; Henan China
| |
Collapse
|
20
|
Zeng L, Qian J, Luo X, Zhou A, Zhang Z, Fang Q. CHSY1 promoted proliferation and suppressed apoptosis in colorectal cancer through regulation of the NFκB and/or caspase-3/7 signaling pathway. Oncol Lett 2018; 16:6140-6146. [PMID: 30344756 DOI: 10.3892/ol.2018.9385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 07/30/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is a commonly observed malignant cancer. However, the limited therapies for colorectal cancer do not bring much benefit for patients. Chondroitin synthase-1 (CHSY1) is an enzyme responsible for the biosynthesis of chondroitin sulfate and has been implicated in the tumorigenesis of several cancer types; however, there is limited information regarding the role of CHSY1 in colorectal cancer. In the present study, CHSY1 was demonstrated to be highly expressed in colorectal cancer tissues and in cell lines, and the CHSY1 expression level was associated with the 5-year survival rate of patients with colorectal cancer. Following CHSY1 knockdown, the proliferation of colorectal cancer cells was significantly decreased. The number of RKO cells decreased by 50% following CHSY1 knockdown compared with that in the control after culture for 5 days. However, the apoptosis rate of RKO cells increased to 14.15% after CHSY1 knockdown. In addition, the activity of caspase-3/7 was also enhanced. Furthermore, the expression of B-cell lymphoma 2 (Bcl-2) was reduced, whereas the levels of Bcl-2-associated X protein (Bax) and truncated caspase-3/7 were increased following CHSY1 knockdown. Additionally, the phosphorylation level of IκB and the expression of nuclear factor (NF)κB also decreased. In contrast, forced expression of CHSY1 increased the level of Bcl-2, NFκB, and phosphorylated IκB, whereas the level of bax and truncated caspase-3/7 decreased. Therefore, the data of the present study suggest that CHSY1 promoted cell proliferation by regulating NFκB signaling and suppressed cell apoptosis by regulating/caspase-3/7 signaling in colorectal cancer. The present study also suggests that CHSY1 may be a potential target for colorectal cancer therapy.
Collapse
Affiliation(s)
- Lifeng Zeng
- Department of Clinical Laboratory, Jiangxi Province People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Jinrong Qian
- Department of Health Care of Cadre, Jiangxi Province People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaojiang Luo
- Department of Gastrointestinal Surgery, Jiangxi Province People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Aiqun Zhou
- Department of Clinical Laboratory, Jiangxi Province People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiyong Zhang
- Department of Clinical Laboratory, Jiangxi Province People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Quangang Fang
- Department of Clinical Laboratory, Jiangxi Province People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
21
|
Pi M, Kapoor K, Ye R, Smith JC, Baudry J, Quarles LD. GPCR6A Is a Molecular Target for the Natural Products Gallate and EGCG in Green Tea. Mol Nutr Food Res 2018; 62:e1700770. [PMID: 29468843 DOI: 10.1002/mnfr.201700770] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/07/2018] [Indexed: 12/15/2022]
Abstract
SCOPE The molecular mechanisms whereby gallates in green tea exert metabolic effects are poorly understood. METHODS AND RESULTS We found that GPRC6A, a multi-ligand-sensing G-protein-coupled receptor that regulates energy metabolism, sex hormone production, and prostate cancer progression, is a target for gallates. Sodium gallate (SG), gallic acid (GA) > ethyl gallate (EG) > octyl gallate (OG) dose dependently activated ERK in HEK-293 cells transfected with GPRC6A but not in non-transfected controls. SG also stimulated insulin secretion in β-cells isolated from wild-type mice similar to the endogenous GPRC6A ligands, osteocalcin (Ocn) and testosterone (T). Side-chain additions to create OG resulted in loss of GPRC6A agonist activity. Another component of green tea, epigallocatechin 3-gallate (EGCG), dose-dependently inhibited Ocn activation of GPRC6A in HEK-293 cells transfected with GPRC6A and blocked the effect of Ocn in stimulating glucose production in CH10T1/2 cells. Using structural models of the venus fly trap (VFT) and 7-transmembrane (7-TM) domains of GPRC6A, calculations suggest that l-amino acids and GA bind to the VFT, whereas EGCG is calculated to bind to sites in both the VFT and 7-TM. CONCLUSION GA and EGCG have offsetting agonist and antagonist effects on GPRC6A that may account for the variable metabolic effect of green tea consumption.
Collapse
Affiliation(s)
- Min Pi
- Department of Medicine, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA
| | - Karan Kapoor
- UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, 37830, USA
| | - Ruisong Ye
- Department of Medicine, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, 37830, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jerome Baudry
- UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, 37830, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Leigh D Quarles
- Department of Medicine, University of Tennessee Health Science Center, 19 S Manassas St., Memphis, TN, 38163, USA
| |
Collapse
|
22
|
Shilpa G, Renjitha J, Saranga R, Sajin FK, Nair MS, Joy B, Sasidhar BS, Priya S. Epoxyazadiradione Purified from the Azadirachta indica Seed Induced Mitochondrial Apoptosis and Inhibition of NFκB Nuclear Translocation in Human Cervical Cancer Cells. Phytother Res 2017; 31:1892-1902. [PMID: 29044755 DOI: 10.1002/ptr.5932] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022]
Abstract
Epoxyazadiradione (EAD) is an important limonoid present in Neem (Azadirachta indica) plant. In the present study, we have purified EAD from Neem seed and studied its anticancer potential in human cervical cancer (HeLa) cells. Cell proliferation inhibition studies indicated that the GI50 value of EAD is 7.5 ± 0.0092 μM in HeLa cells, whereas up to 50 μM concentrations EAD did not affect the growth of normal H9C2 cells. The control drug cisplatin inhibited the growth of both HeLa and H9C2 cells with a GI50 value of 2.92 ± 1.192 and 4.22 ± 1.568 μM, respectively. Nuclear DNA fragmentation, cell membrane blebbing, phosphatidylserine translocation, upregulation of Bax, caspase 3 activity and poly (ADP ribose) polymerase cleavage and downregulation of BCl2 in HeLa cells on treatment with EAD indicated the apoptotic cell death. Increase in caspase 9 activity and release of active cytochrome c to the cytoplasm on treatment with EAD confirmed that the apoptosis was mediated through the mitochondrial pathway. Epoxyazadiradione also inhibited the nuclear translocation of nuclear factor κB in HeLa cells. Thus, our studies demonstrated EAD as a potent and safe chemotherapeutic agent when compared with the standard drug cisplatin that is toxic to both cancer and normal cells equally. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- G Shilpa
- Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - J Renjitha
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - R Saranga
- SAS SNDP Yogam College, Pathanamthitta, 689691, Kerala, India
| | - Francis K Sajin
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India
| | - Mangalam S Nair
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - Beena Joy
- Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India
| | - B S Sasidhar
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - S Priya
- Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| |
Collapse
|
23
|
Taechowisan T, Chaisaeng S, Phutdhawong WS. Antibacterial, antioxidant and anticancer activities of biphenyls from Streptomyces sp. BO-07: an endophyte in Boesenbergia rotunda (L.) Mansf A. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1339669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Thongchai Taechowisan
- Department of Microbiology, Faculty of Science, Silpakorn University, Nakorn Pathom, Thailand
| | - Suchanya Chaisaeng
- Department of Microbiology, Faculty of Science, Silpakorn University, Nakorn Pathom, Thailand
| | - Waya S. Phutdhawong
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakorn Pathom, Thailand
| |
Collapse
|
24
|
Sánchez-Carranza JN, Alvarez L, Marquina-Bahena S, Salas-Vidal E, Cuevas V, Jiménez EW, Veloz G RA, Carraz M, González-Maya L. Phenolic Compounds Isolated from Caesalpinia coriaria Induce S and G2/M Phase Cell Cycle Arrest Differentially and Trigger Cell Death by Interfering with Microtubule Dynamics in Cancer Cell Lines. Molecules 2017; 22:molecules22040666. [PMID: 28441723 PMCID: PMC6154320 DOI: 10.3390/molecules22040666] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022] Open
Abstract
Caesalpinia coriaria (C. coriaria), also named cascalote, has been known traditionally in México for having cicatrizing and inflammatory properties. Phytochemical reports on Caesalpinia species have identified a high content of phenolic compounds and shown antineoplastic effects against cancer cells. The aim of this study was to isolate and identify the active compounds of a water:acetone:ethanol (WAE) extract of C. coriaria pods and characterize their cytotoxic effect and cell death induction in different cancer cell lines. The compounds isolated and identified by chromatography and spectroscopic analysis were stigmasterol, ethyl gallate and gallic acid. Cytotoxic assays on cancer cells showed different ranges of activities. A differential effect on cell cycle progression was observed by flow cytometry. In particular, ethyl gallate and tannic acid induced G2/M phase cell cycle arrest and showed interesting effect on microtubule stabilization in Hep3B cells observed by immunofluorescence. The induction of apoptosis was characterized by morphological characteristic changes, and was supported by increases in the ratio of Bax/Bcl-2 expression and activation of caspase 3/7. This work constitutes the first phytochemical and cytotoxic study of C. coriaria and showed the action of its phenolic constituents on cell cycle, cell death and microtubules organization.
Collapse
Affiliation(s)
- Jessica Nayelli Sánchez-Carranza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mexico.
| | - Laura Alvarez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mexico.
| | - Silvia Marquina-Bahena
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mexico.
| | - Enrique Salas-Vidal
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, C.P. 62209 Morelos, Mexico.
| | - Verónica Cuevas
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mexico.
| | - Elizabeth W Jiménez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mexico.
| | - Rafael A Veloz G
- Departamento de Ingenieria Agroindustrial, Universidad de Guanajuato, Salvatierra, C.P. 38000 Guanajuato, Mexico.
| | - Maelle Carraz
- UMR152 Pharma Dev, Université de Toulouse, IRD, UPS, 31062 Toulouse, France.
| | - Leticia González-Maya
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mexico.
| |
Collapse
|
25
|
Dell'Anna MM, Censi V, Carrozzini B, Caliandro R, Denora N, Franco M, Veclani D, Melchior A, Tolazzi M, Mastrorilli P. Triphenylphosphane Pt(II) complexes containing biologically active natural polyphenols: Synthesis, crystal structure, molecular modeling and cytotoxic studies. J Inorg Biochem 2016; 163:346-361. [DOI: 10.1016/j.jinorgbio.2016.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/25/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
|