1
|
El-Miligy MMM, Al-Kubeisi AK, Nassra RA, El-Zemity SR, Hazzaa AA. Discovery of new thymol-3,4-disubstituted thiazole hybrids as dual COX-2/5-LOX inhibitors with in vivo proof. J Enzyme Inhib Med Chem 2024; 39:2309171. [PMID: 38291670 PMCID: PMC10833116 DOI: 10.1080/14756366.2024.2309171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024] Open
Abstract
New thymol-3,4-disubstitutedthiazole hybrids were synthesised as dual COX-2/5-LOX inhibitors. Compounds 6b, 6d, 6e, and 6f displayed in vitro inhibitory activity against COX-2 (IC50= 0.037, 0.042, 0.046, and 0.039 µM) nearly equal to celecoxib (IC50= 0.045 µM). 6b, 6d, and 6f showed SI (379, 341, and 374, respectively) higher than that of celecoxib (327). 6a-l elicited in vitro 5-LOX inhibitory activity higher than quercetin. 6a-f, 6i-l, 7a, and 7c possessed in vivo inhibition of formalin induced paw edoema higher than celecoxib. 6a, 6b, 6f, 6h-l, and 7b showed gastrointestinal safety profile as celecoxib and diclofenac sodium in the population of fasted rats. Induced fit docking and molecular dynamics simulation predicted good fitting of 6b and 6f without changing the packing and globularity of the apo protein. In conclusion, 6b and 6f achieved the target goal as multitarget inhibitors of inflammation.
Collapse
Affiliation(s)
- Mostafa M. M. El-Miligy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | - Rasha A. Nassra
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Saad R. El-Zemity
- Department of Chemistry and Technology of Pesticides, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Aly A. Hazzaa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Saraf P, Bhardwaj B, Verma A, Siddiqui MA, Verma H, Kumar P, Srivastava S, Krishnamurthy S, Srikrishna S, Shrivastava SK. Design, synthesis, and evaluation of benzhydrylpiperazine-based novel dual COX-2/5-LOX inhibitors with anti-inflammatory and anti-cancer activity. RSC Med Chem 2024:d4md00471j. [PMID: 39430948 PMCID: PMC11487423 DOI: 10.1039/d4md00471j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024] Open
Abstract
Piperazine derivatives were screened using the ChEMBL database, paving the way for the design, synthesis, and evaluation of a novel series of dual COX-2/5-LOX inhibitors and identifying their role in mitigating cancer cell proliferation. Compound 9d with 4-Cl substitution at the terminal phenyl ring showed promising inhibition of COX-2 (IC50 = 0.25 ± 0.03 μM) and 5-LOX (IC50 = 7.87 ± 0.33 μM), outperforming the standards celecoxib (IC50 = 0.36 ± 0.023 μM) and zileuton (IC50 = 14.29 ± 0.173 μM), respectively. The two most active derivatives 9d and 9g indicated a significant anti-inflammatory response in a paw edema model by inhibiting PGE2, IL-6, and TNF-α and an increase in IL-10 concentrations. Interestingly, 9d effectively reduced pain by 55.78%, closely comparable to the 59.09% exhibited by the standard indomethacin, and was also devoid of GI, liver, kidney, and cardiac toxicity. Furthermore, 9d demonstrated anti-cancer potential against in vitro A549, COLO-205, and MIA-PA-CA-2 human cancer cell lines and an in vivo Drosophila cancer model. The pharmacokinetic investigations revealed that 9d has good oral absorption characteristics.
Collapse
Affiliation(s)
- Poorvi Saraf
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| | - Bhagwati Bhardwaj
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| | - Akash Verma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| | - Mohammad Aquib Siddiqui
- Pharmacology Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Himanshu Verma
- Pharmacology Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University Varanasi-221005 India
| | - Samridhi Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| | - Sairam Krishnamurthy
- Pharmacology Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University Varanasi-221005 India
| | - Sushant Kumar Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| |
Collapse
|
3
|
Bošković J, Dobričić V, Savić J, Rupar J, Aleksić M, Marković B, Čudina O. In Vitro Evaluation of Pharmacokinetic Properties of Selected Dual COX-2 and 5-LOX Inhibitors. Pharmaceuticals (Basel) 2024; 17:1329. [PMID: 39458971 PMCID: PMC11510591 DOI: 10.3390/ph17101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Evaluation of pharmacokinetic properties is a significant step at the early stages of drug development. In this study, an in vitro evaluation of the pharmacokinetic properties of five newly synthesized compounds was performed. These compounds belong to N-hydroxyurea and hydroxamic acid derivatives and analogs of NSAIDs indomethacin, flurbiprofen, diclofenac, ibuprofen, and naproxen (compounds 1, 2, 3, 11, and 12, respectively) with dual COX-2 and 5-LOX inhibitory activity. Two in vitro methods (biopartitioning micellar chromatography (BMC) and PAMPA) were used to evaluate passive gastrointestinal absorption, while high-performance affinity chromatography (HPAC) and differential pulse voltammetry (DPV) were used to evaluate binding to human serum albumin (HSA). The introduction of N-hydroxyurea and hydroxamic acid groups into the structure of NSAIDs decreases both expected passive gastrointestinal absorption (BMC k values were from 3.02 to 9.50, while for NSAIDs were from 5.29 to 13.36; PAMPA -logPe values were between 3.81 and 4.76, while for NSAIDs were ≤3.46) and HSA binding (HPAC logk values were from 2.03 to 9.54, while for NSAIDs were ≥11.03; DPV peak potential shifts were between 7 and 34, while for NSAIDs were ≥54). Structural modifications of all tested compounds that increase lipophilicity could be considered to enhance their passive gastrointestinal absorption. Considering lower expected HSA binding and higher lipophilicity of tested compounds compared to corresponding NSAIDs, it can be expected that the volume of distribution of compounds 1, 2, 3, 11, and 12 will be higher. Reduced HSA binding may also decrease interactions with other drugs in comparison to corresponding NSAIDs. All tested compounds showed significant microsomal instability (25.07-58.44% decrease in concentration) in comparison to indomethacin (14.47%) and diclofenac (20.99%).
Collapse
Affiliation(s)
- Jelena Bošković
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia (B.M.)
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia (B.M.)
| | - Jelena Savić
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia (B.M.)
| | - Jelena Rupar
- Department of Physical Chemistry and Instrumental Methods, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Mara Aleksić
- Department of Physical Chemistry and Instrumental Methods, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Bojan Marković
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia (B.M.)
| | - Olivera Čudina
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia (B.M.)
| |
Collapse
|
4
|
Huff HC, Kim JS, Ojha A, Sinha S, Das A. Real time changes in the expression of eicosanoid synthesizing enzymes during inflammation. Prostaglandins Other Lipid Mediat 2024; 174:106839. [PMID: 38679226 DOI: 10.1016/j.prostaglandins.2024.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Immune responses during inflammation involve complex, well-coordinated lipid signaling pathways. Eicosanoids are a class of lipid signaling molecules derived from polyunsaturated fatty acids such as arachidonic acid and constitute a major network that controls inflammation and its subsequent resolution. Arachidonic acid is metabolized by enzymes in three different pathways to form a variety of lipid metabolites that can be either pro- or anti-inflammatory. Therefore, an understanding of the time-dependent gene expression, lipid metabolite profiles and cytokine profiles during the initial inflammatory response is necessary, as it will allow for the design of time-dependent therapeutics. Herein, we investigate the multi-level regulation of this process. After stimulating RAW 264.7 cells, a mouse-derived macrophage cell line commonly used to examine inflammatory responses, we examine the gene expression of 44 relevant lipid metabolizing enzymes from the different eicosanoid synthesizing classes. We also measure the formation of lipid metabolites and production of cytokines at selected time points. Results reveal a dynamic relationship between the time-course of inflammation dependent gene expression of the three eicosanoid synthesizing enzymes.
Collapse
Affiliation(s)
- Hannah C Huff
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, IBB, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA 30332, USA
| | - Justin S Kim
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, IBB, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA 30332, USA
| | - Abhishek Ojha
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Saurabh Sinha
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Aditi Das
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, IBB, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA 30332, USA.
| |
Collapse
|
5
|
Ji Z, Li X, Gao W, Xia Q, Li J. ALOX5 induces EMT and promotes cell metastasis via the LTB4/BLT2/PI3K/AKT pathway in ovarian cancer. Cell Signal 2024; 124:111404. [PMID: 39255924 DOI: 10.1016/j.cellsig.2024.111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/24/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Ovarian cancer represents the most lethal gynecological malignancy with high invasiveness. Epithelial-to-mesenchymal transition (EMT) plays a critical role in cancer metastasis. However, the role of ALOX5 in EMT and cancer metastasis in ovarian cancer (OC) remain unclear. In this study, ALOX5 was significantly upregulated in tumorous and metastatic tissue compared with normal tissue. Furthermore, we found that overexpression of ALOX5 promoted cell migration and invasion, while silencing of ALOX5 suppressed migration and invasion in OC cell lines. Mechanistically, we found that enhanced expression of ALOX5 promoted EMT and cancer metastasis through activation of the PI3K/AKT pathway, whereas SNAIl inhibited the transcription of CDH1 in OC cells. Taken together, our results highlight a role for the ALOX5/PI3K/AKT/ SNAI1 axis in OC, which provides novel strategies for the prevention of metastasis in OC.
Collapse
Affiliation(s)
- Zhaodong Ji
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xiaoqi Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Centre, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen Gao
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qiuyi Xia
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiwei Li
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 41000, China.
| |
Collapse
|
6
|
Raza W, Meena A, Luqman S. THF induces apoptosis by downregulating initiation, promotion, and progression phase biomarkers in skin and lung carcinoma. J Biochem Mol Toxicol 2024; 38:e23838. [PMID: 39243196 DOI: 10.1002/jbt.23838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
3,5,7-Trihydroxy-2-phenylchromen-4-one (THF) possesses a diverse range of pharmacological activities. Evidence suggests that THF exerts anticancer activity by distinct mechanisms of action. This study explores the anticancer potential of THF in human lung (A549) and skin (A431) cancer cells by employing different antiproliferative assays. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, neutral red uptake, sulphorhodamine B, and cell motility assays were used to confirm the anticancer potential of THF. Cell target-based and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays were used to explore the effect of THF on the initiation, promotion and progression phase biomarkers of carcinogenesis. THF suppresses the activity of lipoxygenase-5 up to ~40% in both A549 and A431 cells and up to ~50% hyaluronidase activity in A549 cells. qRT-PCR assay reveals that THF inhibits the activity of phosphatidyl inositol-3 kinase/protein kinase B/mammalian target of rapamycin in both cell lines, which is responsible for the initiation of cancer. It also arrests the G2/M phase of the cell cycle in A431 cells and increases the sub-diploid population in both A549 and A431 cell lines which leads to cell death. Annexin V-FITC assay confirmed that THF induces apoptosis and necrosis in A431 and A549 cell lines. Further investigation revealed that THF not only enhances reactive oxygen species production but also modulates mitochondrial membrane potential in both cell lines. It significantly inhibits S-180 tumour formation at 5 and 10 mg/kg bw, i.p. dose. An acute skin toxicity study on mice showed that erythema and edema scores are within the acceptable range, besides acceptable drug-likeness properties and non-toxic effects on human erythrocytes. Conclusively, THF showed potent anticancer activity on skin and lung carcinoma cell lines, suppressed the level of the biomarkers and inhibited tumour growth in mice.
Collapse
Affiliation(s)
- Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Bošković J, Dobričić V, Keta O, Korićanac L, Žakula J, Dinić J, Jovanović Stojanov S, Pavić A, Čudina O. Unveiling Anticancer Potential of COX-2 and 5-LOX Inhibitors: Cytotoxicity, Radiosensitization Potential and Antimigratory Activity against Colorectal and Pancreatic Carcinoma. Pharmaceutics 2024; 16:826. [PMID: 38931946 PMCID: PMC11207729 DOI: 10.3390/pharmaceutics16060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Apart from cytotoxicity, inhibitors of the COX-2 enzyme have demonstrated additional effects important for cancer treatment (such as radiosensitization of tumor cells and cell antimigratory effects); however, the relationship between the inhibition of other inflammation-related enzyme 5-LOX inhibitors and anticancer activity is still not well understood. In our study, the cytotoxicity of thirteen COX-2 and 5-LOX inhibitors previously presented by our group (1-13) was tested on three cancer cell lines (HCT 116, HT-29 and BxPC-3) and one healthy cell line (MRC-5). Compounds 3, 5, 6 and 7 showed moderate cytotoxicity, but good selectivity towards cancer cell lines. IC50 values were in the range of 22.99-51.66 µM (HCT 116 cell line), 8.63-41.20 µM (BxPC-3 cell line) and 24.78-81.60 µM (HT-29 cell line; compound 7 > 100 µM). In comparison to tested, commercially available COX-2 and 5-LOX inhibitors, both cytotoxicity and selectivity were increased. The addition of compounds 6 and 7 to irradiation treatment showed the most significant decrease in cell proliferation of the HT-29 cell line (p < 0.001). The antimigratory potential of the best dual COX-2 and 5-LOX inhibitors (compounds 1, 2, 3 and 5) was tested by a wound-healing assay using the SW620 cell line. Compounds 1 and 3 were singled out as compounds with the most potent effect (relative wound closure was 3.20% (24 h), 5,08% (48 h) for compound 1 and 3.86% (24 h), 7.68% (48 h) for compound 3). Considering all these results, compound 3 stood out as the compound with the most optimal biological activity, with the best dual COX-2 and 5-LOX inhibitory activity, good selectivity towards tested cancer cell lines, significant cell antimigratory potential and a lack of toxic effects at therapeutic doses.
Collapse
Affiliation(s)
- Jelena Bošković
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Otilija Keta
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Vinca, 11351 Belgrade, Serbia
| | - Lela Korićanac
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Vinca, 11351 Belgrade, Serbia
| | - Jelena Žakula
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Vinca, 11351 Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Sofija Jovanović Stojanov
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Aleksandar Pavić
- Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Olivera Čudina
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Gomaa M, Gad W, Hussein D, Pottoo FH, Tawfeeq N, Alturki M, Alfahad D, Alanazi R, Salama I, Aziz M, Zahra A, Hanafy A. Sulfadiazine Exerts Potential Anticancer Effect in HepG2 and MCF7 Cells by Inhibiting TNFα, IL1b, COX-1, COX-2, 5-LOX Gene Expression: Evidence from In Vitro and Computational Studies. Pharmaceuticals (Basel) 2024; 17:189. [PMID: 38399404 PMCID: PMC10891904 DOI: 10.3390/ph17020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Drug repurposing is a promising approach that has the potential to revolutionize the drug discovery and development process. By leveraging existing drugs, we can bring new treatments to patients more quickly and affordably. Anti-inflammatory drugs have been shown to target multiple pathways involved in cancer development and progression. This suggests that they may be more effective in treating cancer than drugs that target a single pathway. Cell viability was measured using the MTT assay. The expression of genes related to inflammation (TNFa, IL1b, COX-1, COX-2, and 5-LOX) was measured in HepG2, MCF7, and THLE-2 cells using qPCR. The levels of TNFα, IL1b, COX-1, COX-2, and 5-LOX were also measured in these cells using an ELISA kit. An enzyme binding assay revealed that sulfadiazine expressed weaker inhibitory activity against COX-2 (IC50 = 5.27 μM) in comparison with the COX-2 selective reference inhibitor celecoxib (COX-2 IC50 = 1.94 μM). However, a more balanced inhibitory effect was revealed for sulfadiazine against the COX/LOX pathway with greater affinity towards 5-LOX (IC50 = 19.1 μM) versus COX-1 (IC50 = 18.4 μM) as compared to celecoxib (5-LOX IC50 = 16.7 μM, and COX-1 IC50 = 5.9 μM). MTT assays revealed the IC50 values of 245.69 ± 4.1 µM and 215.68 ± 3.8 µM on HepG2 and MCF7 cell lines, respectively, compared to the standard drug cisplatin (66.92 ± 1.8 µM and 46.83 ± 1.3 µM, respectively). The anti-inflammatory effect of sulfadiazine was also depicted through its effect on the levels of inflammatory markers and inflammation-related genes (TNFα, IL1b, COX-1, COX-2, 5-LOX). Molecular simulation studies revealed key binding interactions that explain the difference in the activity profiles of sulfadiazine compared to celecoxib. The results suggest that sulfadiazine exhibited balanced inhibitory activity against the 5-LOX/COX-1 enzymes compared to the selective COX-2 inhibitor, celecoxib. These findings highlight the potential of sulfadiazine as a potential anticancer agent through balanced inhibitory activity against the COX/LOX pathway and reduction in the expression of inflammatory genes.
Collapse
Affiliation(s)
- Mohamed Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (N.T.); (M.A.)
| | - Wael Gad
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 6860404, Egypt; (W.G.); (M.A.); (A.Z.); (A.H.)
| | - Dania Hussein
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Nada Tawfeeq
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (N.T.); (M.A.)
| | - Mansour Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (N.T.); (M.A.)
| | - Dhay Alfahad
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (D.A.); (R.A.)
| | - Razan Alanazi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (D.A.); (R.A.)
| | - Ismail Salama
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 8366004, Egypt;
| | - Mostafa Aziz
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 6860404, Egypt; (W.G.); (M.A.); (A.Z.); (A.H.)
| | - Aboelnasr Zahra
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 6860404, Egypt; (W.G.); (M.A.); (A.Z.); (A.H.)
| | - Abeer Hanafy
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 6860404, Egypt; (W.G.); (M.A.); (A.Z.); (A.H.)
| |
Collapse
|
9
|
Alam MM, Alsenani NI, Abdelhamid AA, Ahmad A, Baothman OA, Hosawi SA, Altayeb H, Nadeem MS, Ahmad V, Nazreen S, Elhenawy AA. New paracetamol hybrids as anticancer and COX-2 inhibitors: Synthesis, biological evaluation and docking studies. Arch Pharm (Weinheim) 2024; 357:e2300340. [PMID: 37880869 DOI: 10.1002/ardp.202300340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Drug repurposing is an emerging field in drug development that has provided many successful drugs. In the current study, paracetamol, a known antipyretic and analgesic agent, was chemically modified to generate paracetamol derivatives as anticancer and anticyclooxygenase-2 (COX-2) agents. Compound 11 bearing a fluoro group was the best cytotoxic candidate with half-maximal inhibitory concentration (IC50 ) values ranging from 1.51 to 6.31 μM and anti-COX-2 activity with IC50 = 0.29 μM, compared to the standard drugs, doxorubicin and celecoxib. The cell cycle and apoptosis studies revealed that compound 11 possesses the ability to induce cell cycle arrest in the S phase and apoptosis in colon Huh-7 cells. These results were strongly supported by docking studies, which showed strong interactions with the amino acids of the COX-2 protein, and in silico pharmacokinetic predictions were found to be favorable for these newly synthesized paracetamol derivatives. It can be concluded that compound 11 could block cell growth and proliferation by inhibiting the COX-2 enzyme in cancer therapy.
Collapse
Affiliation(s)
- Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| | - Nawaf I Alsenani
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| | - Antar A Abdelhamid
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Othman A Baothman
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Salman A Hosawi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hisham Altayeb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammad Shahid Nadeem
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Varish Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| | - Ahmed A Elhenawy
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
10
|
D Shankara S, Isloor AM, Jayaswamy PK, Shetty P, Chakraborty D, Venugopal PP. Vetting of New 2,5-Bis (2,2,2-trifluoroethoxy) Phenyl-Linked 1,3-Thiazolidine-4-one Derivatives as AURKA and VEGFR-2 Inhibitor Antiglioma Agents Assisted with In Vitro and In Silico Studies. ACS OMEGA 2023; 8:43596-43609. [PMID: 38027362 PMCID: PMC10666141 DOI: 10.1021/acsomega.3c04662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023]
Abstract
The bioactivity of 1,3-thiazolidin-4-one derivatives with a 2,5-bis (2,2,2-trifluoroethoxy) phenyl moiety was computationally developed and evaluated. All of the synthesized thiazolidin-4-one derivatives have their chemical structures characterized using a variety of methods, including nuclear magnetic resonance (NMR) (1H and 13C), high-resolution mass spectrometry (HRMS), and Fourier transform infrared (FTIR) radiation. A human glioblastoma cancer cell line (LN229) was used to investigate the purified derivatives' antiglioma cancer efficacy. By using the MTT, colony formation, and tunnel tests, respectively, the in vitro cytotoxic and apoptotic effects of these compounds were assessed. Thiazolidin-4-one derivatives 5b, 5c, and 5e were discovered to have the best efficacy against glioblastoma cells out of all of these compounds. The derivatives 5b, 5c, and 5e were determined to have respective IC50 values of 9.48, 12.16, and 6.43 g/mL. Computation results showed that the bioactivity evaluations of the compounds were quite significant. The bridging -NH group forms a hydrogen bond with Glu 260 of synthesized derivatives 5b, 5c, 5d, 5e, and 5h. The vast majority of freshly developed compounds obeyed Lipinski's rule of five, which is in line with the results that the ADMET model predicted. Additionally, molecular docking evaluation and molecular dynamics simulation investigations against the proteins AURKA and VEGFR-2 were conducted for the synthesized compounds to incorporate both in silico and in vitro data. The findings revealed that almost all of the compounds had considerable binding to AURKA and VEGFR-2 residues, with binding affinities ranging from -9.8 to -7.9 kcal/mol. Consequently, the results of the biological investigations and the docking scores demonstrated that thiazolidinone molecule 5e containing 4-chlorophenyl substituent may be considered as a potential moiety for glioblastoma cancer treatments.
Collapse
Affiliation(s)
- Sathyanarayana D Shankara
- Medicinal Chemistry
Laboratory, Department of Chemistry, National
Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India
| | - Arun M. Isloor
- Medicinal Chemistry
Laboratory, Department of Chemistry, National
Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India
| | - Pavan K. Jayaswamy
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Praveenkumar Shetty
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
- Department of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore575018, Karnataka, India
| | - Debashree Chakraborty
- Biophysical and Computational Chemistry
Laboratory, Department of Chemistry, National
Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Pushyaraga P. Venugopal
- Biophysical and Computational Chemistry
Laboratory, Department of Chemistry, National
Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| |
Collapse
|
11
|
Busi SB, Lei Z, Sumner LW, Amos-Landgraf JM. Integrated multi-omic analyses provide insight into colon adenoma susceptibility modulation by the gut microbiota. mSystems 2023; 8:e0015123. [PMID: 37458451 PMCID: PMC10469915 DOI: 10.1128/msystems.00151-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/06/2023] [Indexed: 09/01/2023] Open
Abstract
Colon cancer onset is strongly associated with the differences in microbial taxa in the gastrointestinal tract. Although recent studies highlight the role of individual taxa, the effect of a complex gut microbiome (GM) on the metabolome and host transcriptome is still unknown. We used a multi-omics approach to determine how differences in the GM affect the susceptibility to adenoma development in a rat model of human colon cancer. Ultra-high performance liquid chromatography mass spectrometry of feces collected prior to observable disease onset identified putative metabolite profiles that likely predict future disease severity. Transcriptome analyses performed after disease onset from normal colonic epithelium and tumor tissues show a correlation between GM and host gene expression. Integrated pathway analyses of the metabolome and transcriptome based on putatively identified metabolic features indicate that bile acid biosynthesis is enriched in rats with high tumors along with increased fatty acid metabolism and mucin biosynthesis. Targeted pyrosequencing of the Pirc allele indicates that the GM alters the mechanism of adenoma development and may drive an epigenetic pathway of tumor suppressor silencing. This study reveals how untargeted metabolomics identifies signatures of susceptibility and integrated analyses uncover pathways of differential mechanisms of loss of tumor suppressor gene function and for potential prevention and therapeutic intervention. IMPORTANCE The association between the gut microbiome and colon cancer is significant but difficult to test in model systems. This study highlights the association of differences in the pathogen-free gut microbiome to changes in the host transcriptome and metabolome that correlate with colon adenoma initiation and development in a rat genetic model of early colon cancer. The utilization of a multi-omics approach integrating metabolomics and transcriptomics reveals differences in pathways including bile acid biosynthesis and fatty acid metabolism. The study also shows that differences in gut microbiomes significantly alter the mechanism of adenoma formation, shifting from genetic changes to epigenetic changes that initiate the early loss of tumor suppressor function. These findings enhance our understanding of the gut microbiome's role in colon cancer susceptibility, offer insights into potential biomarkers and therapeutic targets, and may pave the way for future prevention and intervention strategies.
Collapse
Affiliation(s)
- Susheel Bhanu Busi
- University of Missouri School of Medicine, Columbia, Missouri, USA
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Zhentian Lei
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- University of Missouri Metabolomics Center, Columbia, Missouri, USA
| | - Lloyd W. Sumner
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- University of Missouri Metabolomics Center, Columbia, Missouri, USA
| | - James M. Amos-Landgraf
- University of Missouri School of Medicine, Columbia, Missouri, USA
- University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
- Rat Resource and Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
12
|
An alternative technique for cyclization synthesis, in vitro anti-esophageal cancer evaluation, and molecular docking of novel thiazolidin-4-one derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Mohsin NUA, Aslam S, Ahmad M, Irfan M, Al-Hussain SA, Zaki MEA. Cyclooxygenase-2 (COX-2) as a Target of Anticancer Agents: A Review of Novel Synthesized Scaffolds Having Anticancer and COX-2 Inhibitory Potentialities. Pharmaceuticals (Basel) 2022; 15:ph15121471. [PMID: 36558921 PMCID: PMC9783503 DOI: 10.3390/ph15121471] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a serious threat to human beings and is the second-largest cause of death all over the globe. Chemotherapy is one of the most common treatments for cancer; however, drug resistance and severe adverse effects are major problems associated with anticancer therapy. New compounds with multi-target inhibitory properties are targeted to surmount these challenges. Cyclooxygenase-2 (COX-2) is overexpressed in cancers of the pancreas, breast, colorectal, stomach, and lung carcinoma. Therefore, COX-2 is considered a significant target for the synthesis of new anticancer agents. This review discusses the biological activity of recently prepared dual anticancer and COX-2 inhibitory agents. The most important intermolecular interactions with the COX-2 enzyme have also been presented. Analysis of these agents in the active area of the COX-2 enzyme could guide the introduction of new lead compounds with extreme selectivity and minor side effects.
Collapse
Affiliation(s)
- Noor ul Amin Mohsin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.A.); (M.E.A.Z.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Correspondence: (M.A.); (M.E.A.Z.)
| |
Collapse
|
14
|
Wong CH, Chang WL, Lu FJ, Liu YW, Peng JY, Chen CH. Parecoxib expresses anti-metastasis effect through inhibition of epithelial-mesenchymal transition and the Wnt/β-catenin signaling pathway in human colon cancer DLD-1 cell line. ENVIRONMENTAL TOXICOLOGY 2022; 37:2718-2727. [PMID: 35917206 DOI: 10.1002/tox.23631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Colorectal cancer is the third leading cause of cancer death in Taiwan. Current treatments involve combination of surgical resection, radiation, and chemotherapy. These treatments have demonstrated to increased five-year survival of a patient with colorectal cancer. However, metastasis is a major capability of cancer cells that causes poor prognosis, recurrence, and even death. Epidemiological and clinical studies have suggested the use of non-steroidal anti-inflammatory drugs (NSAIDs) as an effective class of compounds to prevent colon cancer. Parecoxib is an NSAID and the only parenterally administered selective cyclooxygenase (COX)-2 inhibitor. In this study, we evaluated whether parecoxib inhibits the metastasis of DLD-1 human colon cancer cells, a COX-2 null cell line, and the underlying mechanism. Cell migration of the DLD-1 cells was significantly inhibited by parecoxib treatment as shown by the Transwell migration assay. This enhanced anti-migration effect was correlated with the attenuated phosphorylation of Akt, expression of vimentin (a mesenchymal marker), and β-catenin, and corresponded with the upregulated GSK3β and E-cadherin (an epithelial marker). These findings suggested that parecoxib could inhibit the epithelial-mesenchymal transition (EMT) and metastasis in human colon cancer cells by downregulating β-catenin. Thus, parecoxib could provide a novel prospective strategy for a combination treatment with chemotherapeutic drugs against metastasis of human colon cancer.
Collapse
Affiliation(s)
- Chung Hang Wong
- Department of Anesthesiology, Chang Gung Memorial Hospital at ChiaYi, Chia-Yi, Taiwan, ROC
| | - Wan-Ling Chang
- Department of Anesthesiology, Chang Gung Memorial Hospital at ChiaYi, Chia-Yi, Taiwan, ROC
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan, ROC
| | - Jyun-Yu Peng
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Chia-Yi, Taiwan, ROC
| | - Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan, ROC
| |
Collapse
|
15
|
Klasson TD, LaGory EL, Zhao H, Huynh SK, Papandreou I, Moon EJ, Giaccia AJ. ACSL3 regulates lipid droplet biogenesis and ferroptosis sensitivity in clear cell renal cell carcinoma. Cancer Metab 2022; 10:14. [PMID: 36192773 PMCID: PMC9528056 DOI: 10.1186/s40170-022-00290-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC), the predominant subtype of kidney cancer, possesses characteristic alterations to multiple metabolic pathways, including the accumulation of cytosolic lipid droplets. However, the pathways that drive lipid droplet accumulation in ccRCC cells and their importance to cancer biology remain poorly understood. METHODS We sought to identify the carbon sources necessary for lipid droplet accumulation using Oil red O staining and isotope-tracing lipidomics. The role of the acyl-CoA synthetase (ACSL) family members, an important group of lipid metabolic enzymes, was investigated using siRNA and drug mediated inhibition. CTB and XTT assays were performed to determine the effect of ACSL3 knockdown and lipid starvation on ccRCC cell viability and shRNA was used to study the effect of ACSL3 in an orthotopic mouse model. The relationship between ferroptosis susceptibility of ccRCC and ACSL3 controlled lipid metabolism was examined using CTB and FACS-based assays. The importance of 5-LOX in ferroptosis susceptibility in ccRCC was shown with XTT survival assays, and the expression level and predictive value of 5-LOX in TCGA ccRCC data was assessed. RESULTS We found that ccRCC cells obtain the necessary substrates for lipid droplet accumulation by metabolizing exogenous serum derived lipids and not through de novo lipogenesis. We show that this metabolism of exogenous fatty acids into lipid droplets requires the enzyme acyl-CoA synthetase 3 (ACSL3) and not other ACSL family proteins. Importantly, genetic or pharmacologic suppression of ACSL3 is cytotoxic to ccRCC cells in vitro and causes a reduction of tumor weight in an orthotopic mouse model. Conversely, ACSL3 inhibition decreases the susceptibility of ccRCC cells to ferroptosis, a non-apoptotic form of cell death involving lipid peroxidation. The sensitivity of ccRCC to ferroptosis is also highly dependent on the composition of exogenous fatty acids and on 5-lipoxygenase (5-LOX), a leukotriene producing enzyme which produces lipid peroxides that have been implicated in other cancers but not in ccRCC. CONCLUSIONS ACSL3 regulates the accumulation of lipid droplets in ccRCC and is essential for tumor growth. In addition, ACSL3 also modulates ferroptosis sensitivity in a manner dependent on the composition of exogenous fatty acids. Both functions of ACSL3 could be exploited for ccRCC therapy.
Collapse
Affiliation(s)
- Timothy D Klasson
- Department of Radiation Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Edward L LaGory
- Department of Radiation Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Hongjuan Zhao
- Department of Radiation Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Star K Huynh
- Department of Radiation Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Eui Jung Moon
- Department of Radiation Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building (ORCRB), Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building (ORCRB), Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
16
|
Novel 5,6-diphenyl-1,2,4-triazine-3-thiol derivatives as dual COX-2/5-LOX inhibitors devoid of cardiotoxicity. Bioorg Chem 2022; 129:106147. [PMID: 36126607 DOI: 10.1016/j.bioorg.2022.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
A novel series of 5,6-diphenyl-1,2,4-triazine-3-thiol derivatives were designed, synthesized, and screened for their inhibitory potential against COX-2 and 5-LOX enzymes. The compounds from the series have shown moderate to excellent inhibitory potential against both targets. Compound 6k showed the inhibitions against COX-2 (IC50 = 0.33 ± 0.02 μM) and 5-LOX inhibition (IC50 = 4.90 ± 0.22 μM) which was better than the standard celecoxib (IC50 = 1.81 ± 0.13 μM) for COX-2 and zileuton (IC50 = 15.04 ± 0.18 μM) for 5-LOX respectively. Further investigation on the selected derivative 6k in rat paw edema models revealed significant anti-inflammatory efficacy. Compound 6k has also shown negligible ulcerogenic liability as compared to indomethacin. Moreover, in vivo biochemical analysis also established the compound's antioxidant properties. Compounds 6c and 6k were also observed to be devoid of cardiotoxicity post-myocardial infarction in rats. The molecular docking and dynamics simulation studies of the most active derivative 6k affirmed their consentient binding interactions with COX-2 specific ravine and cleft of 5-LOX.
Collapse
|
17
|
Han X, Liu F, Hidru TH, Yang X, Wang C, Xia Y. Postmenopausal Women with Breast, Endometrial, and Ovarian Cancers Have an Increased Risk for Cardiovascular Conditions prior to Active Endocrine Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5104351. [PMID: 36046689 PMCID: PMC9423972 DOI: 10.1155/2022/5104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Background Patients with active cancer have an increased risk of cardiovascular diseases (CVDs) among cancer patients receiving endocrine therapy. However, little research has explored the distribution of CVD comorbidities and cardiovascular risk factors (CVRFs) among postmenopause women with breast, endometrial, or ovarian cancer prior to active treatment with endocrine therapy. We aimed to explore the distribution of CVD comorbidities and associated CVRF in patients suffering from breast, endometrial, or ovarian cancer prior to the use of endocrine therapy and to assess whether there was compliance with existing hospital recommendations, particularly on the use of lipid-lowering agents to prevent the development of CVD comorbidities in postmenopause women. Methods A total of 10,731 postmenopause women with primary breast, endometrial, or ovarian cancer were enrolled between 30th May 2008 and 31st July 2021 from an electronic health record database at the first affiliated hospital of Dalian Medical University. Dyslipidemia was defined according to 2016 Chinese guidelines for adults. Multivariate logistic regression analysis was used to identify the independent predictors of CVD comorbidities in breast, endometrial, and ovarian cancers separately. Results Overall, 18.9% of the included women had at least one CVD record before endocrine therapy. The highest prevalence of CVD was identified for hypertension (16.5%), followed by coronary heart disease (4.5%), stroke (2.1%), heart failure (1.2%), and atrial fibrillation (1.1%). The most common CVRF among total cancer patients was dyslipidemia, with a remarkable prevalence of 62.8%, followed by diabetes mellitus (8.6%). Notably, only 11.1% of cancer patients were receiving lipid-lowering agents. Conclusion Cancer patients with potential eligibility for endocrine therapy use had an increased risk for CVD comorbidities. Dyslipidemia was the common CVRF. Compliance with recommendations for preventing and managing these comorbidities requires serious attention.
Collapse
Affiliation(s)
- Xu Han
- Health Management Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fei Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tesfaldet H. Hidru
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaolei Yang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chengfang Wang
- Health Management Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yunlong Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
18
|
Looking at NSAIDs from a historical perspective and their current status in drug repurposing for cancer treatment and prevention. J Cancer Res Clin Oncol 2022; 149:2095-2113. [PMID: 35876951 PMCID: PMC9310000 DOI: 10.1007/s00432-022-04187-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most frequently prescribed drug classes with wide therapeutic applications over the centuries. Starting from the use of salicylate-containing willow leaves to the recent rise and fall of highly selective cyclooxygenase-2 (COX-2) inhibitors and the latest dual-acting anti-inflammatory molecules, they have displayed a rapid and ongoing evolution. Despite the enormous advances in the last twenty years, investigators are still in search of the design and development of more potent and safer therapy against inflammatory conditions. This challenge has been increasingly attractive as the emergence of inflammation as a common seed and unifying mechanism for most chronic diseases. Indeed, this fact put the NSAIDs in the spotlight for repurposing against inflammation-related disorders. This review attempts to present a historical perspective on the evolution of NSAIDs, regarding their COX-dependent/independent mode of actions, structural and mechanism-based classifications, and adverse effects. Additionally, a systematic review of previous studies was carried out to show the current situation in drug repurposing, particularly in cancers associated with the GI tract such as gastric and colorectal carcinoma. In the case of non-GI-related cancers, preclinical studies elucidating the effects and modes of action were collected and summarized.
Collapse
|
19
|
Kast RE, Alfieri A, Assi HI, Burns TC, Elyamany AM, Gonzalez-Cao M, Karpel-Massler G, Marosi C, Salacz ME, Sardi I, Van Vlierberghe P, Zaghloul MS, Halatsch ME. MDACT: A New Principle of Adjunctive Cancer Treatment Using Combinations of Multiple Repurposed Drugs, with an Example Regimen. Cancers (Basel) 2022; 14:2563. [PMID: 35626167 PMCID: PMC9140192 DOI: 10.3390/cancers14102563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.
Collapse
Affiliation(s)
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| | - Hazem I. Assi
- Naef K. Basile Cancer Center, American University of Beirut, Beirut 1100, Lebanon;
| | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ashraf M. Elyamany
- Oncology Unit, Hemato-Oncology Department, SECI Assiut University Egypt/King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Maria Gonzalez-Cao
- Translational Cancer Research Unit, Dexeus University Hospital, 08028 Barcelona, Spain;
| | | | - Christine Marosi
- Clinical Division of Medical Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael E. Salacz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Iacopo Sardi
- Department of Pediatric Oncology, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Mohamed S. Zaghloul
- Children’s Cancer Hospital & National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| |
Collapse
|
20
|
Jiang YX, Chen Y, Sun HH, Xu SC. Effects of Cyclooxygenase-2 Inhibitors on Gastrointestinal Malignancies: a Systematic Review and Meta-analysis. Indian J Surg Oncol 2022; 13:348-355. [DOI: 10.1007/s13193-022-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022] Open
|
21
|
Raj S, Jayaraj R, Kodiveri Muthukaliannan G. Chemical Profiling and Evaluation of Antioxidant and Anticancer Potential of Tuber Crop Amorphophallus commutatus var. wayanadensis. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:68-76. [PMID: 34977995 DOI: 10.1007/s11130-021-00942-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Cancer and cancer-related diseases are a global health concern in the present scenario. Functional food and nutraceuticals are considered as a boon towards cancer management. Amorphophallus commutatus var. wayanadensis (ACW) is an herbaceous plant used by the local communities of Wayanad, India, for food and primary healthcare. Various radical scavenging and reducing power assays were undertaken to evaluate the antioxidant activity of methanolic extract of ACW (MEAC). In vitro anticancer activity was evaluated against HT-29 cell line by MTT assay, morphological analysis, DNA fragmentation assay and cell cycle analysis. Caspase and COX-2 enzyme assays were conducted to examine the underlying mechanism. Studies on Ehrlich Ascites Carcinoma (EAC) transplanted mice models was carried out to evaluate the in-vivo antioxidant and anticancer potential of MEAC. The major bioactive nutraceutical compound present in MEAC was isolated by bioactivity-guided fractionation. MEAC showed significant in vitro antioxidant activity. Further, MEAC promoted cytotoxicity against HT-29 cells by activating caspase-3 dependent apoptotic pathway with a cell cycle arrest at the G1/S phase and subsequent down regulation of COX-2 pathway. The potential antitumor activity of MEAC was further confirmed in EAC tumor bearing mice models in which treatment with MEAC increased the levels of antioxidant enzymes, improved the hematological profile towards normal and also augmented the life span of tumor bearing mice. β-sitosterol isolated from ACW induces anticancer activity via caspase-dependent pathway. Our study confirmed the antioxidant and anticancer activities of ACW, which proposes the medicinal importance of this plant as a preventive and supportive therapy for arising tumors.
Collapse
Affiliation(s)
- Sreena Raj
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Rama Jayaraj
- Northern Territory Institute of Research and Technology, Darwin, Australia
| | | |
Collapse
|
22
|
Al-Joufi FA, Setia A, Salem-Bekhit MM, Sahu RK, Alqahtani FY, Widyowati R, Aleanizy FS. Molecular Pathogenesis of Colorectal Cancer with an Emphasis on Recent Advances in Biomarkers, as Well as Nanotechnology-Based Diagnostic and Therapeutic Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:169. [PMID: 35010119 PMCID: PMC8746463 DOI: 10.3390/nano12010169] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a serious disease that affects millions of people throughout the world, despite considerable advances in therapy. The formation of colorectal adenomas and invasive adenocarcinomas is the consequence of a succession of genetic and epigenetic changes in the normal colonic epithelium. Genetic and epigenetic processes associated with the onset, development, and metastasis of sporadic CRC have been studied in depth, resulting in identifying biomarkers that might be used to predict behaviour and prognosis beyond staging and influence therapeutic options. A novel biomarker, or a group of biomarkers, must be discovered in order to build an accurate and clinically useful test that may be used as an alternative to conventional methods for the early detection of CRC and to identify prospective new therapeutic intervention targets. To minimise the mortality burden of colorectal cancer, new screening methods with higher accuracy and nano-based diagnostic precision are needed. Cytotoxic medication has negative side effects and is restricted by medication resistance. One of the most promising cancer treatment techniques is the use of nano-based carrier system as a medication delivery mechanism. To deliver cytotoxic medicines, targeted nanoparticles might take advantage of differently expressed molecules on the surface of cancer cells. The use of different compounds as ligands on the surface of nanoparticles to interact with cancer cells, enabling the efficient delivery of antitumor medicines. Formulations based on nanoparticles might aid in early cancer diagnosis and help to overcome the limitations of traditional treatments, including low water solubility, nonspecific biodistribution, and restricted bioavailability. This article addresses about the molecular pathogenesis of CRC and highlights about biomarkers. It also provides conceptual knowledge of nanotechnology-based diagnostic techniques and therapeutic approaches for malignant colorectal cancer.
Collapse
Affiliation(s)
- Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia;
| | - Aseem Setia
- Department of Pharmacy, Shri Rawatpura Sarkar University, Raipur 492015, India
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ram Kumar Sahu
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar 788011, India
| | - Fulwah Y. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
| |
Collapse
|
23
|
Mi N, Huang J, Huang C, Lin Y, He Q, Wang H, Yang M, Lu Y, Lawer AL, Yue P, Bai B, Zhang J, Zhang C, Cai T, Fu W, Gao L, Li X, Yuan J, Meng W. High serum uric acid may associate with the increased risk of colorectal cancer in females: A prospective cohort study. Int J Cancer 2021; 150:263-272. [PMID: 34520576 DOI: 10.1002/ijc.33807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 08/11/2021] [Accepted: 08/27/2021] [Indexed: 01/14/2023]
Abstract
Elevated serum uric acid (SUA) levels have been previously reported to play a role in multiple types of cancers. However, epidemiological studies evaluating SUA levels and colorectal cancer risk remain sparse. This cohort study included 444 462 participants between the ages of 40 and 69 years from the UK Biobank, followed up from 2006 to 2010. Multivariable adjusted Cox regression models were used to estimate hazard ratios (HRs). During a mean follow-up of 6.6 years, 2033 and 855 cases of colon and rectal cancers, respectively, were diagnosed. The multivariable-adjusted HRs for risks of colon cancer in the lowest uric acid categories (≤3.5 mg/dL) compared with the reference groups were 1.31 (95% confidence interval [CI] = 0.75-2.29) in males and 1.26 (95% CI = 1.03-1.55) in females. The HRs in the highest uric acid groups (>8.4 mg/dL) were 1.16 (95% CI = 0.83-1.63) in males and 2.00 (95% CI = 1.02-3.92) in females. The corresponding HRs of rectal cancer in the lowest uric acid groups compared with the reference group were 2.21 (95% CI = 1.15-4.23) in males and 0.98 (95% CI = 0.66-1.45) in females. The HRs in the highest uric acid groups were 1.35 (95% CI = 0.82-2.23) in males and 3.81 (95% CI = 1.38-10.56) in females. In conclusion, SUA showed a U-shaped association with colon cancer risk in both male and female populations. The same pattern was observed in male patients with rectal cancer. However, SUA levels were positively associated with occurrence of rectal cancer in female subjects.
Collapse
Affiliation(s)
- Ningning Mi
- The First Clinical Medical School, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Junjun Huang
- Scientific Research and Planning Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Chongfei Huang
- The First Clinical Medical School, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Yanyan Lin
- The First Clinical Medical School, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Qiangsheng He
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Haiping Wang
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Man Yang
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yawen Lu
- The First Clinical Medical School, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | | | - Ping Yue
- The First Clinical Medical School, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Bing Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Chao Zhang
- The First Clinical Medical School, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Teng Cai
- The First Clinical Medical School, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Wenkang Fu
- The First Clinical Medical School, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Long Gao
- The First Clinical Medical School, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Xun Li
- The First Clinical Medical School, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenbo Meng
- The First Clinical Medical School, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| |
Collapse
|
24
|
El-Miligy MMM, Al-Kubeisi AK, El-Zemity SR, Nassra RA, Abu-Serie MM, Hazzaa AA. Discovery of small molecule acting as multitarget inhibitor of colorectal cancer by simultaneous blocking of the key COX-2, 5-LOX and PIM-1 kinase enzymes. Bioorg Chem 2021; 115:105171. [PMID: 34303896 DOI: 10.1016/j.bioorg.2021.105171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/03/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
Colorectal cancer (CRC) is the second cause of cancer death worldwide. Inhibitors of COX-2, 5-LOX and PIM-1 kinase were very effective in the treatment and prevention of CRC in mouse models in vivo. Furthermore, thymol was confirmed to inhibit CRC cell proliferation in cancer cell lines and inhibitory activity against COX-2 and 5-LOX. On the other hand, 4-thiazolidinone pharmacophore was incorporated in the structures of various reported COX-2, 5-LOX and PIM kinase inhibitors. Consequently, the aim of the present investigation was to combat CRC by synthesis and biological evaluation of new thymol - 4-thiazolidinone hybrids as multitarget anticancer agents that could inhibit the key COX-2, 5-LOX and PIM-1 kinase enzymes simultaneously. Compounds 5a-d and 5g displayed inhibitory activity against COX-2 nearly equal to Celecoxib with high selectivity index (SI). Moreover, compounds 5b-e showed 5-LOX inhibitory activity nearly equal to the reference Quercetin while compounds 5a, 5f and 5g elicited inhibitory activity slightly lower than Quercetin. Furthermore, in vivo formalin-induced paw edema test revealed that, compounds 5a, 5c, 5f and 5g showed higher % inhibition than Celecoxib and compounds 5a, 5f and 5g showed higher % inhibition than Diclofenac sodium. In addition, compounds 5a-c, 5e-g showed in vivo superior gastrointestinal safety profile as Celecoxib in fasted rats. Besides, compounds 5d, 5e and 5g exhibited the highest activity against human CRC cell lines (Caco-2 and HCT-116) at doses less than their EC100 on normal human cells. Furthermore, compounds 5e and 5g induced apoptosis-dependent death by above 50% in the treated CRC cell lines. Moreover, compounds 5e and 5g induced caspase activation by >50% in human CRC. Also, compounds 5d, 5e and 5g showed in vitro inhibitory activity against both PIM-1\2 kinases comparable to the reference Staurosporine. In silico docking studies were concordant with the biological results. In conclusion, compound 5g, of simple chemical structure, achieved the target goal of inhibiting three targets leading to inhibition of human CRC cell proliferation. It inhibited the target key enzymes COX-2, 5-LOX and PIM-1\2 kinase in vitro. Besides, it revealed in vitro inhibition of cell proliferation in cancer cell lines via activation of caspase 3\7 dependent-apoptosis in human CRC cell lines. In addition, it elicited in vivo anti-inflammatory activity in formalin-induced paw edema test and in vivo oral safety in gastric ulcerogenic activity test.
Collapse
Affiliation(s)
- Mostafa M M El-Miligy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | | | - Saad R El-Zemity
- Department of Chemistry and Technology of Pesticides, Faculty of Agriculture, Alexandria University, Alexandria 21521, Egypt
| | - Rasha A Nassra
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Aly A Hazzaa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
25
|
Schmöcker C, Gottschall H, Rund KM, Kutzner L, Nolte F, Ostermann AI, Hartmann D, Schebb NH, Weylandt KH. Oxylipin patterns in human colon adenomas. Prostaglandins Leukot Essent Fatty Acids 2021; 167:102269. [PMID: 33812217 DOI: 10.1016/j.plefa.2021.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Cyclooxygenase (COX)-derived prostaglandin E2 (PGE2) is an important lipid mediator in colorectal carcinoma (CRC) pathogenesis. Other lipid mediators derived from lipoxygenases (LOX) have also been implicated in neoplastic processes in the colon. In this study we aimed to characterize lipid mediators, so called oxylipins, in human colon adenomatous polyps. DESIGN We quantified oxylipins in healthy colon tissue and colorectal adenoma tissue procured during routine colonoscopy examinations. Lipid metabolite profiles were analyzed by liquid chromatography-tandem mass spectrometry. RESULTS Adenoma tissue showed a distinct prostaglandin profile as compared to normal colon mucosa. Interestingly, PGE2 was not higher in adenoma tissue as compared to normal mucosa. In contrast, we found significantly lower levels of prostaglandin D2, prostaglandin J2, and prostaglandin D1 in adenoma tissue. Furthermore, levels of 5-LOX and 12-LOX pathway products were clearly increased in adenoma biopsy samples. We also investigated the effect of aspirin treatment on prostaglandin profiles in adenoma tissue in a subset of patients and found a trend towards decreased prostaglandin levels in response to aspirin. CONCLUSION The human data presented here show specific changes of oxylipin profiles in colon adenoma tissue with decreased prostaglandin D2 levels as well as increased 5- and 12-LOX metabolites.
Collapse
Affiliation(s)
- Christoph Schmöcker
- Medical Department, Divisions of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, Ruppiner Kliniken, Brandenburg Medical School, Fehrbelliner Str. 38, 16816 Neuruppin, Germany; Department of Gastroenterology, Sana Klinikum Lichtenberg, Berlin, Germany.
| | - Heike Gottschall
- Department of Gastroenterology, Sana Klinikum Lichtenberg, Berlin, Germany
| | - Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Laura Kutzner
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Fabian Nolte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Dirk Hartmann
- Medical Department II, Division of Gastroenterology, Oncology and Diabetes, Katholisches Klinikum Mainz (KKM), Mainz, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Karsten H Weylandt
- Medical Department, Divisions of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, Ruppiner Kliniken, Brandenburg Medical School, Fehrbelliner Str. 38, 16816 Neuruppin, Germany; Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité University Medicine, Berlin, Germany
| |
Collapse
|
26
|
High Expression of VSTM2L Induced Resistance to Chemoradiotherapy in Rectal Cancer through Downstream IL-4 Signaling. J Immunol Res 2021; 2021:6657012. [PMID: 33506057 PMCID: PMC7811563 DOI: 10.1155/2021/6657012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background Preoperative chemoradiotherapy (pCRT) is a common and essential therapeutic strategy for patients with locally advanced rectal cancer (LARC), but poor tumor response and therapeutic resistance to chemoradiotherapy have appeared usually among persons and affected those patients' survival prognosis. The resistance to chemoradiotherapy in rectal cancer is difficult to predict. This study was aimed at evaluating the role of V-set and transmembrane domain containing 2 like protein (VSTM2L) in resistance to chemoradiotherapy in rectal cancer. Methods Analysis of the GEO profiling datasets of rectal cancer patients receiving pCRT disclosed that VSTM2L as a candidate gene was significantly upregulated in nonresponders of rectal cancer with pCRT. The mRNA and protein expression of VSTM2L was detected by quantitate real-time PCR, western blotting, and immunohistochemistry in six rectal cancer biopsy tissues before pCRT. Furthermore, the rectal cancer patient-derived organoids were cultured to evaluate the association of VSTM2L expression and tumor response to CRT. Overexpression of VSTM2L in cancer cells treated with CRT was analyzed for the function of cell proliferation and viability, clone formation, DNA damage repair, and apoptosis ability. The GSEA and RNA-sequence analysis were used to find the downstream mechanism of VSTM2L overexpression in cells treated with CRT. Results The mRNA levels of VSTM2L were significantly downregulated in normal rectal tissues compared to tumor tissues and were upregulated in nonresponders of rectal cancer patients receiving pCRT and positively correlated with poor survival prognosis from GEO datasets. High expression of VSTM2L was significantly associated with tumor regression after pCRT (P = 0.030). Moreover, high expression of VSTM2L reduced γ-H2AX expression in rectal cancer patient-derived organoids treated with CRT. The overexpression of VSTM2L in colorectal cancer cells induced resistance to CRT via promoting cell proliferation and inhibiting apoptosis. The molecular mechanism revealed that the overexpression of VSTM2L induced resistance to CRT through downstream IL-4 signaling affecting the progress of cell proliferation and apoptosis. Conclusion The high expression of VSTM2L induced resistance to CRT, and adverse survival outcomes served as a prognostic factor in patients with rectal cancer receiving pCRT, suggesting that VSTM2L high expression may be a potential resistant predictable biomarker for LARC patients receiving pCRT.
Collapse
|
27
|
Clemente SM, Martínez-Costa OH, Monsalve M, Samhan-Arias AK. Targeting Lipid Peroxidation for Cancer Treatment. Molecules 2020; 25:E5144. [PMID: 31825806 PMCID: PMC7663840 DOI: 10.3390/molecules25215144] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the highest prevalent diseases in humans. The chances of surviving cancer and its prognosis are very dependent on the affected tissue, body location, and stage at which the disease is diagnosed. Researchers and pharmaceutical companies worldwide are pursuing many attempts to look for compounds to treat this malignancy. Most of the current strategies to fight cancer implicate the use of compounds acting on DNA damage checkpoints, non-receptor tyrosine kinases activities, regulators of the hedgehog signaling pathways, and metabolic adaptations placed in cancer. In the last decade, the finding of a lipid peroxidation increase linked to 15-lipoxygenases isoform 1 (15-LOX-1) activity stimulation has been found in specific successful treatments against cancer. This discovery contrasts with the production of other lipid oxidation signatures generated by stimulation of other lipoxygenases such as 5-LOX and 12-LOX, and cyclooxygenase (COX-2) activities, which have been suggested as cancer biomarkers and which inhibitors present anti-tumoral and antiproliferative activities. These findings support the previously proposed role of lipid hydroperoxides and their metabolites as cancer cell mediators. Depletion or promotion of lipid peroxidation is generally related to a specific production source associated with a cancer stage or tissue in which cancer originates. This review highlights the potential therapeutical use of chemical derivatives to stimulate or block specific cellular routes to generate lipid hydroperoxides to treat this disease.
Collapse
Affiliation(s)
- Sofia M. Clemente
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| | - Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| |
Collapse
|
28
|
Zhang YC, Zhao H, Chen C, Ali MA. COX-2 gene rs689466 polymorphism is associated with increased risk of colorectal cancer among Caucasians: a meta-analysis. World J Surg Oncol 2020; 18:192. [PMID: 32731879 PMCID: PMC7391579 DOI: 10.1186/s12957-020-01957-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several studies have reported the Cyclooxygenase 2 (COX-2) rs689466 polymorphism as a susceptibility locus of colorectal cancer (CRC), but their findings are inconsistent. Thus, this meta-analysis was performed to more accurately identify the effects of this polymorphism on CRC risk. METHODS Potential case-control studies on EMBASE, Google Scholar, Web of Science, Cochrane Library, and PubMed were searched. The strength of association was quantified by pooled odds ratio and 95% confidence interval. Totally 16 articles involving 8998 cases and 11,917 controls were included. RESULTS None of the five tested genetic models revealed an association between rs689466 polymorphism and CRC risk. Stratified analysis by ethnicity uncovered a positive association between this polymorphism and higher CRC risk in Caucasians, but not in Asians. In addition, we found that high expression of COX-2 was associated with better overall survival for all CRC patients. CONCLUSION To sum up, the COX-2 rs689466 polymorphism may be related with susceptibility to CRC in Caucasians. This finding should be verified by larger-size studies with different ethnic groups.
Collapse
Affiliation(s)
- Yong-Chen Zhang
- Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Hui Zhao
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chen Chen
- Department of Thoracic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China.
| | - Mohammad Amzad Ali
- Department of Casualty (emergency), Pandit Madan Mohan Malviya government hospital Malviya Nagar, New Delhi, India.
| |
Collapse
|
29
|
Buzharevski A, Paskaš S, Sárosi MB, Laube M, Lönnecke P, Neumann W, Murganić B, Mijatović S, Maksimović-Ivanić D, Pietzsch J, Hey-Hawkins E. Carboranyl Derivatives of Rofecoxib with Cytostatic Activity against Human Melanoma and Colon Cancer Cells. Sci Rep 2020; 10:4827. [PMID: 32179835 PMCID: PMC7076013 DOI: 10.1038/s41598-020-59059-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Owing to the involvement of cyclooxygenase-2 (COX-2) in carcinogenesis, COX-2-selective inhibitors are increasingly studied for their potential cytotoxic properties. Moreover, the incorporation of carboranes in structures of established anti-inflammatory drugs can improve the potency and metabolic stability of the inhibitors. Herein, we report the synthesis of carborane-containing derivatives of rofecoxib that display remarkable cytotoxic or cytostatic activity in the micromolar range with excellent selectivity for melanoma and colon cancer cell lines over normal cells. Furthermore, it was shown that the carborane-modified derivatives of rofecoxib showed different modes of action that were dependent on the cell type.
Collapse
Affiliation(s)
- Antonio Buzharevski
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany
| | - Svetlana Paskaš
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia", Belgrade University, Belgrade, Serbia
| | - Menyhárt-Botond Sárosi
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, D-01328, Dresden, Germany
| | - Peter Lönnecke
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany
| | - Wilma Neumann
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany
| | - Blagoje Murganić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia", Belgrade University, Belgrade, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia", Belgrade University, Belgrade, Serbia
| | - Danijelа Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia", Belgrade University, Belgrade, Serbia
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, D-01328, Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Mommsenstrasse 4, D-01062, Dresden, Germany
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany.
| |
Collapse
|
30
|
Du WZ, Zhang AH, Ren JL, Lyu K, Tuo LY, Xu W. Study of Differential Serum Metabolites in Patients with Adenomatous Polyps of Colon and Yang-Deficiency Constitution Based on Ultra-performance Liquid Chromatography-Mass Spectrometry. Chin J Integr Med 2019; 28:403-409. [PMID: 31784934 DOI: 10.1007/s11655-019-3181-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To study the differences between the serum metabolites in patients with adenomatous polyps of the colon and yang-deficiency constitution and those without colon polyps and with balanced constitution, and look for biomarkers that can be used to distinguish between the two groups. METHODS General patient information was gathered, and Chinese medicine constitution were collected in 940 patients who underwent electronic colonoscopy. A total of 119 patients with adenomatous polyps of the colon and yang-deficiency constitution were included in the experimental group, and 150 patients without colon polyps and with balanced constitution were included in the control group. Metabolomics analysis was performed on the fasting venous blood obtained from each patient in both groups. Principal component analysis and orthogonal partial least squares discriminant analysis were performed on the detection results, potential biomarkers were screened, metabolic pathway changes were determined, and the metabolic processes involved were discussed. RESULTS A total of 59 differential biomarkers between the experimental group and the control group were identified. The differential metabolites were found mainly in the glycerophospholipid metabolism pathway, and the bile acid 3-oxo-4,6-choladienoic acid was the biomarker that distinguished the experimental group from the control group. CONCLUSION With the help of metabolomics analysis, the differential metabolites in patients with adenomatous polyps of the colon and yang-deficiency constitution and those in patients without colon polyps and with balanced constitution could be identified. The biomarker 3-oxo-4,6-choladienoic acid may have potential diagnostic value in patients with adenomatous polyp of the colon and yang-deficiency constitution. (Trial Registration No. NCT02986308).
Collapse
Affiliation(s)
- Wen-Zhang Du
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ai-Hua Zhang
- Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Jun-Ling Ren
- Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Kun Lyu
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lu-Yao Tuo
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wei Xu
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
31
|
Sharma A, Lee MG, Won M, Koo S, Arambula JF, Sessler JL, Chi SG, Kim JS. Targeting Heterogeneous Tumors Using a Multifunctional Molecular Prodrug. J Am Chem Soc 2019; 141:15611-15618. [PMID: 31509395 DOI: 10.1021/jacs.9b07171] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reported here is a molecular construct (K1) designed to overcome hurdles associated with delivering active drugs to heterogeneous tumor environments. Construct K1 relies on two cancer environment triggers (GSH and H2O2) to induce prodrug activation. It releases an active drug form (SN-38) under conditions of both oxidative and reductive stress in vitro. Specific uptake of K1 in COX-2 positive aggressive colon cancer cells (SW620 and LoVo) was seen, along with enhanced anticancer activity compared with the control agent SN-38. These findings are attributed to environmentally triggered drug release, as well as simultaneous scavenging of species giving rise to intracellular redox stress. K1 serves to downregulate various cancer survival signaling pathways (AKT, p38, IL-6, VEGF, and TNF-α) and upregulate an anti-inflammatory response (IL-10). Compared with SN-38 and DMSO as controls, K1 also displayed an improved in vivo therapeutic efficacy in a xenograft tumor regrowth model with no noticeable systematic toxicity at the administrated dose. We believe that the strategy described here presents an attractive approach to addressing solid tumors characterized by intratumoral heterogeneity.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry , Korea University , Seoul 02841 Korea
| | - Min-Goo Lee
- Department of Life Sciences , Korea University , Seoul 02841 , Korea
| | - Miae Won
- Department of Chemistry , Korea University , Seoul 02841 Korea
| | - Seyoung Koo
- Department of Chemistry , Korea University , Seoul 02841 Korea
| | - Jonathan F Arambula
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712-1224 , United States
| | - Jonathan L Sessler
- Institute for Supramolecular Chemistry and Catalysis , Shanghai University , Shanghai 200444 , China.,Department of Chemistry , University of Texas at Austin , Austin , Texas 78712-1224 , United States
| | - Sung-Gil Chi
- Department of Life Sciences , Korea University , Seoul 02841 , Korea
| | - Jong Seung Kim
- Department of Chemistry , Korea University , Seoul 02841 Korea
| |
Collapse
|
32
|
Human cytomegalovirus infection is correlated with enhanced cyclooxygenase-2 and 5-lipoxygenase protein expression in breast cancer. J Cancer Res Clin Oncol 2019; 145:2083-2095. [PMID: 31203442 PMCID: PMC6658585 DOI: 10.1007/s00432-019-02946-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/27/2019] [Indexed: 01/26/2023]
Abstract
Purpose While enhanced expression of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) and their derived metabolites is associated with breast cancer (BC) risk, the precise link between BC carcinogenesis and enhanced inflammatory activity remains to be clarified. Human Cytomegalovirus (HCMV) may induce expression of COX-2 and 5-LO and is frequently found in breast cancer biopsies. Thus, we investigated whether there is an association between HCMV proteins and expression of COX-2 and 5-LO in human BC tissue and BC cell lines. Materials and methods Paraffin embedded biopsies obtained from 49 patients with breast cancer and 26 tissue samples from adjacent, benign breast tissues were retrospectively examined for HCMV-immediate early (IE), HCMV-Late (LA), COX-2, and 5-LO proteins by immunohistochemistry. In vitro, uninfected and HCMV-infected BC cell lines were examined for COX-2 and 5-LO transcripts and proteins by PCR and flow cytometry. Results Extensive expression of COX-2, 5-LO and HCMV-IE proteins were preferentially detected in BC samples. We found a statistically significant concordant correlation between extensive HCMV-IE and COX-2 (P < 0.0001) as well as with HCMV-IE and 5-LO (P = 0.0003) in infiltrating BC. In vitro, HCMV infection induced COX-2 and 5-LO transcripts and COX-2 proteins in MCF-7 cells (P =0.008, P =0.018, respectively). In MDA-MB-231 cells that already had high base line levels of COX-2 expression, HCMV induced both COX-2 and 5-LO proteins but not transcripts. Conclusion Our findings demonstrate a significant correlation between extensive HCMV-IE protein expression and overexpression of COX-2 and 5-LO in human breast cancer. Electronic supplementary material The online version of this article (10.1007/s00432-019-02946-8) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Chen HX, Yuan ZY, Wu KX, Liu C, Mao QD, He BG, Yuan H. The study of methylation and single nucleotide polymorphisms of cancer-related genes in patients with early-stage ulcerative colitis. Scand J Gastroenterol 2019; 54:427-431. [PMID: 31046486 DOI: 10.1080/00365521.2019.1594355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aim: To investigate the methylation status and single nucleotide polymorphisms (SNPs) of cancer-associated genes in ulcerative colitis (UC) patients and explore the potential mechanism for high cancer risk of UC. Methods: A total of 103 patients were enrolled in our study, which included 30 healthy subjects, 41 patients with early-stage UC, and 32 patients with colorectal cancer (CRC). Methylation status of cyclooxygenase 2 (COX2) and human RUNT-related transcription factor 3 (RUNX3) genes in colonic mucosa from 3 groups of subjects were detected by methylation-specific polymerase chain reaction (PCR). The SNPs TNF-α rs1800629 and IL-1 rs1143627 were genotyped by PCR and direct sequencing. Results: The methylation rate of RUNX3 gene within CRC group was 35.7%, which was significantly higher than the other two groups (Healthy control 5.9%, UC 15.4%, p = .040). There was no significant difference in the methylation rate of RUNX3 between early-stage UC group and healthy control group (p = .633). The methylation rate of COX2 gene, the genotypes (GG, AG) and alleles (A, G) of rs1800629, and the genotypes (CC,CT,TT) and alleles (C,T) of rs1143627 were not statistically different among three groups. Conclusion: In the early stage of UC, the methylation rate of cancer-related genes RUNX3 and COX2 and SNPs TNF-α rs1800629 and IL-1 rs1143627 were not significantly different compared with healthy subjects. The methylation rate of RUNX3 in CRC increased, while the methylation rate of COX2 and SNPs TNF-α rs1800629 and IL-1 rs1143627 did not change significantly compared with the other two groups.
Collapse
Affiliation(s)
- Hai-Xing Chen
- a School of clinical medicine , Weifang Medical University , Weifang , Shandong , China
| | - Zi-Ying Yuan
- b Department of Gastroenterology , Peking University Third Hospital , Beijing , China
| | - Ke-Xiang Wu
- c Department of Electrophysiology , The Affiliated Hospital of Weifang Medical College , Weifang , Shandong , China
| | - Chen Liu
- a School of clinical medicine , Weifang Medical University , Weifang , Shandong , China
| | - Qing-Dong Mao
- d Department of Gastroenterology , The Affiliated Hospital Of Qingdao University , Qingdao , Shandong , China
| | - Bao-Guo He
- d Department of Gastroenterology , The Affiliated Hospital Of Qingdao University , Qingdao , Shandong , China
| | - Hao Yuan
- d Department of Gastroenterology , The Affiliated Hospital Of Qingdao University , Qingdao , Shandong , China
| |
Collapse
|
34
|
Haque MA, Sailo BL, Padmavathi G, Kunnumakkara AB, Jana CK. Nature-inspired development of unnatural meroterpenoids as the non-toxic anti-colon cancer agents. Eur J Med Chem 2018; 160:256-265. [PMID: 30368201 DOI: 10.1016/j.ejmech.2018.08.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
Structural analogues of anti-cancer natural product, dysideanone, were synthesized starting from Wieland-Miescher ketone derivative. In vitro studies have been conducted to evaluate the anti-cancer potential of these unnatural meroterpenoids against colon cancer. Synthesized carbotetracycles were found to be more active as compared to their acyclic carbinol-derivatives. Unnatural carbotetracycles 4b-e, 4h, 4i and 12 were found to be highly effective against the human colon adenocarcinoma cells with IC50 concentrations of 7.5-20 μM. In this series, the carbotetracyclic catechol 4e (IC50 = 7.5 μM) and quinone 12 (IC50 = 8 μM) were found to be the most potent compounds having the IC50 of less than 10 μM with no cytotoxic effect on the normal cells. Downregulation of Cox-2 and survivin and cell cycle arrest eventually leading to apoptosis were found to be the underlying mechanism of the anti-cancer effect of these unnatural meroterpenoids.
Collapse
Affiliation(s)
- Md Ashraful Haque
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Bethsebie L Sailo
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| | - Chandan K Jana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
35
|
Yu Y, Blokhuis B, Derks Y, Kumari S, Garssen J, Redegeld F. Human mast cells promote colon cancer growth via bidirectional crosstalk: studies in 2D and 3D coculture models. Oncoimmunology 2018; 7:e1504729. [PMID: 30377568 PMCID: PMC6205014 DOI: 10.1080/2162402x.2018.1504729] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation drives the development of colorectal cancer (CRC), where tumor-infiltrating immune cells interact with cancer cells in a dynamic crosstalk. Mast cells (MC), one of earliest recruited immune cells, accumulate in CRC tissues and their density is correlated with cancer progression. However, the exact contribution of MC in CRC and their interaction with colon cancer cells is poorly understood. Here, we investigated the impact of primary human MC and their mediators on colon cancer growth using 2D and 3D coculture models. Primary human MC were generated from peripheral CD34+ stem cells. Transwell chambers were used to analyze MC chemotaxis to colon cancer. Colon cancer cells HT29 and Caco2 differentially recruited MC by releasing CCL15 or SCF, respectively. Using BrdU proliferation assays, we demonstrated that MC can directly support colon cancer proliferation and this effect was mediated by their cellular crosstalk. 3D coculture models with cancer spheroids further confirmed the pro-tumor effect of MC on colon cancer growth, where direct cell-cell contact is dispensable and increased production of multiple soluble mediators was detected. Moreover, TLR2 stimulation of MC promoted stronger growth of colon cancer spheroids. By examining the transcriptome profile of colon cancer-cocultured MC versus control MC, we identified several MC marker genes, which were deregulated in expression. Our study provides an advanced in vitro model to investigate the role of human MC in cancer. Our data support the detrimental role of MC in CRC development and provide a molecular insight into the cellular crosstalk between MC and colon cancer cells.
Collapse
Affiliation(s)
- Yingxin Yu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Blokhuis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Yvonne Derks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sangeeta Kumari
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Department of Immunology, Nutricia Research, Utrecht, The Netherlands
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
36
|
Kim W, Son B, Lee S, Do H, Youn B. Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy. Cancer Metastasis Rev 2018; 37:213-225. [DOI: 10.1007/s10555-018-9742-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Gottschall H, Schmöcker C, Hartmann D, Rohwer N, Rund K, Kutzner L, Nolte F, Ostermann AI, Schebb NH, Weylandt KH. Aspirin alone and combined with a statin suppresses eicosanoid formation in human colon tissue. J Lipid Res 2018; 59:864-871. [PMID: 29444936 PMCID: PMC5928440 DOI: 10.1194/jlr.m078725] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/10/2018] [Indexed: 12/14/2022] Open
Abstract
Eicosanoids, including prostaglandins (PGs) and thromboxanes, are broadly bioactive lipid mediators and increase colon tumorigenesis possibly through chronic inflammatory mechanisms. Epidemiological and experimental data suggest that acetylsalicylic acid (ASA) helps prevent colorectal cancer (CRC), possibly through cyclooxygenase (COX)-mediated suppression of eicosanoid, particularly PGE2, formation. Recent studies suggest that statins prevent CRC and improve survival after diagnosis. We identified patients on ASA and/or statin treatment undergoing routine colonoscopy and measured eicosanoid levels in colonic mucosa with targeted metabolomics technology (LC-MS/MS). ASA-treated individuals (n = 27) had significantly lower tissue eicosanoid levels of most COX-derived metabolites than untreated individuals (n = 31). In contrast, COX-derived lipid metabolites tended to be higher in patients with statin treatment (n = 7) as compared with those not receiving statins (n = 24). This effect was not discernible in subjects treated with ASA and statins (n = 11): Individuals treated with both drugs showed a pronounced suppression of COX-derived eicosanoids in colon tissue, even compared with subjects treated with ASA alone. Our data from a routine clinical setting support the hypothesis that ASA and statins could inhibit CRC development via lipid mediator modification. Further studies should directly investigate the effect of dual ASA and statin treatment on colon tumorigenesis in humans.
Collapse
Affiliation(s)
- Heike Gottschall
- Department of Gastroenterology, Sana Klinikum Lichtenberg, Berlin, Germany
| | - Christoph Schmöcker
- Department of Gastroenterology, Sana Klinikum Lichtenberg, Berlin, Germany
- Medical Department, Division of Gastroenterology, Oncology, Hematology, Rheumatology, and Diabetes, Ruppiner Kliniken, Brandenburg Medical School, Neuruppin, Germany
| | - Dirk Hartmann
- Department of Gastroenterology, Sana Klinikum Lichtenberg, Berlin, Germany
| | - Nadine Rohwer
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité University Medicine, Berlin, Germany
| | - Katharina Rund
- Institute for Food Toxicology, University for Veterinary Medicine Hannover, Hannover, Germany
| | - Laura Kutzner
- Institute for Food Toxicology, University for Veterinary Medicine Hannover, Hannover, Germany
| | - Fabian Nolte
- Institute for Food Toxicology, University for Veterinary Medicine Hannover, Hannover, Germany
| | - Annika I Ostermann
- Institute for Food Toxicology, University for Veterinary Medicine Hannover, Hannover, Germany
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Institute for Food Toxicology, University for Veterinary Medicine Hannover, Hannover, Germany
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Karsten H Weylandt
- Medical Department, Division of Gastroenterology, Oncology, Hematology, Rheumatology, and Diabetes, Ruppiner Kliniken, Brandenburg Medical School, Neuruppin, Germany
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité University Medicine, Berlin, Germany
| |
Collapse
|
38
|
Owczarek K, Hrabec E, Fichna J, Sosnowska D, Koziołkiewicz M, Szymański J, Lewandowska U. Inhibition of nuclear factor-kappaB, cyclooxygenase-2, and metalloproteinase-9 expression by flavanols from evening primrose (Oenothera paradoxa) in human colon cancer SW-480 cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
39
|
Wang D, Li Y, Zhang C, Li X, Yu J. MiR‐216a‐3p inhibits colorectal cancer cell proliferation through direct targeting COX‐2 and ALOX5. J Cell Biochem 2017; 119:1755-1766. [DOI: 10.1002/jcb.26336] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/07/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Dongxia Wang
- Department of Radiation OncologyShandong Cancer Hospital Affiliated to Shandong UniversityJinanChina
- Department of Radiation OncologyDongguan People's HospitalDongguanChina
| | - Yuechun Li
- Department of Gastrointestinal SurgeryDongguan People's HospitalDongguanChina
| | - Chun Zhang
- Department of Radiation OncologyDongguan People's HospitalDongguanChina
| | - Xianming Li
- Department of Radiation OncologyShenzhen People's HospitalShenzhenChina
| | - Jinming Yu
- Department of Radiation OncologyShandong Cancer Hospital Affiliated to Shandong UniversityJinanChina
| |
Collapse
|
40
|
Chen ZG, Zheng CY, Cai WQ, Li DW, Ye FY, Zhou J, Wu R, Yang K. miR-26b Mimic Inhibits Glioma Proliferation In Vitro and In Vivo Suppressing COX-2 Expression. Oncol Res 2017; 27:147-155. [PMID: 28800785 PMCID: PMC7848412 DOI: 10.3727/096504017x15021536183517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioma is the most common malignant tumor of the nervous system. Studies have shown the microRNA-26b (miR-26b)/cyclooxygenase-2 (COX-2) axis in the development and progression in many tumor cells. Our study aims to investigate the effect and mechanism of the miR-26b/COX-2 axis in glioma. Decreased expression of miR-26b with increased levels of COX-2 was found in glioma tissues compared with matched normal tissues. A strong negative correlation was observed between the level of miR-26b and COX-2 in 30 glioma tissues. The miR-26b was then overexpressed by transfecting a miR-26b mimic into U-373 cells. The invasive cell number and wound closing rate were reduced in U-373 cells transfected with miR-26b mimic. In addition, COX-2 siRNA enhanced the effect of miR-26b mimic in suppressing the expression of p-ERK1 and p-JNK. Finally, the in vivo experiment revealed that miR-26b mimic transfection strongly reduced the tumor growth, tumor volume, and expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. Taken together, our research indicated a miR-26b/COX-2/ERK/JNK axis in regulating the motility of glioma in vitro and in vivo, providing a new sight for the treatment of glioma.
Collapse
Affiliation(s)
- Zheng-Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Chuan-Yi Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Wang-Qing Cai
- Department of Neurosurgery, The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Da-Wei Li
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Fu-Yue Ye
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Jian Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Ran Wu
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Kun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| |
Collapse
|
41
|
Hsu HH, Lin YM, Shen CY, Shibu MA, Li SY, Chang SH, Lin CC, Chen RJ, Viswanadha VP, Shih HN, Huang CY. Prostaglandin E2-Induced COX-2 Expressions via EP2 and EP4 Signaling Pathways in Human LoVo Colon Cancer Cells. Int J Mol Sci 2017; 18:E1132. [PMID: 28587064 PMCID: PMC5485956 DOI: 10.3390/ijms18061132] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022] Open
Abstract
Metastasis is the most dangerous risk faced by patients with hereditary non-polyposis colon cancer (HNPCC). The expression of matrix metalloproteinases (MMPs) has been observed in several types of human cancers and regulates the efficacy of many therapies. Here, we show that treatment with various concentrations of prostaglandin E2 (PGE2; 0, 1, 5 or 10 μM) promotes the migration ability of the human LoVo colon cancer cell line. As demonstrated by mRNA and protein expression analyses, EP2 and EP4 are the major PGE2 receptors expressed on the LoVo cell membrane. The Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt cell survival pathway was upregulated by EP2 and EP4 activation. Following the activation of the PI3K/Akt pathway, β-catenin translocated into the nucleus and triggered COX2 transcription via LEF-1 and TCF-4 and its subsequent translation. COX2 expression correlated with the elevation in the migration ability of LoVo cells. The experimental evidence shows a possible mechanism by which PGE2 induces cancer cell migration and further suggests PGE2 to be a potential therapeutic target in colon cancer metastasis. On inhibition of PGE2, in order to determine the downstream pathway, the levels of PI3K/Akt pathway were suppressed and the β-catenin expression was also modulated. Inhibition of EP2 and EP4 shows that PGE2 induces protein expression of COX-2 through EP2 and EP4 receptors in LoVo colon cancer cells.
Collapse
Affiliation(s)
- Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Freshwater 25160, Taiwan.
- Mackay Medicine, Nursing and Management College, Taipei 10449, Taiwan.
| | - Yueh-Min Lin
- Department of pathology, Changhua Christian Hospital, Changhua 500, Taiwan.
- Medical Technology, Jen-The Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan.
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung 912, Taiwan.
| | - Marthandam Asokan Shibu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Shin-Yi Li
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Sheng-Huang Chang
- Tsao-Tun Psychiatric Center, Department of Health, Executive Yuan, Taipei 10058, Taiwan.
| | - Chien-Chung Lin
- Orthopaedic Department, Armed Forces General Hospital, Taichung 404, Taiwan.
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | | | - Hui-Nung Shih
- Division of Colorectal Surgery, Mackay Memorial Hospital, Freshwater 25160, Taiwan.
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|