1
|
Sabattini S, Baldassarro VA, Zaccone R, Calzà L, Giardino L, Vascellari M, Lorenzini L, Moretti M, Marconato L. Dysregulated miRNAs in a canine model of haemangiosarcoma metastatic to the brain. Vet Comp Oncol 2024; 22:70-77. [PMID: 38112225 DOI: 10.1111/vco.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/11/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Haemangiosarcoma is a highly metastatic and lethal cancer of blood vessel-forming cells that commonly spreads to the brain in both humans and dogs. Dysregulations in phosphatase and tensin (PTEN) homologue have been identified in various types of cancers, including haemangiosarcoma. MicroRNAs (miRNAs) are short noncoding single-stranded RNA molecules that play a crucial role in regulating the gene expression. Some miRNAs can function as oncogenes or tumour suppressors, influencing important processes in cancer, such as angiogenesis. This study aimed to investigate whether miRNAs targeting PTEN were disrupted in canine haemangiosarcoma and its corresponding brain metastases (BM). The expression levels of miRNA-10b, miRNA-19b, miRNA-21, miRNA-141 and miRNA-494 were assessed in samples of primary canine cardiac haemangiosarcomas and their matched BM. Furthermore, the miRNA profile of the tumours was compared to samples of adjacent non-cancerous tissue and healthy control tissues. In primary cardiac haemangiosarcoma, miRNA-10b showed a significant increase in expression, while miRNA-494 and miRNA-141 exhibited downregulation. Moreover, the overexpression of miRNA-10b was retained in metastatic brain lesions. Healthy tissues demonstrated significantly different expression patterns compared to cancerous tissues. In particular, the expression of miRNA-10b was nearly undetectable in both control brain tissue and perimetastatic cerebral tissue. These findings can provide a rationale for the development of miRNA-based therapeutic strategies, aimed at selectively treating haemangiosarcoma.
Collapse
Affiliation(s)
- Silvia Sabattini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Riccardo Zaccone
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Laura Calzà
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Marta Vascellari
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Marzia Moretti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
- IRET Foundation, Bologna, Italy
| | - Laura Marconato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Romeo M, Dallio M, Scognamiglio F, Ventriglia L, Cipullo M, Coppola A, Tammaro C, Scafuro G, Iodice P, Federico A. Role of Non-Coding RNAs in Hepatocellular Carcinoma Progression: From Classic to Novel Clinicopathogenetic Implications. Cancers (Basel) 2023; 15:5178. [PMID: 37958352 PMCID: PMC10647270 DOI: 10.3390/cancers15215178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a predominant malignancy with increasing incidences and mortalities worldwide. In Western countries, the progressive affirmation of Non-alcoholic Fatty Liver Disease (NAFLD) as the main chronic liver disorder in which HCC occurrence is appreciable even in non-cirrhotic stages, constitutes a real health emergency. In light of this, a further comprehension of molecular pathways supporting HCC onset and progression represents a current research challenge to achieve more tailored prognostic models and appropriate therapeutic approaches. RNA non-coding transcripts (ncRNAs) are involved in the regulation of several cancer-related processes, including HCC. When dysregulated, these molecules, conventionally classified as "small ncRNAs" (sncRNAs) and "long ncRNAs" (lncRNAs) have been reported to markedly influence HCC-related progression mechanisms. In this review, we describe the main dysregulated ncRNAs and the relative molecular pathways involved in HCC progression, analyzing their implications in certain etiologically related contexts, and their applicability in clinical practice as novel diagnostic, prognostic, and therapeutic tools. Finally, given the growing evidence supporting the immune system response, the oxidative stress-regulated mechanisms, and the gut microbiota composition as relevant emerging elements mutually influencing liver-cancerogenesis processes, we investigate the relationship of ncRNAs with this triad, shedding light on novel pathogenetic frontiers of HCC progression.
Collapse
Affiliation(s)
- Mario Romeo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Marcello Dallio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Flavia Scognamiglio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Lorenzo Ventriglia
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Marina Cipullo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Annachiara Coppola
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| | - Chiara Tammaro
- Biochemistry Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (C.T.); (G.S.)
| | - Giuseppe Scafuro
- Biochemistry Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (C.T.); (G.S.)
| | - Patrizia Iodice
- Division of Medical Oncology, AORN Azienda dei Colli, Monaldi Hospital, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Alessandro Federico
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.R.); (F.S.); (L.V.); (M.C.); (A.C.); (A.F.)
| |
Collapse
|
3
|
Gao X, Yang X, He F, Liu X, Liu D, Yuan X. Downregulation of microRNA‑494 inhibits cell proliferation in lung squamous cell carcinoma via the induction of PUMA‑α‑mediated apoptosis. Exp Ther Med 2023; 25:242. [PMID: 37153893 PMCID: PMC10160919 DOI: 10.3892/etm.2023.11941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/16/2023] [Indexed: 05/10/2023] Open
Abstract
Increased evidence has shown that abnormal microRNA (miRNA) plays pivotal roles in numerous types of cancer. However, their expression, function and mechanism in lung squamous cell carcinoma (LSCC) remains to be fully elucidated. The aim of the present study was to investigate the suppressive role of miR-494 in LSCC progression and elucidate its regulatory mechanism. By analyzing expression profiles of miRNAs in LSCC tissues using miRNA microarray, it was revealed that miR-494 was significantly upregulated in 22 pairs of LSCC tissues. Subsequently, reverse transcription-quantitative PCR was performed to determine the expression of miR-494 and p53-upregulated-modulator-of-apoptosis-α (PUMA-α). Western blot analysis was conducted to examine protein levels. Dual-luciferase reporter assay was used to confirm the binding between miR-494 and PUMA-α. Annexin V-fluoresceine isothiocyanate/propidium iodide staining and CCK-8 assays were employed to determine cell apoptosis and cell viability, respectively. It was also revealed that miR-494 was highly expressed in LSCC cell lines compared with that in 16HBE cells. Further experiments confirmed that knockdown of miR-494 reduced cell viability and induced LSCC apoptosis. Bioinformatics analysis predicted that miR-494 could potentially target PUMA-α; also known as Bcl-2-binding component 3, a pro-apoptotic factor, and an inverse correlation between the expression of miR-494 and PUMA-α mRNA levels in LSCC tissues was found. Furthermore, PUMA-α inhibition could reverse the promoting effect of miR-494 knockdown on apoptosis in LSCC cells. Taken together, these findings demonstrated that miR-494 functions as an oncogene by targeting PUMA-α in LSCC, and miR-494 may serve as a novel therapeutic target for treating LSCC.
Collapse
Affiliation(s)
- Xinyuan Gao
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Xiaohua Yang
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Fengzhen He
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Xue Liu
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Ding Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xiaomei Yuan
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
- Correspondence to: Professor Xiaomei Yuan, Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, 88 Jiankang Road, Weihui, Xinxiang, Henan 453100, P.R. China
| |
Collapse
|
4
|
Relationship Between the MicroRNAs and PI3K/AKT/mTOR Axis: Focus on Non-Small Cell Lung Cancer. Pathol Res Pract 2022; 239:154093. [DOI: 10.1016/j.prp.2022.154093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022]
|
5
|
Yang Y, Shang J, Sun Y, Li F, Zhang Y, Kong XZ, Li S, Liu JX. TLNPMD: Prediction of miRNA-Disease Associations Based on miRNA-Drug-Disease Three-Layer Heterogeneous Network. Molecules 2022; 27:4371. [PMID: 35889243 PMCID: PMC9324587 DOI: 10.3390/molecules27144371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Many microRNAs (miRNAs) have been confirmed to be associated with the generation of human diseases. Capturing miRNA-disease associations (M-DAs) provides an effective way to understand the etiology of diseases. Many models for predicting M-DAs have been constructed; nevertheless, there are still several limitations, such as generally considering direct information between miRNAs and diseases, usually ignoring potential knowledge hidden in isolated miRNAs or diseases. To overcome these limitations, in this study a novel method for predicting M-DAs was developed named TLNPMD, highlights of which are the introduction of drug heuristic information and a bipartite network reconstruction strategy. Specifically, three bipartite networks, including drug-miRNA, drug-disease, and miRNA-disease, were reconstructed as weighted ones using such reconstruction strategy. Based on these weighted bipartite networks, as well as three corresponding similarity networks of drugs, miRNAs and diseases, the miRNA-drug-disease three-layer heterogeneous network was constructed. Then, this heterogeneous network was converted into three two-layer heterogeneous networks, for each of which the network path computational model was employed to predict association scores. Finally, both direct and indirect miRNA-disease paths were used to predict M-DAs. Comparative experiments of TLNPMD and other four models were performed and evaluated by five-fold and global leave-one-out cross validations, results of which show that TLNPMD has the highest AUC values among those of compared methods. In addition, case studies of two common diseases were carried out to validate the effectiveness of the TLNPMD. These experiments demonstrate that the TLNPMD may serve as a promising alternative to existing methods for predicting M-DAs.
Collapse
Affiliation(s)
- Yi Yang
- School of Computer Science, Qufu Normal University, Rizhao 276826, China; (Y.Y.); (Y.S.); (F.L.); (X.-Z.K.); (S.L.); (J.-X.L.)
| | - Junliang Shang
- School of Computer Science, Qufu Normal University, Rizhao 276826, China; (Y.Y.); (Y.S.); (F.L.); (X.-Z.K.); (S.L.); (J.-X.L.)
| | - Yan Sun
- School of Computer Science, Qufu Normal University, Rizhao 276826, China; (Y.Y.); (Y.S.); (F.L.); (X.-Z.K.); (S.L.); (J.-X.L.)
| | - Feng Li
- School of Computer Science, Qufu Normal University, Rizhao 276826, China; (Y.Y.); (Y.S.); (F.L.); (X.-Z.K.); (S.L.); (J.-X.L.)
| | - Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520, China;
| | - Xiang-Zhen Kong
- School of Computer Science, Qufu Normal University, Rizhao 276826, China; (Y.Y.); (Y.S.); (F.L.); (X.-Z.K.); (S.L.); (J.-X.L.)
| | - Shengjun Li
- School of Computer Science, Qufu Normal University, Rizhao 276826, China; (Y.Y.); (Y.S.); (F.L.); (X.-Z.K.); (S.L.); (J.-X.L.)
| | - Jin-Xing Liu
- School of Computer Science, Qufu Normal University, Rizhao 276826, China; (Y.Y.); (Y.S.); (F.L.); (X.-Z.K.); (S.L.); (J.-X.L.)
| |
Collapse
|
6
|
El-Mahdy HA, Sallam AAM, Ismail A, Elkhawaga SY, Elrebehy MA, Doghish AS. miRNAs inspirations in hepatocellular carcinoma: Detrimental and favorable aspects of key performers. Pathol Res Pract 2022; 233:153886. [PMID: 35405621 DOI: 10.1016/j.prp.2022.153886] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. HCC initiation, progression, and therapy failure are all influenced by various variables, including microRNAs (miRNAs). miRNAs are short non-coding RNA sequences that modulate target mRNA expression by deteriorating or repressing translation. miRNAs play an imperative role in HCC pathogenesis by triggering the induction of cancer stem cells (CSCs) and their proliferation, while also delaying apoptosis, sustaining the cell cycle, and inspiring angiogenesis, invasion, and metastasis. Additionally, miRNAs modulate crucial HCC-related molecular pathways such as the p53 pathway, the Wnt/β-catenin pathway, VEGFR2, and PTEN/PI3K/AKT pathway. Consequently, the goal of this review was to give an up-to-date overview of oncogenic and tumor suppressor (TS) miRNAs, as well as their potential significance in HCC pathogenesis and treatment responses, highlighting their underpinning molecular pathways in HCC initiation and progression. Similarly, the biological importance and clinical application of miRNAs in HCC are summarized.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
7
|
Marin JJG, Romero MR, Herraez E, Asensio M, Ortiz-Rivero S, Sanchez-Martin A, Fabris L, Briz O. Mechanisms of Pharmacoresistance in Hepatocellular Carcinoma: New Drugs but Old Problems. Semin Liver Dis 2022; 42:87-103. [PMID: 34544160 DOI: 10.1055/s-0041-1735631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with poor prognosis when diagnosed at advanced stages in which curative treatments are no longer applicable. A small group of these patients may still benefit from transarterial chemoembolization. The only therapeutic option for most patients with advanced HCC is systemic pharmacological treatments based on tyrosine kinase inhibitors (TKIs) and immunotherapy. Available drugs only slightly increase survival, as tumor cells possess additive and synergistic mechanisms of pharmacoresistance (MPRs) prior to or enhanced during treatment. Understanding the molecular basis of MPRs is crucial to elucidate the genetic signature underlying HCC resistome. This will permit the selection of biomarkers to predict drug treatment response and identify tumor weaknesses in a personalized and dynamic way. In this article, we have reviewed the role of MPRs in current first-line drugs and the combinations of immunotherapeutic agents with novel TKIs being tested in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Anabel Sanchez-Martin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy.,Department of Internal Medicine, Yale Liver Center (YLC), School of Medicine, Yale University New Haven, Connecticut
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
8
|
Chen X, Chi H, Zhao X, Pan R, Wei Y, Han Y. Role of Exosomes in Immune Microenvironment of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:2521025. [PMID: 35126514 PMCID: PMC8816547 DOI: 10.1155/2022/2521025] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/08/2022] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Since most patients with HCC are diagnosed at the intermediate or advanced stage and because HCC has a high incidence of metastasis and recurrence, it is one of the leading causes of cancer death. Exosomes are a subtype of extracellular vesicles and are typically 30-150 nm in diameter. Originating from endosomes, they can be secreted by almost all living cells. They are widely present in various body fluids and serve as an important medium for the interactions between cells. A series of studies have revealed that exosomes-mediated intercellular transfer of proteins, nucleic acids, and metabolites plays a crucial role in the initiation and progression of HCC, hypoxia and angiogenesis, chemotherapy sensitivity, and cell death mode and regulates the immune microenvironment. In this paper, we reviewed the recent researches on the multiple roles of tumor-associated exosomes in the progression of HCC. We laid particular focus on those researches that reveal how exosomes regulate the tumor immune microenvironment (TIME) and how exosomal cargos affect the progression of HCC. Besides, we emphasize some prospective directions to achieve a more accurate and complete analysis of the HCC immune microenvironment.
Collapse
Affiliation(s)
- Xiaojing Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Xiaozhao Zhao
- Clinical Medical College, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Rui Pan
- Clinical Medical College, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Ying Wei
- Clinical Medical College, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan, China
| |
Collapse
|
9
|
Lu Y, Chan YT, Tan HY, Zhang C, Guo W, Xu Y, Sharma R, Chen ZS, Zheng YC, Wang N, Feng Y. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:3. [PMID: 34980204 PMCID: PMC8722264 DOI: 10.1186/s13046-021-02208-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Drug resistance to sorafenib greatly limited the benefits of treatment in patients with hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the development of drug resistance. The key miRNA regulators related to the clinical outcome of sorafenib treatment and their molecular mechanisms remain to be identified. METHODS The clinical significance of miRNA-related epigenetic changes in sorafenib-resistant HCC was evaluated by analyzing publicly available databases and in-house human HCC tissues. The biological functions of miR-23a-3p were investigated both in vitro and in vivo. Proteomics and bioinformatics analyses were conducted to identify the mechanisms that regulating miR-23a-3p. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were used to validate the binding relationship of miR-23a-3p and its targets. RESULTS We found that miR-23a-3p was the most prominent miRNA in HCC, which was overexpressed in sorafenib non-responders and indicated poor survival and HCC relapse. Sorafenib-resistant cells exhibited increased miR-23a-3p transcription in an ETS Proto-Oncogene 1 (ETS1)-dependent manner. CRISPR-Cas9 knockout of miR-23a-3p improved sorafenib response in HCC cells as well as orthotopic HCC tumours. Proteomics analysis suggested that sorafenib-induced ferroptosis was the key pathway suppressed by miR-23a-3p with reduced cellular iron accumulation and lipid peroxidation. MiR-23a-3p directly targeted the 3'-untranslated regions (UTR) of ACSL4, the key positive regulator of ferroptosis. The miR-23a-3p inhibitor rescued ACSL4 expression and induced ferrotoptic cell death in sorafenib-treated HCC cells. The co-delivery of ACSL4 siRNA and miR-23a-3p inhibitor abolished sorafenib response. CONCLUSION Our study demonstrates that ETS1/miR-23a-3p/ACSL4 axis contributes to sorafenib resistance in HCC through regulating ferroptosis. Our findings suggest that miR-23a-3p could be a potential target to improve sorafenib responsiveness in HCC patients.
Collapse
Affiliation(s)
- Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Yu Xu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Rakesh Sharma
- Proteomics and Metabolomics Core Facility, The University of Hong Kong, Hong Kong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Yi-Chao Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Liang Y, Wu X, Lee J, Yu D, Su J, Guo M, Meng N, Qin J, Fan X. lncRNA NR2F2-AS1 inhibits the methylation of miR-494 to regulate oral squamous cell carcinoma cell proliferation. Arch Oral Biol 2021; 134:105316. [PMID: 34896865 DOI: 10.1016/j.archoralbio.2021.105316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/06/2021] [Accepted: 11/13/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE This study aimed to investigate the role of lncRNA NR2F2-AS1 in oral squamous cell carcinoma cells (OSCC). MATERIALS AND METHODS The TCGA datasets were used to explore the differential expression of NR2F2-AS1 in OSCC. To further explore the potential interaction between NR2F2-AS1 and miR-494, SCC090 cells were transfected with the NR2F2-AS1 expression vector, NR2F2-AS1 siRNA, and a miR-494 mimic. The effect of NR2F2-AS1 on miR-494 methylation was evaluated by performing methylation-specific PCR (MSP). Cell Counting Kit-8 (CCK-8) assay was used to assess the effects of NR2F2-AS1 silencing and miR-494 and NR2F2-AS1 overexpression on OSCC cell proliferation. RESULTS NR2F2-AS1 expression was downregulated in OSCC and positively correlated with miR-494 expression. In OSCC cells, NR2F2-AS1 overexpression upregulated miR-494 level, while NR2F2-AS1 silencing decreased miR-494 expression. MSP results showed that NR2F2-AS1 overexpression decreased miR-494 methylation while NR2F2-AS1 silencing increased miR-494 methylation. In addition, NR2F2-AS1 silencing increased OSCC cell proliferation rate while overexpression of miR-494 and NR2F2-AS1 decreased OSCC cell proliferation. Furthermore, miR-494 overexpression attenuated the effects of NR2F2-AS1 silencing on cell proliferation. CONCLUSION NR2F2-AS1 may inhibit miR-494 methylation to regulate cell proliferation in OSCC. AVAILABILITY OF DATA AND MATERIALS The analyzed data sets generated during the study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Yilei Liang
- Department of Stomatology, Wuming Hospital of Guangxi Medical University, Nanning City, Guangxi Province 530199, China
| | - Xun Wu
- Department of Maxillofacial Surgery, Southern Medical University Shenzhen Stomatology Hospital (Pingshan), Shenzhen City, Guangdong Province, 518118, China.
| | - Jinli Lee
- Department of Gastroenterology, 923 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Nanning City, Guangxi Province 530021, China
| | - Dahai Yu
- Department of Stomatology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Province 530021, China
| | - Jiping Su
- ENT & HN Surgery Department, The First Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Province 530199, China
| | - Mengzhu Guo
- Department of Stomatology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Province 530021, China
| | - Ning Meng
- Department of Maxillofacial Surgery, Guangxi Medical University College of Stomatology, No. 10 Shuangyong Road, Nanning City, Guangxi Province 530021, China
| | - Jiangyuan Qin
- Department of Otolaryngology, Guangxi General Hospital of Chinese People's Armed Police Force, Nanning China, Nanning City, Guangxi Province 530007, China
| | - Xuemin Fan
- Department of Maxillofacial Surgery, Guangxi Medical University College of Stomatology, No. 10 Shuangyong Road, Nanning City, Guangxi Province 530021, China
| |
Collapse
|
11
|
Hu X, Zhu H, Shen Y, Zhang X, He X, Xu X. The Role of Non-Coding RNAs in the Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 11:696705. [PMID: 34367979 PMCID: PMC8340683 DOI: 10.3389/fonc.2021.696705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death. Sorafenib is approved by the U.S. Food and Drug Administration to be a first-line chemotherapy agent for patients with advanced HCC. A portion of advanced HCC patients can benefit from the treatment with sorafenib, but many patients ultimately develop sorafenib resistance, leading to a poor prognosis. The molecular mechanisms of sorafenib resistance are sophisticated and indefinite. Notably, non-coding RNAs (ncRNAs), which include long ncRNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), are critically participated in the occurrence and progression of tumors. Moreover, growing evidence has suggested that ncRNAs are crucial regulators in the development of resistance to sorafenib. Herein, we integrally and systematically summarized the molecular mechanisms and vital role of ncRNAs impact sorafenib resistance of HCC, and ultimately explored the potential clinical administrations of ncRNAs as new prognostic biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xinyao Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Shen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoqin He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Devan AR, Kumar AR, Nair B, Anto NP, Muraleedharan A, Mathew B, Kim H, Nath LR. Insights into an Immunotherapeutic Approach to Combat Multidrug Resistance in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2021; 14:656. [PMID: 34358082 PMCID: PMC8308499 DOI: 10.3390/ph14070656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as one of the most lethal cancers worldwide because of its high refractoriness and multi-drug resistance to existing chemotherapies, which leads to poor patient survival. Novel pharmacological strategies to tackle HCC are based on oral multi-kinase inhibitors like sorafenib; however, the clinical use of the drug is restricted due to the limited survival rate and significant side effects, suggesting the existence of a primary or/and acquired drug-resistance mechanism. Because of this hurdle, HCC patients are forced through incomplete therapy. Although multiple approaches have been employed in parallel to overcome multidrug resistance (MDR), the results are varying with insignificant outcomes. In the past decade, cancer immunotherapy has emerged as a breakthrough approach and has played a critical role in HCC treatment. The liver is the main immune organ of the lymphatic system. Researchers utilize immunotherapy because immune evasion is considered a major reason for rapid HCC progression. Moreover, the immune response can be augmented and sustained, thus preventing cancer relapse over the post-treatment period. In this review, we provide detailed insights into the immunotherapeutic approaches to combat MDR by focusing on HCC, together with challenges in clinical translation.
Collapse
Affiliation(s)
- Aswathy R. Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Ayana R. Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; (N.P.A.); (A.M.)
| | - Amitha Muraleedharan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; (N.P.A.); (A.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India;
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| | - Lekshmi R. Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| |
Collapse
|
13
|
Zeng Z, Lu Q, Liu Y, Zhao J, Zhang Q, Hu L, Shi Z, Tu Y, Xiao Z, Xu Q, Huang D. Effect of the Hypoxia Inducible Factor on Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 11:641522. [PMID: 34307125 PMCID: PMC8292964 DOI: 10.3389/fonc.2021.641522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Sorafenib a multi-target tyrosine kinase inhibitor, is the first-line drug for treating advanced hepatocellular carcinoma (HCC). Mechanistically, it suppresses tumor angiogenesis, cell proliferation and promotes apoptosis. Although sorafenib effectively prolongs median survival rates of patients with advanced HCC, its efficacy is limited by drug resistance in some patients. In HCC, this resistance is attributed to multiple complex mechanisms. Previous clinical data has shown that HIFs expression is a predictor of poor prognosis, with further evidence demonstrating that a combination of sorafenib and HIFs-targeted therapy or HIFs inhibitors can overcome HCC sorafenib resistance. Here, we describe the molecular mechanism underlying sorafenib resistance in HCC patients, and highlight the impact of hypoxia microenvironment on sorafenib resistance.
Collapse
Affiliation(s)
- Zhi Zeng
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Qiliang Lu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Junjun Zhao
- Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China.,Graduate Department, Bengbu Medical College, Bengbu, China
| | - Qian Zhang
- The Medical College of Qingdao University, Qingdao, China
| | - Linjun Hu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Zhan Shi
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifeng Tu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zunqiang Xiao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
14
|
Wang J, Yin G, Bian H, Yang J, Zhou P, Yan K, Liu C, Chen P, Zhu J, Li Z, Xue T. LncRNA XIST upregulates TRIM25 via negatively regulating miR-192 in hepatitis B virus-related hepatocellular carcinoma. Mol Med 2021; 27:41. [PMID: 33858324 PMCID: PMC8050905 DOI: 10.1186/s10020-021-00278-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) XIST has been implicated in the progression of a variety of tumor diseases. The purpose of this study was to explore the molecular role of lncRNA XIST in human hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). METHODS The expression levels of lncRNA XIST, miR-192 and TRIM25 in HBV-related HCC tissues and HepG2.2.15 cells were detected by qRT-PCR. Biological information and luciferin gene reporter assay were performed to detect the interaction among lncRNA XIST, miR-192 and TRIM25. CCk-8 assay, wound healing assay and colony formation assay were conducted to detect the proliferation and migration ability of HepG2.2.15 cells. RESULTS qRT-PCR results showed that the expression levels of lncRNA XIST were remarkably increased in HBV-related HCC tissues and HepG2.2.15 cells. In addition, miR-192 was a direct target gene of lncRNA XIST, and the expression of miR-192 and lncRNA XIST were negatively correlated. Moreover, overexpression of miR-192 observably inhibited the proliferation and migration of HCC cells, while overexpression of lncRNA XIST showed an opposite effect. Furthermore, TRIM25 was a direct target of miR-192, and lncRNA XIST could up-regulate the expression of TRIM25 by targeting miR-192. CONCLUSION LncRNA XIST could up-regulate the expression of TRIM25 by targeting and binding to miR-192, thus accelerating the occurrence and development of HCC.
Collapse
Affiliation(s)
- Jiancheng Wang
- The People's Hospital of Lianshui County, Huai'an City, 223400, Jiangsu Province, People's Republic of China
| | - Gang Yin
- Department of Intervention, The Second People's Hospital of Huai'an City, Huai'an City, 223002, Jiangsu Province, People's Republic of China
| | - Hu Bian
- Department of Pain and Intervention, Huaiyin Hospital of Huai'an City, Huai'an City, 223300, Jiangsu Province, People's Republic of China
| | - Jiangli Yang
- Department of Interventional Radiology, Huaian Hospital of Huai'an City, No. 161 Zhenhuailou East Road, Huai'an City, 223200, Jiangsu Province, People's Republic of China
| | - Pengcheng Zhou
- Department of Interventional Radiology, Huaian Hospital of Huai'an City, No. 161 Zhenhuailou East Road, Huai'an City, 223200, Jiangsu Province, People's Republic of China
| | - Kai Yan
- Department of Interventional Radiology, Huaian Hospital of Huai'an City, No. 161 Zhenhuailou East Road, Huai'an City, 223200, Jiangsu Province, People's Republic of China
| | - Cheng Liu
- Department of Interventional Radiology, Huaian Hospital of Huai'an City, No. 161 Zhenhuailou East Road, Huai'an City, 223200, Jiangsu Province, People's Republic of China
| | - Pei Chen
- Department of Interventional Radiology, Huaian Hospital of Huai'an City, No. 161 Zhenhuailou East Road, Huai'an City, 223200, Jiangsu Province, People's Republic of China
| | - Jun Zhu
- The Third People's Hospital of Yancheng City, No. 75 Juchang Road, Yancheng City, 224001, Jiangsu Province, People's Republic of China
| | - Zhi Li
- Department of Interventional Radiology, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Soochow City, 215006, Jiangsu Province, People's Republic of China
| | - Tongqing Xue
- Department of Interventional Radiology, Huaian Hospital of Huai'an City, No. 161 Zhenhuailou East Road, Huai'an City, 223200, Jiangsu Province, People's Republic of China.
| |
Collapse
|
15
|
Zhao W, Ma B, Tian Z, Han H, Tang J, Dong B, An G, Cao B, Wang B. Inhibiting CBX4 efficiently protects hepatocellular carcinoma cells against sorafenib resistance. Br J Cancer 2021; 124:1237-1248. [PMID: 33473171 PMCID: PMC8007794 DOI: 10.1038/s41416-020-01240-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND This study aimed to investigate the possible role of inhibiting chromobox protein homologue 4 (CBX4) to deregulate of cancer stem cells (CSCs) and to evaluate the contribution of these molecules to sorafenib resistance in advanced hepatocellular carcinoma (HCC). METHODS HCC cell lines and a xenograft mouse model with resistance to sorafenib were employed to analyse the effects of miR424 on CSC characteristics. RNA expression was analysed by RT-PCR and next-generation sequencing in a cohort of HCC cancer patients and sorafenib-resistant (SR) cell lines, respectively, to validate the key microRNAs and targets in the network. RESULTS MicroRNA and mRNA profiles of SR cell lines identified miR424 and its direct target CBX4 as significantly associated with stem-cell-like properties, poor survival, and clinical characteristics. Functional experiments demonstrated that miR424 suppressed CBX4 and CBX4 induced nuclear translocation of YAP1 protein but was not associated with protein production. When YAP1 and CBX4 were modulated with CA3 and UNC3866, tumorigenicity and stem-like properties were extremely inhibited, thus indicating that these compounds exerted a strong anti-tumour effect in vivo against SR HCC cells. CONCLUSIONS Our results revealed that blocking CBX4 expression is critical in response to sorafenib resistance with advanced HCC.
Collapse
Affiliation(s)
- Wei Zhao
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital and Institute, 100142 Beijing, P.R. China
| | - Bo Ma
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital and Institute, 100142 Beijing, P.R. China
| | - Zhihua Tian
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Central Laboratory, Peking University Cancer Hospital and Institute, 100142 Beijing, P.R. China
| | - Haibo Han
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Center, Peking University Cancer Hospital and Institute, 100142 Beijing, P.R. China
| | - Jintian Tang
- grid.459346.90000 0004 1758 0312Department of Hepatopancreatobiliary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, 830011 Urumqi, Xinjiang P.R. China
| | - Bin Dong
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Central Laboratory, Peking University Cancer Hospital and Institute, 100142 Beijing, P.R. China
| | - Guo An
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital and Institute, 100142 Beijing, P.R. China
| | - Baoshan Cao
- grid.411642.40000 0004 0605 3760Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, 100191 Beijing, P.R. China
| | - Boqing Wang
- grid.459346.90000 0004 1758 0312Department of Hepatopancreatobiliary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, 830011 Urumqi, Xinjiang P.R. China
| |
Collapse
|
16
|
Wu L, Zhang X, Luo L, Li X, Liu Y, Qin X. Altered expression of serum miR-106a, miR-19b, miR-17, and PTEN in patients with idiopathic membranous nephropathy. J Clin Lab Anal 2021; 35:e23737. [PMID: 33745222 PMCID: PMC8059741 DOI: 10.1002/jcla.23737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND To find new diagnostic markers for idiopathic membranous nephropathy (IMN) and also conduct preliminary explorations into the possible pathogenesis of IMN by comparing the expression of microRNA-451a (miR-451a), miR-106a, miR-19b, miR-17, and phosphatase and tensin homolog (PTEN) protein in the serum of patients with IMN and healthy controls. METHODS The expression levels of miR-451a, miR-106a, miR-19b, and miR-17 in the serum of patients in the IMN group (n = 55, age: 50.2 ± 12.1 years) and the control group (n = 58, age 47.4 ± 13.1 years) were measured by quantitative real-time polymerase chain reaction (qRT-PCR), and the concentration of serum PTEN protein was determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Compared with the control group, the expression of miR-106a, miR-19b, and miR-17 was decreased significantly in the IMN group, whereas PTEN protein concentration was increased significantly in the IMN group. The areas under the receiver operating characteristic curve (AUC) of serum miR-106a, miR-19b, miR-17, and PTEN were 0.66 (95% confidence interval [CI], 0.56-0.76), 0.81 (95% CI, 0.73-0.89), 0.69 (95% CI, 0.59-0.79), and 0.86 (95% CI, 0.79-0.93), respectively. The level of serum PTEN protein was negatively correlated with the expression of miR-106a and miR-19b. PTEN concentration was positively correlated with serum urea (Urea), creatinine (Crea), cystatin C (Cysc), 24 h urine total protein (24 h-UP) and negatively correlated with albumin (Alb) and estimated glomerular filtration rate (eGFR). CONCLUSIONS MiR-106a, miR-19b, miR-17, and PTEN are involved in the pathogenesis of IMN and may become new biomarkers for the diagnosis of IMN.
Collapse
Affiliation(s)
- Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinpeng Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Laboratory Medicine, The People's Hospital of Liupanshui City, Liupanshui, China
| | - Lin Luo
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoying Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Ren L, Yang S, Cao Q, Tian J. CRNDE Contributes Cervical Cancer Progression by Regulating miR-4262/ZEB1 Axis. Onco Targets Ther 2021; 14:355-366. [PMID: 33469312 PMCID: PMC7812045 DOI: 10.2147/ott.s263505] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023] Open
Abstract
Background Cervical cancer is a lethal gynecologic cancer in women. Long non-coding RNA colorectal neoplasia differentially expressed (LncRNA CRNDE) was recognized as a significant oncogene in multiple cancers. However, the functional role of CRNDE in cervical cancer remains poorly explored. Methods The expression of CRNDE, microRNA-4262 (miR-4262) and zinc-finger E-box binding homeobox 1 (ZEB1) in cervical cancer tumors and cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Colony formation and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) were performed to detect cell viability. Flow cytometry and caspase-3 activity assay were conducted to evaluate cell apoptosis. The interaction between miR-4262 and CRNDE or ZEB1 was verified by dual-luciferase reporter system. Transwell assay was employed to evaluate cell migration and invasion. The relative protein expression was assessed by Western blot. Results CRNDE and ZEB1 were up-regulated, while miR-4262 was down-regulated in cervical cancer tissues and cells. We found that CRNDE sponged miR-4262 and ZEB1 was a target of miR-4262. In addition, miR-4262 inhibitor abolished CRNDE silencing-induced repression on cell proliferation, EMT, migration, invasion and promotion on cell apoptosis. Furthermore, ZEB1 rescued the effects of miR-4262 overexpression or CRNDE deletion on cervical cancer progression. Our data showed that CRNDE targeted miR-4262 to regulate ZEB1 expression in cervical cancer cells. Besides, CRNDE expedited cervical cancer progression through wnt/β-catenin pathway via sponging miR-4262 and altering ZEB1 expression. Conclusion Our findings demonstrated that CRNDE facilitated the progression of cervical cancer through activation of wnt/β-catenin pathway by regulating miR-4262/ZEB1 axis, representing a prospective targeted therapy for cervical cancer.
Collapse
Affiliation(s)
- Lu Ren
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, Kaifeng, 475001 Henan, People's Republic of China
| | - Shaoqin Yang
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, Kaifeng, 475001 Henan, People's Republic of China
| | - Qinxue Cao
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, Kaifeng, 475001 Henan, People's Republic of China
| | - Jun Tian
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, Kaifeng, 475001 Henan, People's Republic of China
| |
Collapse
|
18
|
Liu X, Song X, Li H. Transcription elongation factor A-like 7, regulated by miR-758-3p inhibits the progression of melanoma through decreasing the expression levels of c-Myc and AKT1. Cancer Cell Int 2021; 21:43. [PMID: 33430878 PMCID: PMC7802185 DOI: 10.1186/s12935-020-01737-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Ectopic expression of transcription elongation factor A (SII)-like 7 (TCEAL7) has been observed in several kinds of cancers, but its role in melanoma is still unclear. This study was carried out to investigate TCEAL7 role in melanoma progression, and uncover the underlying mechanisms. METHODS TCEAL7 expression levels in melanoma tissues and cells were determined by using real-time quantitative PCR (RT-PCR) and western blotting. CCK-8, transwell chambers, flow cytometry, starch assay and tumorigenesis assay were applied to detect cell growth, invasion, apoptosis, migration and tumorigenesis, respectively. RESULTS A low expression level of TCEAL7 was observed in melanoma tissues and cells, which was associated with malignant clinical process and poor prognosis. TCEAL7 negatively modulated AKT1, AKT2, c-Myc, N-cadherin and PCNA expression and inhibited cancer progression via decreasing AKT1 and c-Myc levels. In addition, TCEAL7 was negatively modulated by miR-758-3p which promoted melanoma progression. Moreover, overexpression of TCEAL7 abolished miR-758-3p role in promoting melanoma progression. CONCLUSION This study demonstrated that TCEAL7, regulated by miR-758-3p inhibited melanoma progression through decreasing the expression levels of c-Myc and AKT1.
Collapse
Affiliation(s)
- Xilin Liu
- Department of Hand Surgery, China Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Xianji Song
- Orthopaedic Surgery, China Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Hong Li
- Emergency Medical of China Japan Union Hospital of Jilin University, No. 126 Xian Tai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
19
|
Joshi G, Sharma M, Kalra S, Gavande NS, Singh S, Kumar R. Design, synthesis, biological evaluation of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehydes as non-purine xanthine oxidase inhibitors: Tracing the anticancer mechanism via xanthine oxidase inhibition. Bioorg Chem 2021; 107:104620. [PMID: 33454509 DOI: 10.1016/j.bioorg.2020.104620] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Xanthine oxidase (XO) has been primarily targeted for the development of anti-hyperuriciemic /anti-gout agents as it catalyzes the conversion of xanthine and hypoxanthine into uric acid. XO overexpression in various cancer is very well correlated due to reactive oxygen species (ROS) production and metabolic activation of carcinogenic substances during the catalysis. Herein, we report the design and synthesis of a series of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehyde derivatives (2a-2x) as xanthine oxidase inhibitors (XOIs). A docking model was developed for the prediction of XO inhibitory activity of our novel compounds. Furthermore, our compounds anticancer activity results in low XO expression and XO-harboring cancer cells both in 2D and 3D-culture models are presented and discussed. Among the array of synthesized compounds, 2b and 2m emerged as potent XO inhibitors having IC50 values of 9.32 ± 0.45 µM and 10.03 ± 0.43 µM, respectively. Both compounds induced apoptosis, halted the cell cycle progression at the G1 phase, elevated ROS levels, altered mitochondrial membrane potential, and inhibited antioxidant enzymes. The levels of miRNA and expression of redox sensors in cells were also altered due to increase oxidative stress induced by our compounds. Compounds 2b and 2m hold a great promise for further development of XOIs for the treatment of XO-harboring tumors.
Collapse
Affiliation(s)
- Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Manisha Sharma
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Sourav Kalra
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151 001, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI 48201, USA.
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151 001, India.
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 001, India.
| |
Collapse
|
20
|
Molecular and Functional Roles of MicroRNAs in the Progression of Hepatocellular Carcinoma-A Review. Int J Mol Sci 2020; 21:ijms21218362. [PMID: 33171811 PMCID: PMC7664704 DOI: 10.3390/ijms21218362] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is the fourth leading cause of cancer deaths globally, of which hepatocellular carcinoma (HCC) is the major subtype. Viral hepatitis B and C infections, alcohol abuse, and metabolic disorders are multiple risk factors for liver cirrhosis and HCC development. Although great therapeutic advances have been made in recent decades, the prognosis for HCC patients remains poor due to late diagnosis, chemotherapy failure, and frequent recurrence. MicroRNAs (miRNAs) are endogenous, non-coding RNAs that regulate various molecular biological phenomena by suppressing the translation of target messenger RNAs (mRNAs). miRNAs, which often become dysregulated in malignancy, control cell proliferation, migration, invasion, and development in HCC by promoting or suppressing tumors. Exploring the detailed mechanisms underlying miRNA-mediated HCC development and progression can likely improve the outcomes of patients with HCC. This review summarizes the molecular and functional roles of miRNAs in the pathogenesis of HCC. Further, it elucidates the utility of miRNAs as novel biomarkers and therapeutic targets.
Collapse
|
21
|
Emami N, Mohamadnia A, Mirzaei M, Bayat M, Mohammadi F, Bahrami N. miR-155, miR-191, and miR-494 as diagnostic biomarkers for oral squamous cell carcinoma and the effects of Avastin on these biomarkers. J Korean Assoc Oral Maxillofac Surg 2020; 46:341-347. [PMID: 33122459 PMCID: PMC7609927 DOI: 10.5125/jkaoms.2020.46.5.341] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Objectives Oral squamous cell carcinoma (OSCC) is one of the most common types of head and neck cancer. MicroRNAs, as new biomarkers, are recommended for diagnosis and treatment of different types of cancers. Bevacizumab, sold under the trade name Avastin, is a humanized whole monoclonal antibody that targets and blocks VEGF-A (vascular endothelial growth factor A; angiogenesis) and oncogenic signaling pathways. Materials and Methods This study comprised 50 cases suffering from OSCC and 50 healthy participants. Peripheral blood samples were collected in glass test tubes, and RNA extraction was started immediately. Expression levels of miR-155, miR-191, and miR-494 biomarkers in the peripheral blood of OSCC-affected individuals and healthy volunteers in vivo were evaluated using real-time PCR. The influence of Avastin on the expression levels of the aforementioned biomarkers in vitro and in the HN5 cell line was also investigated. Results Expression levels of miR-155, miR-191, and miR-494 in the peripheral blood of individuals affected by OSCC were higher than in those who were healthy. Moreover, Avastin at a concentration of 400 µM caused a decrease in the expression levels of the three biomarkers and a 1.5-fold, 3.5-fold, and 4-fold increase in apoptosis in the test samples compared to the controls in the HN5 cell line after 24, 48, and 72 hours, respectively. Conclusion The findings of this study demonstrate that overexpression of miR-155, miR-191, and miR-494 is associated with OSCC, and Avastin is able to regulate and downregulate the expression of those biomarkers and increase apoptosis in cancerous cells in the HN5 cell line
Collapse
Affiliation(s)
- Naghmeh Emami
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abdolreza Mohamadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Mirzaei
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohammad Bayat
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoush Mohammadi
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Naghmeh Bahrami
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Zhao X, Li M, Dai X, Yang Y, Peng Y, Xu C, Dai N, Wang D. Downregulation of exosomal miR‑1273a increases cisplatin resistance of non‑small cell lung cancer by upregulating the expression of syndecan binding protein. Oncol Rep 2020; 44:2165-2173. [PMID: 32901857 PMCID: PMC7551135 DOI: 10.3892/or.2020.7753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Resistance to platinum‑based drugs, such as cisplatin (CDDP), has been one of the major factors adversely affecting the clinical prognosis of patients with advanced non‑small cell lung cancer (NSCLC). While it has been demonstrated that dysregulation of microRNAs (miRNAs) may contribute to cisplatin resistance in NSCLC, the underlying mechanisms remain largely unclear. In the present study, the effect of exosomal miR‑1273a on cisplatin sensitivity of NSCLC was investigated. Microarray analysis was conducted to analyze the miRNA expression profiles in exosomes isolated from A549 cells treated with or without CDDP, and miR‑1273a was found to be the most prominently downregulated miRNA in CDDP‑treated exosomes. Overexpression of miR‑1273a significantly increased the cytotoxicity of CDDP and induced apoptosis in A549 cells. Syndecan binding protein (SDCBP) was predicted to be a direct target of miR‑1273a by bioinformatics and was found to be downregulated by miR‑1273a in A549 cells. Furthermore, decreased plasma exosomal miR‑1273a and increased plasma SDCBP levels were found to be associated with worse therapeutic outcomes of patients with advanced NSCLC receiving platinum‑based chemotherapy. These findings suggest that miR‑1273a is closely associated with the development of cisplatin resistance and may serve as a potential prognostic biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiaolong Zhao
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Mengxia Li
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Xiaoyan Dai
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Yuyin Yang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Yang Peng
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Chengxiong Xu
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Nan Dai
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Dong Wang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
23
|
Yuan M, Yang X, Duscher D, Xiong H, Ren S, Xu X, Wang C, Chen J, Liu Y, Machens HG, Chen Z. Overexpression of microRNA-21-5p prevents the oxidative stress-induced apoptosis of RSC96 cells by suppressing autophagy. Life Sci 2020; 256:118022. [PMID: 32610163 DOI: 10.1016/j.lfs.2020.118022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 10/24/2022]
Abstract
AIM We aim to study the anti-apoptotic effect of microRNA-21-5p (miR-21-5p) in the oxidative stress-induced apoptosis of Schwann cells and the relevant mechanism in this research, laying a foundation for the treatment of peripheral neuropathy (PNP). METHODS AND MATERIALS The oxidative stress model was established by using hydrogen peroxide (H2O2). ROS level were detected by DCFH-DA (2,7-Dichlorodi-hydrofluorescein diacetate). Western blot and fluorescence staining were used to detect the apoptosis and autophagy level. The miR-21-5p overexpression model was established by transfection of miR-21-5p mimics into RSC96 cells. Five groups of control group, H2O2 group, H2O2 + chloroquine (CQ) group, H2O2 + miR-21-5p mimics group, and H2O2 + miR-21-5p mimics+rapamycin (RAPA) group were included in our experiment. KEY FINDINGS Compared with control group, miR-21-5p was decreased in H2O2-treated RSC96 cells, while autophagy and apoptosis were both promoted. The result revealed that apoptosis was probably triggered by activation of autophagy in H2O2-treated group. In order to verify the relationship between autophagy and apoptosis more accurately, we used CQ to inhibit autophagy. Compared with H2O2-treated group, autophagy and apoptosis were both weakened in H2O2 + CQ group. Subsequently, we found the antiapoptotic effect of miR-21-5p in this model, overexpression of miR-21-5p prevented cells from being damaged by oxidative stress, it induced the decrease of PTEN and the level of autophagy, leading to decreased level of apoptosis. SIGNIFICANCE The identified relationship between miR-21-5p, apoptosis, and autophagy promotes us to find a new mechanism to improve the treatment for PNP.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dominik Duscher
- Department of Plastic and Hand Surgery, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Hewei Xiong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
24
|
Transcriptome sequencing of circular RNA reveals a novel circular RNA-has_circ_0114427 in the regulation of inflammation in acute kidney injury. Clin Sci (Lond) 2020; 134:139-154. [PMID: 31930399 DOI: 10.1042/cs20190990] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is a common serious syndrome characterized by rapid decrease of glomerular filtration rate and the progressive increase of serum creatinine. Circular RNAs (circRNAs) are regulatory RNAs that recently became popular among various diseases. However, the expression profile and function of circRNAs in AKI remain largely unknown. The main function of circRNAs is acting as competing endogenous RNAs (ceRNAs) by binding with microRNAs (miRNAs), as indicated by recent research. In the present study, we established cisplatin-induced AKI model in mice and isolated renal tubular tissues to extract circRNAs for next-generation sequencing (NGS) and bioinformatics analysis. We analyzed the composition, distribution and Gene Ontology terms of circRNAs in cisplatin-induced AKI and revealed differentially expressed circRNAs related to AKI. By finding homologous genes between mouse and human, we identified circRNA- circ-0114427 in humans. We further investigated its function in AKI cell model. Circ-0114427 expression was significantly up-regulated in different AKI cell models. Knockdown of circ-0114427 indicated that circ-0114427 bound to miR-494 as a miRNA sponge to regulate ATF3 expression and further affected the expression of downstream cytokine IL-6. Circ-0114427 regulates inflammatory progression in AKI's early stage via circ-0114427/miR-494/ATF3 pathway. Our findings reveal the expression profile of circRNAs in cisplatin-induced AKI and provide a novel insight into the regulatory mechanism of circRNAs, which may become a new molecular target resource for early diagnosis and treatment strategies.
Collapse
|
25
|
Li J, Jin B, Wang T, Li W, Wang Z, Zhang H, Song Y, Li N. Serum microRNA expression profiling identifies serum biomarkers for HCV-related hepatocellular carcinoma. Cancer Biomark 2020; 26:501-512. [PMID: 31658041 DOI: 10.3233/cbm-181970] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The identification of high-sensitivity biomarkers for detection of hepatocellular carcinoma (HCC) from high-risk individuals is essential. OBJECTIVE The present study was undertaken to identify and validate serum microRNAs (miRNAs) as potential biomarkers for hepatitis C virus (HCV)-related HCC. METHODS Illumina sequencing was employed to screen the expression profiles of miRNAs in serum samples of HCV-related HCC patients and liver cirrhosis (LC) patients. RT-qPCR was used to confirm the altered miRNAs between the two groups. Moreover, candidate miRNAs were examined in serum samples of 40 HCC patients, 54 LC patients, 55 patients with chronic HCV hepatitis and 45 healthy controls. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance of the miRNAs for the detection of HCC. RESULTS Four miRNAs (miR-122-5p, miR-331-3p, miR-494-3p, miR-224-5p) were significantly increased and two miRNAs (miR-185-5p, miR-23b-3p) were significantly decreased in HCC patients compared to LC patients. ROC curve analysis demonstrated that the six miRNAs could be used as potential biomarkers for HCC detection. Combination of the six miRNAs could efficiently detect HCC in LC patients with the area under the ROC curve (AUC) of 0.995 and combination of the six miRNAs also provided high diagnostic accuracy (AUC = 0.961) for detection of HCC in non-HCC subjects. CONCLUSIONS The six serum miRNAs can be utilized as a surrogate and non-invasive biomarker for HCV-related HCC diagnosis.
Collapse
Affiliation(s)
- Jian Li
- Department of Hepatobiliary Surgery, Hospital Affiliated to Chengde Medical University, Chengde, Hebei, China.,Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Boxun Jin
- Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Tiezheng Wang
- Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wenlei Li
- Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhenshun Wang
- Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Haitao Zhang
- Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yunjun Song
- Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ning Li
- Department of Hepatobiliary Surgery, You'an Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Non-Coding RNAs: Regulating Disease Progression and Therapy Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051243. [PMID: 32429062 PMCID: PMC7281199 DOI: 10.3390/cancers12051243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the primary liver cancer arising from hepatocytes, is a universal health problem and one of the most common malignant tumors. Surgery followed by chemotherapy as well as tyrosine kinase inhibitors (TKIs), such as sorafenib, are primary treatment procedures for HCC, but recurrence of disease because of therapy resistance results in high mortality. It is necessary to identify novel regulators of HCC for developing effective targeted therapies that can significantly interfere with progression of the disease process. Non-coding RNAs (ncRNAs) are an abundant group of versatile RNA transcripts that do not translate into proteins, rather serve as potentially functional RNAs. The role of ncRNAs in regulating diverse aspects of the carcinogenesis process are gradually being elucidated. Recent advances in RNA sequencing technology have identified a plethora of ncRNAs regulating all aspects of hepatocarcinogenesis process and serving as potential prognostic or diagnostic biomarkers. The present review provides a comprehensive description of the biological roles of ncRNAs in disease process and therapy resistance, and potential clinical application of these ncRNAs in HCC.
Collapse
|
27
|
Tian RH, Guo KM, Han GH, Bai Y. Downregulation of MicroRNA-494 inhibits the TGF-β1/Smads signaling pathway and prevents the development of hypospadias through upregulating Nedd4L. Exp Mol Pathol 2020; 115:104452. [PMID: 32413360 DOI: 10.1016/j.yexmp.2020.104452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/15/2020] [Accepted: 05/10/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypospadias, as a congenital disorder of the urethra, is the second most common birth abnormality of the male reproductive system. This study primarily investigates the effects of microRNA-494 (miR-494) on the transforming growth factor-β1 (TGF-β1)/Smads signaling pathway and on the development of hypospadias by binding to neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4L). METHODS We induced a mouse model of hypospadias through di-(2-ethylhexyl) phthalate treatment. The underlying regulatory mechanisms of miR-494 in this model were analyzed upon treatment of miR-494 mimic, miR-494 inhibitor, or small interfering RNA against Nedd4L in urethral epithelial cells isolated from mice with hypospadias. We then verified the binding site between miR-494 and Nedd4L and applied a gain- and loss-of-function approach to determine the effects of miR-494 on cell proliferation, cycle distribution, and apoptosis. RESULTS Male mice with hypospadias exhibited significantly higher miR-494 expression and lower Nedd4L expression in urethral tissues than normal male mice. Nedd4L was verified as a target gene of miR-494. Treatment with miR-494 inhibitor suppressed the activation of the TGF-β1/Smads signaling pathway, whereas down-regulation of miR-494 exerted protective effects on urethral epithelial cells by impeding cell proliferation and inducing cell apoptosis. CONCLUSIONS The study indicates that downregulation of miR-494 inhibits the TGF-β1/Smads signaling pathway and prevents the development of hypospadias through upregulating Nedd4L.
Collapse
Affiliation(s)
- Run-Hui Tian
- Department of Psychology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Kai-Min Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Guang-Hong Han
- Department of Oral Geriatrics, Stomatology Hospital of Jilin University, Changchun 130021, PR China
| | - Yang Bai
- Department of Ultrasound, The First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
28
|
Zota AR, Geller RJ, VanNoy BN, Marfori CQ, Tabbara S, Hu LY, Baccarelli AA, Moawad GN. Phthalate Exposures and MicroRNA Expression in Uterine Fibroids: The FORGE Study. Epigenet Insights 2020; 13:2516865720904057. [PMID: 32128507 PMCID: PMC7031793 DOI: 10.1177/2516865720904057] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Phthalates are associated with multiple, adverse reproductive outcomes including increased risk of uterine leiomyoma (fibroids). Phthalates can interact with epigenetic modifications including microRNAs (miRNAs), which help regulate processes crucial to fibroid pathogenesis. However, no prior study has examined the influence of phthalates on miRNA expression in fibroid tumors. We conducted a preliminary, cross-sectional study to examine the associations between phthalate exposures and miRNA expression levels in fibroid tumors and to explore potential effect modification by race/ethnicity. We quantified expression levels of 754 miRNAs in fibroid tumor samples and analyzed spot urine samples for phthalate metabolites collected from 45 pre-menopausal women undergoing surgery for fibroid treatment at an academic hospital. Associations between miRNA levels in fibroids and phthalate biomarkers were evaluated using linear regression adjusting for age, race/ethnicity, and body mass index (BMI). Statistical tests were adjusted for multiple comparisons. We also performed in silico Ingenuity Pathway Analysis to identify the biological pathways that are regulated by phthalate-associated miRNAs. Mono-hydroxybutyl phthalate and mono(2-ethyl-5-hydroxyhexyl) phthalate were positively associated with miR-10a-5p (β = 0.76, 95% CI = [0.40, 1.11]) and miR-577 (β = 1.06, 95% CI = [0.53, 1.59]), respectively. A total of 8 phthalate-miRNA associations varied by race/ethnicity (qinteraction < 0.10). Pathway analysis revealed that mRNA gene targets of phthalate-associated miRNAs were significantly associated with multiple fibroid-related processes including angiogenesis, apoptosis, and proliferation of connective tissues. Collectively, these data suggest that exposures to some phthalates are associated with miRNA in fibroids, and that associations may vary by race/ethnicity. Validation of these findings may provide insight into mechanisms underlying associations between phthalates and fibroids and contribute to novel hypotheses regarding racial/ethnic disparities in fibroids.
Collapse
Affiliation(s)
- Ami R Zota
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Ruth J Geller
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Brianna N VanNoy
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Cherie Q Marfori
- Department of Obstetrics & Gynecology, The George Washington University, Washington, DC, USA
| | - Sana Tabbara
- Department of Pathology, The George Washington University, Washington, DC, USA
| | - Lisa Y Hu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Gaby N Moawad
- Department of Obstetrics & Gynecology, The George Washington University, Washington, DC, USA
| |
Collapse
|
29
|
Hsieh PL, Liao YW, Pichler M, Yu CC. MicroRNAs as Theranostics Targets in Oral Carcinoma Stem Cells. Cancers (Basel) 2020; 12:cancers12020340. [PMID: 32028645 PMCID: PMC7072536 DOI: 10.3390/cancers12020340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/25/2022] Open
Abstract
Oral cancer belongs to head and neck squamous cell carcinoma and has been recognized as one of the most prevalent malignancies worldwide. Recent studies have suggested that cancer stem cells (CSCs) may participate in tumor initiation, metastasis and even recurrence, so the regulation of CSCs has drawn significant attention over the past decade. Among various molecules that are associated with CSCs, non-coding RNAs (ncRNAs) have been indicated as key players in the acquisition and maintenance of cancer stemness. In addition, accumulating studies have shown that the aberrant expression of these ncRNAs may serve as surrogate diagnostic markers or even therapeutic targets for cancer treatment. The current study reviews the previous work by us and others to summarize how these ncRNAs affect oral cancer stemness and their potential theranostic applications. A better understanding of the implication of these ncRNAs in oral tumorigenesis will facilitate the translation of basic ncRNA research into clinical application in the future.
Collapse
Affiliation(s)
- Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria;
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-24718668
| |
Collapse
|
30
|
de Oliveira ARCP, Castanhole-Nunes MMU, Biselli-Chicote PM, Pavarino ÉC, da Silva RDCMA, da Silva RF, Goloni-Bertollo EM. Differential expression of angiogenesis-related miRNAs and VEGFA in cirrhosis and hepatocellular carcinoma. Arch Med Sci 2020; 16:1150-1157. [PMID: 32864004 PMCID: PMC7444729 DOI: 10.5114/aoms.2020.97967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Liver cirrhosis (LC) is a heterogeneous liver disease, the last stage of liver fibrosis, and the major risk factor for hepatocellular carcinoma (HCC). Our study aimed to evaluate the expression of microRNAs and the endothelial vascular growth factor (VEGFA) gene in LC and HCC. MATERIAL AND METHODS The sample group consisted of 46 tissue samples: 21 of LC, 15 of HCC, and 10 of non-tumoural and non-cirrhotic liver tissue (control group). MiRNAs were chosen based on a mirDIP prediction database as regulators of the VEGFA gene. Gene expression of VEGF and miRNAs was quantified by real-time quantitative polymerase chain reaction. VEGFA protein expression was evaluated by ELISA. RESULTS VEGFA gene expression was significantly overexpressed in LC compared to the control group (p < 0.0001). Hsa-miR-206 (p = 0.0313) and hsa-miR-637 (p = 0.0156) were down-expressed in LC. In HCC, hsa-miR-15b (p = 0.0010), hsa-miR-125b (p = 0.0010), hsa-miR-423-3p (p = 0.0010), hsa-miR-424 (p = 0.0313), hsa-miR-494 (p < 0.0001), hsa-miR-497 (p < 0.0001), hsa-miR-612 (p = 0.0078), hsa-miR-637 (p < 0.0001), and hsa-miR-1255b (p = 0.0156) presented down-expression. CONCLUSIONS Overexpression of VEGFA in LC suggests impairment of angiogenesis in this tissue. The differential expression of microRNAs in LC and HCC observed in our study can lead to the evaluation of possible biomarkers for these diseases.
Collapse
Affiliation(s)
- André R C P de Oliveira
- Departament of Molecular Biology, UPGEM - Genetics and Molecular Biology Research Unit, São José do Rio Preto Medical School - FAMERP, São José do Rio Preto, Brazil
- Study Group of Liver Tumors - GETF, Hospital de Base - São José do Rio Preto (SP) and Medical School Foundation - FUNFARME - São José do Rio Preto, Brazil
| | - Márcia M U Castanhole-Nunes
- Departament of Molecular Biology, UPGEM - Genetics and Molecular Biology Research Unit, São José do Rio Preto Medical School - FAMERP, São José do Rio Preto, Brazil
- Study Group of Liver Tumors - GETF, Hospital de Base - São José do Rio Preto (SP) and Medical School Foundation - FUNFARME - São José do Rio Preto, Brazil
| | - Patrícia M Biselli-Chicote
- Departament of Molecular Biology, UPGEM - Genetics and Molecular Biology Research Unit, São José do Rio Preto Medical School - FAMERP, São José do Rio Preto, Brazil
| | - Érika C Pavarino
- Departament of Molecular Biology, UPGEM - Genetics and Molecular Biology Research Unit, São José do Rio Preto Medical School - FAMERP, São José do Rio Preto, Brazil
| | - Rita de C M A da Silva
- Study Group of Liver Tumors - GETF, Hospital de Base - São José do Rio Preto (SP) and Medical School Foundation - FUNFARME - São José do Rio Preto, Brazil
| | - Renato F da Silva
- Study Group of Liver Tumors - GETF, Hospital de Base - São José do Rio Preto (SP) and Medical School Foundation - FUNFARME - São José do Rio Preto, Brazil
| | - Eny M Goloni-Bertollo
- Departament of Molecular Biology, UPGEM - Genetics and Molecular Biology Research Unit, São José do Rio Preto Medical School - FAMERP, São José do Rio Preto, Brazil
- Study Group of Liver Tumors - GETF, Hospital de Base - São José do Rio Preto (SP) and Medical School Foundation - FUNFARME - São José do Rio Preto, Brazil
| |
Collapse
|
31
|
Ziogas IA, Sioutas G, Mylonas KS, Tsoulfas G. Role of MicroRNA in the Diagnosis and Management of Hepatocellular Carcinoma. Microrna 2020; 9:25-40. [PMID: 31218966 DOI: 10.2174/2211536608666190619155406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is one of the most common malignant tumors in the world and comes third in cancer-induced mortality. The need for improved and more specific diagnostic methods that can detect early-stage disease is immense, as it is amenable to curative modalities, while advanced HCC is associated with low survival rates. microRNA (miRNA) expression is deregulated in HCC and this can be implemented both diagnostically and therapeutically. OBJECTIVE To provide a concise review on the role of miRNA in diagnosis, prognosis, and treatment of HCC. METHODS We conducted a comprehensive review of the PubMed bibliographic database. RESULTS Multiple miRNAs are involved in the pathogenesis of HCC. Measurement of the levels of these miRNAs either in tumor tissue or in the blood constitutes a promising diagnostic, as well as prognostic tool. OncomiRs are miRNAs that promote tumorigenesis, thus inhibiting them by administering antagomiRs is a promising treatment option. Moreover, replacement of the depleted miRNAs is another potential therapeutic approach for HCC. Modification of miRNA levels may also regulate sensitivity to chemotherapeutic agents. CONCLUSION miRNA play a pivotal role in HCC pathogenesis and once the underlying mechanisms are elucidated, they will become part of everyday clinical practice against HCC.
Collapse
Affiliation(s)
- Ioannis A Ziogas
- Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
| | - Georgios Sioutas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos S Mylonas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsoulfas
- 1st Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
32
|
Lai Y, Feng B, Abudoureyimu M, Zhi Y, Zhou H, Wang T, Chu X, Chen P, Wang R. Non-coding RNAs: Emerging Regulators of Sorafenib Resistance in Hepatocellular Carcinoma. Front Oncol 2019; 9:1156. [PMID: 31750247 PMCID: PMC6848262 DOI: 10.3389/fonc.2019.01156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
As the first oral multi-target anti-tumor drug proved for the treatment of patients with advanced liver cancer in 2007, sorafenib has changed the landscape of advanced hepatocellular carcinoma (HCC) treatment. However, drug resistance largely hinders its clinical application. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), and long non-coding (lncRNAs), have recently been demonstrated playing critical roles in a variety of cancers including HCC, while the mechanisms of ncRNAs in HCC sorafenib resistance have not been extensively characterized yet. Herein, we summarize the mechanisms of recently reported ncRNAs involved in sorafenib resistance and discuss the potential strategies for their application in the battle against HCC.
Collapse
Affiliation(s)
- Yongting Lai
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Bing Feng
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yingru Zhi
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Ping Chen
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Rui Wang
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Rahmani F, Ziaeemehr A, Shahidsales S, Gharib M, Khazaei M, Ferns GA, Ryzhikov M, Avan A, Hassanian SM. Role of regulatory miRNAs of the PI3K/AKT/mTOR signaling in the pathogenesis of hepatocellular carcinoma. J Cell Physiol 2019; 235:4146-4152. [PMID: 31663122 DOI: 10.1002/jcp.29333] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignant human tumors with high morbidity worldwide. Aberrant activation of the oncogenic phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling is related to clinicopathological features of HCC. Emerging data revealed that microRNAs (miRNAs) have prominent implications for regulating cellular proliferation, differentiation, apoptosis, and metabolism through targeting the PI3K/AKT/mTOR signaling axis. The recognition of the crucial role of miRNAs in hepatocarcinogenesis represents a promising area to identify novel anticancer therapeutics for HCC. The present study summarizes the major findings about the regulatory role of miRNAs in the PI3K/AKT/mTOR pathway in the pathogenesis of HCC.
Collapse
Affiliation(s)
- Farzad Rahmani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aghigh Ziaeemehr
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Masoumeh Gharib
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Washington University, Saint Louis, Missouri
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed M Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Su Z, Jiang G, Chen J, Liu X, Zhao H, Fang Z, He Y, Jiang X, Xu G. MicroRNA-429 inhibits cancer cell proliferation and migration by targeting AKT1 in renal cell carcinoma. Mol Clin Oncol 2019; 12:75-80. [PMID: 31814979 DOI: 10.3892/mco.2019.1940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs or miR) serve as oncogenes and tumor suppressors. In a previous study, it was revealed that has-miRNA-429 (miR-429) is a tumor suppressor in 786-O renal cell carcinoma (RCC) cells. However, its mechanism in RCC remains to be determined. The present study aimed to explain the functional role and mechanism of miR-429 in RCC pathogenesis. Luciferase reporter assays demonstrated that miR-429 overexpression reduced the transcriptional activity of AKT serine/threonine kinase 1 (AKT1). Reverse transcripton-quantitative (RT-q) PCR and western blot analysis indicated that the mRNA and protein expression of AKT1 was downregulated in 786-O RCC cell lines when miR-429 was overexpressed, indicating that miR-429 may directly target AKT1 in RCC. Therefore, miR-429 overexpression enhanced the inhibition of tumor size and weight in nude mice in vivo. The current study indicated that the novel miR-429-regulated pathway may provide insights into RCC oncogenesis and metastasis.
Collapse
Affiliation(s)
- Zhengming Su
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China.,Center for the Innovation and Translation of Minimally Invasive Techniques, Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Ganggang Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China.,Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Jinlan Chen
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xing Liu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Haibo Zhao
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Zhiyuan Fang
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Yongzhong He
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xianhan Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China.,Center for the Innovation and Translation of Minimally Invasive Techniques, Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Guibin Xu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China.,Center for the Innovation and Translation of Minimally Invasive Techniques, Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
35
|
Wei L, Wang X, Lv L, Liu J, Xing H, Song Y, Xie M, Lei T, Zhang N, Yang M. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer 2019; 18:147. [PMID: 31651347 PMCID: PMC6814027 DOI: 10.1186/s12943-019-1086-z] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the second most lethal human cancer. A portion of patients with advanced HCC can significantly benefit from treatments with sorafenib, adriamycin, 5-fluorouracil and platinum drugs. However, most HCC patients eventually develop drug resistance, resulting in a poor prognosis. The mechanisms involved in HCC drug resistance are complex and inconclusive. Human transcripts without protein-coding potential are known as noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), long noncoding RNAs (lncRNAs) and circular RNA (circRNA). Accumulated evidences demonstrate that several deregulated miRNAs and lncRNAs are important regulators in the development of HCC drug resistance which elucidates their potential clinical implications. In this review, we summarized the detailed mechanisms by which miRNAs and lncRNAs affect HCC drug resistance. Multiple tumor-specific miRNAs and lncRNAs may serve as novel therapeutic targets and prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liyan Lv
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jibing Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.,Department of Intervention Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huaixin Xing
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Mengyu Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Tianshui Lei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
36
|
Pratama MY, Pascut D, Massi MN, Tiribelli C. The role of microRNA in the resistance to treatment of hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:577. [PMID: 31807558 DOI: 10.21037/atm.2019.09.142] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death with a limited efficacy of treatment for intermediate and advanced stages of the disease. Several therapeutic approaches such as trans-arterial chemoembolization (TACE) with anthracyclines, cisplatin and multikinase inhibitor sorafenib have been appealing choices of treatments yet failed to reach a satisfactory outcome mainly due to the numerous mechanisms that influence patient's response. MicroRNAs (miRNAs) are key regulators of many intracellular processes related to drug resistance. This phenomenon has been linked to the modulation of several complex pathways, ranging from the loss of ability of drug accumulation, protective mechanism of autophagy, adaptive mechanism of cancer cells towards the drugs-induced environment, decrease DNA damage and suppression of downstream events that transduce its signal into apoptosis. We summarize the recent findings on the involvement of miRNAs in various drug resistance-related mechanisms in the development of resistance to anthracyclines, cisplatin and sorafenib therapies. Furthermore, we describe the possible application of miRNAs as circulating biomarkers predicting therapy response in HCC. Thus, the undeniable potential and paramount role of miRNA in drug resistance may eventually lead to improved clinical strategies and outcomes for HCC patients.
Collapse
Affiliation(s)
- Muhammad Yogi Pratama
- Fondazione Italiana Fegato, AREA Science Park Bazovizza, Trieste, Italy.,Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Devis Pascut
- Fondazione Italiana Fegato, AREA Science Park Bazovizza, Trieste, Italy
| | | | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park Bazovizza, Trieste, Italy
| |
Collapse
|
37
|
Huang D, Wang F, Wu W, Lian C, Liu E. MicroRNA-429 inhibits cancer cell proliferation and migration by targeting the AKT1 in melanoma. Cancer Biomark 2019; 26:63-68. [DOI: 10.3233/cbm-190289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Patras L, Banciu M. Intercellular Crosstalk Via Extracellular Vesicles in Tumor Milieu as Emerging Therapies for Cancer Progression. Curr Pharm Des 2019; 25:1980-2006. [DOI: 10.2174/1381612825666190701143845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
:Increasing evidence has suggested that extracellular vesicles (EV) mediated bidirectional transfer of functional molecules (such as proteins, different types of RNA, and lipids) between cancer cells and tumor stromal cells (immune cells, endothelial cells, fibroblasts, stem cells) and strongly contributed to the reinforcement of cancer progression. Thus, intercellular EV-mediated signaling in tumor microenvironment (TME) is essential in the modulation of all processes that support and promote tumor development like immune suppression, angiogenesis, invasion and metastasis, and resistance of tumor cells to anticancer treatments.:Besides EV potential to revolutionize our understanding of the cancer cell-stromal cells crosstalk in TME, their ability to selectively transfer different cargos to recipient cells has created excitement in the field of tumortargeted delivery of specific molecules for anticancer treatments. Therefore, in tight connection with previous findings, this review brought insight into the dual role of EV in modulation of TME. Thus, on one side EV create a favorable phenotype of tumor stromal cells for tumor progression; however, as a future new class of anticancer drug delivery systems EV could re-educate the TME to overcome main supportive processes for malignancy progression.
Collapse
Affiliation(s)
- Laura Patras
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
39
|
Su Q, Lv XW, Sun YH, Ye ZL, Kong BH, Qin ZB. MicroRNA-494 Inhibits the LRG1 Expression to Induce Proliferation and Migration of VECs in Rats following Myocardial Infarction. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:110-122. [PMID: 31541797 PMCID: PMC6796686 DOI: 10.1016/j.omtn.2019.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/15/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
Abstract
Myocardial infarction (MI) is a life-threatening cardiac event that results in extreme damage to the heart muscle. The Wnt signaling pathway has been implicated in the development of heart diseases. Hence, the current study aimed to investigate the role of microRNA (miRNA) in association with the Wnt signaling pathway to identify potential candidates for MI therapy. Differentially expressed miRNAs associated with MI occurrence were screened, and miR-494 was selected for subsequent experiments. Sprague-Dawley rats were included to establish a MI model via intraperitoneal injection of 0.1 mg/kg atropine sulfate and 40 mg/kg pentobarbital sodium. Then, the interaction between miR-494 and LRG1 was identified. The effect of miR-494 on expression of the Wnt signaling pathway-related genes, proliferation, migration, and invasion ability of fibroblasts and vascular endothelial cells (VECs) was subsequently evaluated through a series of gain- and loss-of-function experiments. The results revealed that miR-494 was poorly expressed and LRG1 was highly expressed in MI rats. miR-494 targets and downregulates LRG1, which resulted in the inactivation of the Wnt signaling pathway and promoted proliferation, migration, and invasion ability of fibroblasts and VECs. In conclusion, this study provided evidence suggesting that overexpressed miR-494 could potentially promote the proliferation, migration, and invasion of fibroblasts and VECs in MI through the inactivation of the Wnt signaling pathway by binding to LRG1.
Collapse
Affiliation(s)
- Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin 541001, P.R. China.
| | - Xiang-Wei Lv
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin 541001, P.R. China
| | - Yu-Han Sun
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Zi-Liang Ye
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Bing-Hui Kong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Zhen-Bai Qin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| |
Collapse
|
40
|
Shan G, Tang T, Xia Y, Qian H. MEG3 interacted with miR‐494 to repress bladder cancer progression through targeting PTEN. J Cell Physiol 2019; 235:1120-1128. [PMID: 31294463 DOI: 10.1002/jcp.29025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Guang Shan
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Tian Tang
- Department of Oncology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yue Xia
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Hui‐Jun Qian
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| |
Collapse
|
41
|
Tian Z, Luo Y, Zhu J, Hua X, Xu J, Huang C, Jin H, Huang H, Huang C. Transcriptionally elevation of miR-494 by new ChlA-F compound via a HuR/JunB axis inhibits human bladder cancer cell invasion. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:822-833. [PMID: 31167152 DOI: 10.1016/j.bbagrm.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 01/10/2023]
Abstract
Muscle invasive bladder cancer (MIBC) is characterized by a poor overall survival rate in patients. Therefore, innovation and evaluation of idea anti-cancer compounds is of importance for reducing the mortality of MIBCs. The chemotherapeutic activity of ChlA-F, a novel C8 fluoride derivative of cheliensisin A with potent anti-neoplastic properties, was barely investigated. We reported here that ChlA-F treatment significantly induced miR-494 expression and suppressed cell invasion in human MIBC cells. Our results indicated that miR-494 was downregulated in M1 metastatic BC patients in comparison to non-metastatic (M0) BC patients, and such downregulation was also well correlated with over survival rate for MIBC patients. Mechanistically, ChlA-F-induced upregulation of miR-494 was due to a HuR-mediated increase in JunB mRNA stabilization and protein expression, which led to an increase in miR-494 transcription via directly binding to the miR-494 promoter region, while the upregulated miR-494 was able to bind the 3'-UTR region of c-Myc mRNA, resulting in decreased c-Myc mRNA stability and protein expression and further reducing the transcription of c-Myc-regulated MMP-2 and ultimately inhibiting BC invasion. Our results provide the first evidence showing that miR-494 downregulation was closely associated with BC metastatic status and overall BC survival, and ChlA-F was able to reverse the level of miR-494 with a profound inhibition of human BC invasion in human invasive BC cells. Our studies also reveal that ChlA-F is a promising therapeutic compound for BCs and miR-494 could also serve as a promising therapeutic target for the treatment of MIBC patients.
Collapse
Affiliation(s)
- Zhongxian Tian
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yisi Luo
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Junlan Zhu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xiaohui Hua
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jiheng Xu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chao Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| |
Collapse
|
42
|
Zhou S, Xu J. Downregulation of microRNA-204 increases the expression of matrix metallopeptidase 9 in pediatric patients with pulpitis and Helicobacter pylori infection in the stomach. Exp Ther Med 2019; 18:253-259. [PMID: 31258660 DOI: 10.3892/etm.2019.7528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 03/26/2019] [Indexed: 12/18/2022] Open
Abstract
The present study examined the expression of microRNA (miRNA or miR)-204 in pulp tissues, blood and saliva from pediatric patients with pulpitis and an underlying Helicobacter pylori (Hp) infection in the stomach, and the mechanism of the associated regulation by miR-204 was assessed. A total of 26 children with pulpitis who received tooth extraction at the Children's Hospital of Nanjing Medical University (Nanjing, China) between December 2014 and August 2016 were diagnosed with Hp infection in the stomach and included in the present study (HP+ group); furthermore, 19 children with pulpitis but without Hp infection in the stomach were enrolled as a control (HP- group). Pulp tissues, blood (serum) and saliva samples were collected from all subjects. Reverse-transcription quantitative polymerase chain reaction was used to determine the expression of miR-204 and matrix metalloproteinase 9 (MMP9) mRNA. Western blot analysis was performed to determine MMP9 protein expression in pulp tissues, while ELISA was performed to measure the contents of MMP9 in serum and saliva. A dual luciferase reporter assay was used to identify the direct interaction between miR-204 and its target protein. The results indicated that Hp infection in the stomach was associated with an upregulation of MMP9 mRNA and protein in pulp tissues, serum and saliva from children with pulpitis. Furthermore, the levels of miR-204 in pulp tissues, serum and saliva from children with pulpitis and Hp infection in the stomach were significantly reduced. miR-204 was confirmed to regulate the expression of MMP9 by directly binding with the 3'-untranslated region of MMP9 mRNA. The present study demonstrated that MMP9 expression in pulp tissues, blood and saliva from children with pulpitis and Hp infection in the stomach was upregulated, while miR-204 expression was downregulated. miR-204 may affect inflammatory processes and other oral diseases in children with pulpitis and Hp infection via MMP9, and may be a potential marker for the detection of Hp infection in children with pulpitis.
Collapse
Affiliation(s)
- Shu Zhou
- Dental Department, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Ji Xu
- Dental Department, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
43
|
Feng W, Su Z, Yin Q, Zong W, Shen X, Ju S. ncRNAs associated with drug resistance and the therapy of digestive system neoplasms. J Cell Physiol 2019; 234:19143-19157. [PMID: 30941775 DOI: 10.1002/jcp.28551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022]
Abstract
Digestive system cancer remains a common cancer and the main cause of cancer-related death worldwide. Drug resistance is a major challenge in the therapy of digestive system cancer, and represents a primary obstacle in the treatment of cancer by restricting the efficiency of both traditional chemotherapy and biological therapies. Existing studies indicate that noncoding RNAs play an important role in the evolution and progression of drug resistance in digestive system cancer, mainly by modulating drug transporter-related proteins, DNA damage repair, cell-cycle-related proteins, cell apoptosis-related proteins, drug target-related proteins, and the tumor microenvironment. In this review, we address the potential mechanisms of ncRNAs underlying drug resistance in digestive system tumors and discuss the possible application of ncRNAs against drug resistance in digestive system tumors.
Collapse
Affiliation(s)
- Wei Feng
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhangyao Su
- School of Medicine, Nantong University, Nantong, China
| | - Qingqing Yin
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zong
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
44
|
MiR-494 acts as a tumor promoter by targeting CASP2 in non-small cell lung cancer. Sci Rep 2019; 9:3008. [PMID: 30816202 PMCID: PMC6395740 DOI: 10.1038/s41598-019-39453-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/24/2019] [Indexed: 11/23/2022] Open
Abstract
MiR-494 plays an important role in several types of human cancers, including non-small cell lung cancer (NSCLC). Although the role of miR-494 has been investigated in several studies, the expression profile and underlying mechanism are still poorly understood. In this study, we found that overexpression of miR-494 promoted the proliferation and colony formation of NSCLC cells and reduced their sensitivity to cisplatin-induced apoptosis. By using microarray and Dual luciferase reporter assays, we further showed that caspase-2 (CASP2) is a functional target of miR-494, and the expression of CASP2 is inversely associated with miR-494 in vitro. In addition, miR-494 promoted the proliferation and colony formation of NSCLC cells and reduced their sensitivity to cisplatin-induced apoptosis by targeting CASP2. Therefore, our results suggest that miR-494 plays an oncomiR role in NSCLC cells and may be a candidate biomarker for malignant transformation and a therapeutic target of NSCLC.
Collapse
|
45
|
Zhang Y, Lu Y, Ong'achwa MJ, Ge L, Qian Y, Chen L, Hu X, Li F, Wei H, Zhang C, Li C, Wang Z. Resveratrol Inhibits the TGF- β1-Induced Proliferation of Cardiac Fibroblasts and Collagen Secretion by Downregulating miR-17 in Rat. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8730593. [PMID: 30648109 PMCID: PMC6311767 DOI: 10.1155/2018/8730593] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/01/2018] [Indexed: 01/08/2023]
Abstract
Myocardial fibrosis (MF) can cause heart remodeling and it is an independent risk factor for malignant arrhythmias, sudden cardiac death, and other malignant cardiovascular events. It is often characterized by myocardial interstitial collagen deposition and hyperproliferation of cardiac fibroblasts (CFs). The transforming growth factor-β1 (TGF-β1) is the most influential profibrogenic factor. Resveratrol (RSV) is an active polyphenol substance that inhibits myocardial fibrosis. The mechanism of RSV-mediated inhibition of the proliferation of CFs at the microRNA level is not fully understood. We used TGF-β1 to induce CFs proliferation to simulate the pathogenesis of myocardial fibrosis. Neonatal rat CFs were treated with TGF-β1 in the presence or absence of resveratrol. Cell proliferation was measured using the CCK-8 and EdU assay. Collagen secretion was measured using hydroxyproline kit. Further, qPCR analysis was performed to determine microRNA levels after TGF-β1 or resveratrol treatment. To identify the target gene for miR-17, miR-17 was overexpressed or silenced, and the mRNA and protein levels of Smad7 were assessed. The effects of miR-17 silencing or Smad7 overexpression on cell proliferation and collagen secretion were also examined. Resveratrol treatment significantly decreased the TGF-β1-induced CF proliferation and collagen secretion. Resveratrol also decreased the levels of miR-17, miR-34a, and miR-181a in TGF-β1-treated CFs. Overexpression of miR-17 decreased the Smad7 mRNA and protein levels while silencing miR-17 increased them. Additionally, silencing miR-17 or overexpressing Smad7 decreased the TGF-β1-induced CFs proliferation and collagen secretion. In conclusion, resveratrol inhibits TGF-β1-induced CFs proliferation and collagen secretion. This inhibitory effect of resveratrol is orchestrated by the downregulation of miR-17 and the regulation of Smad7.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yuan Lu
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | | | - Liqi Ge
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yun Qian
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Lei Chen
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xiaoqin Hu
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Fei Li
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Hui Wei
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Chaoqun Zhang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Chengzong Li
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Zhirong Wang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
46
|
Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani AL. miRNA Signature in NAFLD: A Turning Point for a Non-Invasive Diagnosis. Int J Mol Sci 2018; 19:E3966. [PMID: 30544653 PMCID: PMC6320931 DOI: 10.3390/ijms19123966] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) defines a wide pathological spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) which may predispose to liver cirrhosis and hepatocellular carcinoma. It represents the leading cause of hepatic damage worldwide. Diagnosis of NASH still requires liver biopsy but due to the high prevalence of NAFLD, this procedure, which is invasive, is not practicable for mass screening. Thus, it is crucial to non-invasively identify NAFLD patients at higher risk of progression to NASH and fibrosis. It has been demonstrated that hepatic fat content and progressive liver damage have a strong heritable component. Therefore, genetic variants associated with NAFLD have been proposed as non-invasive markers to be used in clinical practice. However, genetic variability is not completely explained by these common variants and it is possible that many of the phenotypic differences result from gene-environment interactions. Indeed, NAFLD development and progression is also modulated by epigenetic factors, in particular microRNAs (miRNAs), which control at post-transcriptional level many complementary target mRNAs and whose dysregulation has been shown to have high prognostic and predictive value in NAFLD. The premise of the current review is to discuss the role of miRNAs as pathogenic factors, risk predictors and therapeutic targets in NAFLD.
Collapse
Affiliation(s)
- Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy.
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy.
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy.
| | - Silvia Fargion
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano 20122, Italy.
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano 20122, Italy.
| |
Collapse
|
47
|
Xie M, Ma L, Xu T, Pan Y, Wang Q, Wei Y, Shu Y. Potential Regulatory Roles of MicroRNAs and Long Noncoding RNAs in Anticancer Therapies. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:233-243. [PMID: 30317163 PMCID: PMC6190501 DOI: 10.1016/j.omtn.2018.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
MicroRNAs and long noncoding RNAs have long been investigated due to their roles as diagnostic and prognostic biomarkers of cancers and regulators of tumorigenesis, and the potential regulatory roles of these molecules in anticancer therapies are attracting increasing interest as more in-depth studies are performed. The major clinical therapies for cancer include chemotherapy, immunotherapy, and targeted molecular therapy. MicroRNAs and long noncoding RNAs function through various mechanisms in these approaches, and the mechanisms involve direct targeting of immune checkpoints, cooperation with exosomes in the tumor microenvironment, and alteration of drug resistance through regulation of different signaling pathways. Herein we review the regulatory functions and significance of microRNAs and long noncoding RNAs in three anticancer therapies, especially in targeted molecular therapy, and their mechanisms.
Collapse
Affiliation(s)
- Mengyan Xie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang Wang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yutian Wei
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
48
|
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2018; 234:12188-12225. [PMID: 30536673 DOI: 10.1002/jcp.27956] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohajeri
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Azadeh Moshtzan
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezo Marjani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Zhu L, Wang X, Wang T, Zhu W, Zhou X. miR‑494‑3p promotes the progression of endometrial cancer by regulating the PTEN/PI3K/AKT pathway. Mol Med Rep 2018; 19:581-588. [PMID: 30431102 DOI: 10.3892/mmr.2018.9649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 10/09/2018] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) are essential regulators in the development and progression of cancer. The role of miR-494-3p in endometrial cancer (EC) has not yet been investigated. In the present study, the expression levels of miR‑494‑3p were significantly upregulated in EC tissues compared with adjacent normal tissues. Furthermore, upregulation of miR‑494‑3p in patients with EC indicated poorer prognosis; miR‑494‑3p overexpression significantly promoted the proliferation, migration and invasion of HHUA and JEC cells in vitro. Consistently, inhibition of miR‑494‑3p in HHUA cells significantly suppressed tumor growth in vivo in a xenograft model. Additionally, phosphatase and tensin homolog (PTEN) was revealed to be a direct target of miR‑494‑3p in EC cells. Furthermore, overexpression of miR‑494‑3p inhibited PTEN expression and consequently activated the downstream phosphoinositide 3‑kinase/protein kinase B (PI3K/AKT) signialing pathway. Restoration of PTEN or inhibition of PI3K/AKT pathway also abolished miR‑494‑3p‑mediated proliferation, migration and invasion of HHUA and JEC cells. In summary, the results of the present study revealed the importance of the miR‑494‑3p/PTEN/PI3K/AKT axis in the progression of EC, which may provide novel insight into potential therapeutic targets for the treatment of EC.
Collapse
Affiliation(s)
- Lichao Zhu
- Department of Geriatrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Xiaoyan Wang
- Department of Rehabilitation, Zhangqiu Hospital of Traditional Chinese Medicine, Jinan, Shandong 250200, P.R. China
| | - Tao Wang
- Department of Geriatrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Wenwen Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Xinge Zhou
- Department of Neurosurgery, Suiping People's Hospital, Zhumadian, Henan 463100, P.R. China
| |
Collapse
|
50
|
De Stefano F, Chacon E, Turcios L, Marti F, Gedaly R. Novel biomarkers in hepatocellular carcinoma. Dig Liver Dis 2018; 50:1115-1123. [PMID: 30217732 DOI: 10.1016/j.dld.2018.08.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths and the fifth most common cancer worldwide. Most of these patients are seen with advanced disease at the time of presentation. In spite of its high prevalence, there are not many therapeutic options available for patients with advanced-stage HCC. There is an urgent need for improving early detection and prognostication of patients with HCC. In addition, the development of new therapies targeting specific pathways involved in the pathogenesis of HCC should be a major goal for future research, with the objective of improving outcomes of patients with HCC. Biomarkers represent a relatively easy and noninvasive way to detect and estimate disease prognosis. In spite of the numerous efforts to find molecules as possible biomarkers, there is not a single ideal marker in HCC. Many new findings have shown promising results both in diagnosing and treating HCC. In this review, we summarized the most recent and relevant biomarkers in HCC.
Collapse
Affiliation(s)
- Felice De Stefano
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Eduardo Chacon
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lilia Turcios
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Francesc Marti
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Roberto Gedaly
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|