1
|
Keener R, Chhetri SB, Connelly CJ, Taub MA, Conomos MP, Weinstock J, Ni B, Strober B, Aslibekyan S, Auer PL, Barwick L, Becker LC, Blangero J, Bleecker ER, Brody JA, Cade BE, Celedon JC, Chang YC, Cupples LA, Custer B, Freedman BI, Gladwin MT, Heckbert SR, Hou L, Irvin MR, Isasi CR, Johnsen JM, Kenny EE, Kooperberg C, Minster RL, Naseri T, Viali S, Nekhai S, Pankratz N, Peyser PA, Taylor KD, Telen MJ, Wu B, Yanek LR, Yang IV, Albert C, Arnett DK, Ashley-Koch AE, Barnes KC, Bis JC, Blackwell TW, Boerwinkle E, Burchard EG, Carson AP, Chen Z, Chen YDI, Darbar D, de Andrade M, Ellinor PT, Fornage M, Gelb BD, Gilliland FD, He J, Islam T, Kaab S, Kardia SLR, Kelly S, Konkle BA, Kumar R, Loos RJF, Martinez FD, McGarvey ST, Meyers DA, Mitchell BD, Montgomery CG, North KE, Palmer ND, Peralta JM, Raby BA, Redline S, Rich SS, Roden D, Rotter JI, Ruczinski I, Schwartz D, Sciurba F, Shoemaker MB, Silverman EK, Sinner MF, Smith NL, Smith AV, Tiwari HK, Vasan RS, Weiss ST, Williams LK, Zhang Y, Ziv E, Raffield LM, Reiner AP, Arvanitis M, Greider CW, Mathias RA, Battle A. Validation of human telomere length multi-ancestry meta-analysis association signals identifies POP5 and KBTBD6 as human telomere length regulation genes. Nat Commun 2024; 15:4417. [PMID: 38789417 PMCID: PMC11126610 DOI: 10.1038/s41467-024-48394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.
Collapse
Grants
- 5K12GM123914 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG069120 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL105756 NHLBI NIH HHS
- R35GM139580 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 AI132476 NIAID NIH HHS
- R01 DK071891 NIDDK NIH HHS
- R35 GM139580 NIGMS NIH HHS
- R01HL153805 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG081244 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R35CA209974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01HL105756 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL68959 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL079915 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL87681 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL153805 NHLBI NIH HHS
- R01HL-120393 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Rebecca Keener
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Surya B Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Carla J Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthew P Conomos
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Joshua Weinstock
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bohan Ni
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin Strober
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | | | - Paul L Auer
- Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lucas Barwick
- LTRC Data Coordinating Center, The Emmes Company, LLC, Rockville, MD, USA
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eugene R Bleecker
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Juan C Celedon
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Barry I Freedman
- Internal Medicine - Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mark T Gladwin
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jill M Johnsen
- Department of Medicine and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ryan L Minster
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Take Naseri
- Naseri & Associates Public Health Consultancy Firm and Family Health Clinic, Apia, Samoa
- International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | - Satupa'itea Viali
- Oceania University of Medicine, Apia, Samoa
- School of Medicine, National University of Samoa, Apia, Samoa
- Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, CT, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington DC, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Baojun Wu
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivana V Yang
- Departments of Biomedical Informatics, Medicine, and Epidemiology, University of Colorado, Boulder, CO, USA
| | - Christine Albert
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular, Brigham and Women's Hospital, Boston, MA, USA
| | - Donna K Arnett
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | | | - Kathleen C Barnes
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas W Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MI, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Talat Islam
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stefan Kaab
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, CA, USA
- University of California San Francisco Benioff Children's Hospital, Oakland, CA, USA
| | - Barbara A Konkle
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rajesh Kumar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fernando D Martinez
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Stephen T McGarvey
- Department of Epidemiology & International Health Institute, Brown University School of Public Health, Providence, RI, USA
| | - Deborah A Meyers
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Courtney G Montgomery
- Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Benjamin A Raby
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Susan Redline
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Dan Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Schwartz
- Departments of Medicine and Immunology, University of Colorado, Boulder, CO, USA
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Benjamin Shoemaker
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Moritz F Sinner
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Nicholas L Smith
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama Birmingham, Birmingham, AL, USA
| | | | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Yingze Zhang
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marios Arvanitis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Carol W Greider
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- University Professor Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA.
- Data Science and AI Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Tsatsakis A, Oikonomopoulou T, Nikolouzakis TK, Vakonaki E, Tzatzarakis M, Flamourakis M, Renieri E, Fragkiadaki P, Iliaki E, Bachlitzanaki M, Karzi V, Katsikantami I, Kakridonis F, Hatzidaki E, Tolia M, Svistunov AA, Spandidos DA, Nikitovic D, Tsiaoussis J, Berdiaki A. Role of telomere length in human carcinogenesis (Review). Int J Oncol 2023; 63:78. [PMID: 37232367 PMCID: PMC10552730 DOI: 10.3892/ijo.2023.5526] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Cancer is considered the most important clinical, social and economic issue regarding cause‑specific disability‑adjusted life years among all human pathologies. Exogenous, endogenous and individual factors, including genetic predisposition, participate in cancer triggering. Telomeres are specific DNA structures positioned at the end of chromosomes and consist of repetitive nucleotide sequences, which, together with shelterin proteins, facilitate the maintenance of chromosome stability, while protecting them from genomic erosion. Even though the connection between telomere status and carcinogenesis has been identified, the absence of a universal or even a cancer‑specific trend renders consent even more complex. It is indicative that both short and long telomere lengths have been associated with a high risk of cancer incidence. When evaluating risk associations between cancer and telomere length, a disparity appears to emerge. Even though shorter telomeres have been adopted as a marker of poorer health status and an older biological age, longer telomeres due to increased cell growth potential are associated with the acquirement of cancer‑initiating somatic mutations. Therefore, the present review aimed to comprehensively present the multifaceted pattern of telomere length and cancer incidence association.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Tatiana Oikonomopoulou
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Taxiarchis Konstantinos Nikolouzakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Elisavet Renieri
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Evaggelia Iliaki
- Laboratory of Microbiology, University Hospital of Heraklion, 71500 Heraklion
| | - Maria Bachlitzanaki
- Department of Medical Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion
| | - Vasiliki Karzi
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Ioanna Katsikantami
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Fotios Kakridonis
- Department of Spine Surgery and Scoliosis, KAT General Hospital, 14561 Athens
| | - Eleftheria Hatzidaki
- Department of Neonatology and Neonatal Intensive Care Unit (NICU), University Hospital of Heraklion, 71500 Heraklion
| | - Maria Tolia
- Department of Radiation Oncology, University Hospital of Crete, 71110 Heraklion, Greece
| | - Andrey A. Svistunov
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
3
|
Drakopoulou E, Anagnou NP, Pappa KI. Gene Therapy for Malignant and Benign Gynaecological Disorders: A Systematic Review of an Emerging Success Story. Cancers (Basel) 2022; 14:cancers14133238. [PMID: 35805007 PMCID: PMC9265289 DOI: 10.3390/cancers14133238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review discusses all the major advances in gene therapy of gynaecological disorders, highlighting the novel and potentially therapeutic perspectives associated with such an approach. It specifically focuses on the gene therapy strategies against major gynaecological malignant disorders, such as ovarian, cervical, and endometrial cancer, as well as benign disorders, such as uterine leiomyomas, endometriosis, placental, and embryo implantation disorders. The above therapeutic strategies, which employ both viral and non-viral systems for mutation compensation, suicide gene therapy, oncolytic virotherapy, antiangiogenesis and immunopotentiation approaches, have yielded promising results over the last decade, setting the grounds for successful clinical trials. Abstract Despite the major advances in screening and therapeutic approaches, gynaecological malignancies still present as a leading cause of death among women of reproductive age. Cervical cancer, although largely preventable through vaccination and regular screening, remains the fourth most common and most lethal cancer type in women, while the available treatment schemes still pose a fertility threat. Ovarian cancer is associated with high morbidity rates, primarily due to lack of symptoms and high relapse rates following treatment, whereas endometrial cancer, although usually curable by surgery, it still represents a therapeutic problem. On the other hand, benign abnormalities, such as fibroids, endometriosis, placental, and embryo implantation disorders, although not life-threatening, significantly affect women’s life and fertility and have high socio-economic impacts. In the last decade, targeted gene therapy approaches toward both malignant and benign gynaecological abnormalities have led to promising results, setting the ground for successful clinical trials. The above therapeutic strategies employ both viral and non-viral systems for mutation compensation, suicide gene therapy, oncolytic virotherapy, antiangiogenesis and immunopotentiation. This review discusses all the major advances in gene therapy of gynaecological disorders and highlights the novel and potentially therapeutic perspectives associated with such an approach.
Collapse
Affiliation(s)
- Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
| | - Nicholas P. Anagnou
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
- Correspondence:
| | - Kalliopi I. Pappa
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
- First Department of Obstetrics and Gynecology, University of Athens School of Medicine, 11528 Athens, Greece
| |
Collapse
|
4
|
Peng Q, Zhou M, Zuo S, Liu Y, Li X, Yang Y, He Q, Yu X, Zhou J, He Z, He Q. Nuclear Factor Related to KappaB Binding Protein ( NFRKB) Is a Telomere-Associated Protein and Involved in Liver Cancer Development. DNA Cell Biol 2021; 40:1298-1307. [PMID: 34591601 DOI: 10.1089/dna.2021.0486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) is a homologous recombination-based telomere maintenance mechanism activated in 10-15% of human cancers. Although significant progress has been made, the key regulators of the ALT pathway and its role in cancer development remain elusive. Bioinformatics methods were used to predict novel telomere-associated proteins (TAPs) by analysis of large-scale ChIP-Seq data. Immunostaining and fluorescence in situ hybridization experiments were applied to detect the subcellular location of target genes and telomeres. Western blot and reverse transcription-polymerase chain reaction (RT-PCR) were used to examine the expression of targeting genes. Overall survival (OS) analyses were used to evaluate the relationship between gene expression and survival time; immunohistochemistry was used to detect the distribution of target genes in liver cancer tissues. We found that nuclear factor related to kappaB binding protein (NFRKB), a metazoan-specific subunit of the INO80 complex, can associate with telomeres in human ALT cells. Loss of NFRKB induces dysfunction of telomeres and less PML bodies in U2OS cells. In addition, NFRKB is low/moderately expressed in cytoplasm of normal hepatocytes but heavily accumulating in the nucleus of liver cancer cells. Finally, the high expression of NFRKB is associated with short OS time and poor prognosis. NFRKB is a TAP and protects telomeres from DNA damage in ALT cells. It is highly expressed in hepatocellular carcinoma (HCC) cells and predicts a poor prognosis. NFRKB may be a promising prognostic biomarker for the treatment of HCC in the future.
Collapse
Affiliation(s)
- Qiyao Peng
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Mingqing Zhou
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Shanru Zuo
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Yucong Liu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Xueguang Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Yide Yang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Quanze He
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xing Yu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Junhua Zhou
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Quanyuan He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| |
Collapse
|
5
|
Bader AS, Bushell M. Damage-Net: A program for DNA repair meta-analysis identifies a network of novel repair genes that facilitate cancer evolution. DNA Repair (Amst) 2021; 105:103158. [PMID: 34147942 PMCID: PMC8385418 DOI: 10.1016/j.dnarep.2021.103158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
The advent of genome-wide methods for identifying novel components in biological processes including CRISPR screens and proteomic studies, has transformed the research landscape within the biological sciences. However, each study normally investigates a single aspect of a process without integration of other published datasets. Here, we present Damage-Net, a program with a curated database of published results from a broad range of studies investigating DNA repair, that facilitates simple and quick meta-analysis. Users can incorporate their own datasets for analysis, and query genes of interest in the database. Importantly, this program also allows users to examine the correlation of genes of interest with pan-cancer patient survival and mutational burden effects. Interrogating these datasets revealed a network of genes that associated with cancer progression in adrenocortical carcinoma via facilitating mutational burden, ultimately contributing substantially to adrenocortical carcinoma's poor prognosis. Download at www.damage-net.co.uk.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
6
|
Lee JH, Hong J, Zhang Z, de la Peña Avalos B, Proietti CJ, Deamicis AR, Guzmán G P, Lam HM, Garcia J, Roudier MP, Sisk AE, De La Rosa R, Vu K, Yang M, Liao Y, Scheirer J, Pechacek D, Yadav P, Rao MK, Zheng S, Johnson-Pais TL, Leach RJ, Elizalde PV, Dray E, Xu K. Regulation of telomere homeostasis and genomic stability in cancer by N 6-adenosine methylation (m 6A). SCIENCE ADVANCES 2021; 7:7/31/eabg7073. [PMID: 34321211 PMCID: PMC8318370 DOI: 10.1126/sciadv.abg7073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/11/2021] [Indexed: 05/04/2023]
Abstract
The role of RNA methylation on N 6-adenosine (m6A) in cancer has been acknowledged, but the underlying mechanisms remain obscure. Here, we identified homeobox containing 1 (HMBOX1) as an authentic target mRNA of m6A machinery, which is highly methylated in malignant cells compared to the normal counterparts and subject to expedited degradation upon the modification. m6A-mediated down-regulation of HMBOX1 causes telomere dysfunction and inactivation of p53 signaling, which leads to chromosome abnormalities and aggressive phenotypes. CRISPR-based, m6A-editing tools further prove that the methyl groups on HMBOX1 per se contribute to the generation of altered cancer genome. In multiple types of human cancers, expression of the RNA methyltransferase METTL3 is negatively correlated with the telomere length but favorably with fractions of altered cancer genome, whereas HMBOX1 mRNA levels show the opposite patterns. Our work suggests that the cancer-driving genomic alterations may potentially be fixed by rectifying particular epitranscriptomic program.
Collapse
Affiliation(s)
- Ji Hoon Lee
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Juyeong Hong
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Bárbara de la Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX 78229, USA
| | - Cecilia J Proietti
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina
| | - Agustina Roldán Deamicis
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina
| | - Pablo Guzmán G
- Departamento de Anatomía Patológica (BIOREN), Universidad de La Frontera, Temuco Casilla 54-D, Chile
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Jose Garcia
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Martine P Roudier
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Anthony E Sisk
- Department of Pathology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Richard De La Rosa
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kevin Vu
- Department of Medical Education, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX 78229, USA
| | - Mei Yang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yiji Liao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jessica Scheirer
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Douglas Pechacek
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pooja Yadav
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Manjeet K Rao
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Teresa L Johnson-Pais
- Department of Urology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | - Robin J Leach
- Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina
| | - Eloïse Dray
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX 78229, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
7
|
Extracellular vesicle-associated microRNA-221-3p secreted by drug-resistant lung cancer cells targets HMBOX1 to promote the progression of lung cancer. Cancer Gene Ther 2020; 28:679-692. [PMID: 33214694 DOI: 10.1038/s41417-020-00249-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022]
Abstract
Extracellular vesicles (EVs) have received increasing attention for their role as possible regulators of cancer. miR-221-3p is a microRNA (miR) up-regulated in EVs secreted by drug-resistant A549-GR lung cancer cells. However, the underlying mechanism through which miR-221-3p-containing EVs regulate the progression of lung cancer remains elusive. Here, we attempted to reveal the mechanism by which miR-221-3p-containing EVs secreted by drug-resistant lung cancer cells regulate the functions of surrounding cells during the progression of lung cancer. A gemcitabine-sensitive lung cancer cell line was treated with isolated drug-resistant lung cancer EVs followed by an evaluation of the proliferation and migration of sensitive lung cancer cell lines and their resistance to gemcitabine treatment. Moreover, the miR-221-3p target gene HMBOX1 was identified by the Targetscan database while the progression of lung cancer was detected by knocking down miR-221-3p or overexpressing HMBOX1, or by treating sensitive cell lines with Akt/mTOR activator and inhibitor, respectively. Furthermore, an in vivo study was performed to validate the relationship between miR-221-3p and HMBOX1 and their roles in the progression of lung cancer. The proliferation and migration of sensitive lung cancer cell lines and their resistance to drugs were significantly enhanced after the treatment with drug-resistant EVs. Knockdown of miR-221-3p (in the EV of drug-resistant lung cancer or overexpression of HMBOX1 in sensitive lung cancer cell lines) reduced the transformation of sensitive lung cell lines, whereas, the treatment of sensitive lung cell lines with Akt/mTOR activator or inhibitor significantly affected the progression of lung cancer. In vivo experiments further confirmed that miR-221-3p released by drug-resistant lung cancer cells targeted the HMBOX1 to regulate the Akt/mTOR signaling pathway and affected the progression of lung cancer. We conclude that miR-221-3p-containing EVs secreted by drug-resistant lung cancer cells can potentially activate the Akt/mTOR signaling pathway by inhibiting HMBOX1, promoting the progression of lung cancer. The regulation of miR-221-3p represents a novel therapeutic target for the treatment of lung cancer.
Collapse
|
8
|
Chen S, Li Y, Zhi S, Ding Z, Wang W, Peng Y, Huang Y, Zheng R, Yu H, Wang J, Hu M, Miao J, Li J. WTAP promotes osteosarcoma tumorigenesis by repressing HMBOX1 expression in an m 6A-dependent manner. Cell Death Dis 2020; 11:659. [PMID: 32814762 PMCID: PMC7438489 DOI: 10.1038/s41419-020-02847-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
N6-methyladenosine (m6A) regulators are involved in the progression of various cancers via regulating m6A modification. However, the potential role and mechanism of the m6A modification in osteosarcoma remains obscure. In this study, WTAP was found to be highly expressed in osteosarcoma tissue and it was an independent prognostic factor for overall survival in osteosarcoma. Functionally, WTAP, as an oncogene, was involved in the proliferation and metastasis of osteosarcoma in vitro and vivo. Mechanistically, M6A dot blot, RNA-seq and MeRIP-seq, MeRIP-qRT-PCR and luciferase reporter assays showed that HMBOX1 was identified as the target gene of WTAP, which regulated HMBOX1 stability depending on m6A modification at the 3′UTR of HMBOX1 mRNA. In addition, HMBOX1 expression was downregulated in osteosarcoma and was an independent prognostic factor for overall survival in osteosarcoma patients. Silenced HMBOX1 evidently attenuated shWTAP-mediated suppression on osteosarcoma growth and metastasis in vivo and vitro. Finally, WTAP/HMBOX1 regulated osteosarcoma growth and metastasis via PI3K/AKT pathway. In conclusion, this study demonstrated the critical role of the WTAP-mediated m6A modification in the progression of osteosarcoma, which could provide novel insights into osteosarcoma treatment.
Collapse
Affiliation(s)
- Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuezhan Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Shuang Zhi
- Four Gynecological Wards, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315000, China
| | - Zhiyu Ding
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Yi Peng
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Yan Huang
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruping Zheng
- School of Basic Medical Science, Central South University, Changsha, China
| | - Haiyang Yu
- School of Basic Medical Science, Central South University, Changsha, China
| | - Jianlong Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
| | - Minghua Hu
- Department of Anatomy, Histology and Embryology, Changsha Medical University, Changsha, China
| | - Jinglei Miao
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.
| | - Jinsong Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.
| |
Collapse
|
9
|
Ma H, Su L, He X, Miao J. Loss of HMBOX1 promotes LPS-induced apoptosis and inhibits LPS-induced autophagy of vascular endothelial cells in mouse. Apoptosis 2020; 24:946-957. [PMID: 31583496 DOI: 10.1007/s10495-019-01572-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our previous study revealed that Homeobox containing 1 (HMBOX1), essential for the survival of vascular endothelial cells (VECs), was involved in the progression of atherosclerosis. Knockdown of HMBOX1 promoted apoptosis and inhibited autophagy through regulating intracellular free zinc level in cultured VECs. In current study, in order to investigate the roles of HMBOX1 in vivo and in endothelium, we generated a knockout (KO) mouse for HMBOX1 by using transcription activator-like effector nucleases (TALENs) technology. Herein, we reported that the protein level of HMBOX1 was gradually increased during mouse development. The HMBOX1 KO mouse was viable and fertile. There existed no differences in apoptosis and autophagy of aortic endothelial cells between wild type and KO mouse. Whereas, loss of HMBOX1 promoted apoptosis and inhibited autophagy of aortic endothelial cells under lipopolysaccharide (LPS) stimulation in mouse. We also demonstrated that HMBOX1 deletion had no influence on the secretion of inflammatory cytokines TNF-α and IL-6. Moreover, overexpression or knockdown of HMBOX1 failed to regulate multiple pro-apoptotic genes expression in vitro. In conclusion, HMBOX1 participated in the functional maintenance of mouse aortic endothelial cells, the aortic endothelial cells of HMBOX1 KO mouse showed increased apoptosis and decreased autophagy with LPS treatment.
Collapse
Affiliation(s)
- HanLin Ma
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, People's Republic of China.,Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, People's Republic of China
| | - XiaoYing He
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, People's Republic of China
| | - JunYing Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, People's Republic of China. .,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, People's Republic of China.
| |
Collapse
|
10
|
Áyen Á, Jiménez Martínez Y, Boulaiz H. Targeted Gene Delivery Therapies for Cervical Cancer. Cancers (Basel) 2020; 12:cancers12051301. [PMID: 32455616 PMCID: PMC7281413 DOI: 10.3390/cancers12051301] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Despite being largely preventable through early vaccination and screening strategies, cervical cancer is the most common type of gynecological malignancy worldwide and constitutes one of the leading causes of cancer deaths in women. Patients with advanced or recurrent disease have a very poor prognosis; hence, novel therapeutic modalities to improve clinical outcomes in cervical malignancy are needed. In this regard, targeted gene delivery therapy is presented as a promising approach, which leads to the development of multiple strategies focused on different aspects. These range from altered gene restoration, immune system potentiation, and oncolytic virotherapy to the use of nanotechnology and the design of improved and enhanced gene delivery systems, among others. In the present manuscript, we review the current progress made in targeted gene delivery therapy for cervical cancer, the advantages and drawbacks and their clinical application. At present, multiple targeted gene delivery systems have been reported with encouraging preclinical results. However, the translation to humans has not yet shown a significant clinical benefit due principally to the lack of efficient vectors. Real efforts are being made to develop new gene delivery systems, to improve tumor targeting and to minimize toxicity in normal tissues.
Collapse
Affiliation(s)
- Ángela Áyen
- Department of Dermatology, San Cecilio Universitary Hospital, 18016 Granada, Spain;
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
| | - Yaiza Jiménez Martínez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain;
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
| | - Houria Boulaiz
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain;
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958-241-271
| |
Collapse
|
11
|
Diao N, Li Y, Yang J, Jin C, Meng X, Jiao W, Feng J, Liu Z, Lu N. High expression of HMBOX1 contributes to poor prognosis of gastric cancer by promoting cell proliferation and migration. Biomed Pharmacother 2019; 115:108867. [PMID: 31005794 DOI: 10.1016/j.biopha.2019.108867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/24/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Homeobox-containing 1 (HMBOX1) has been reported to be associated with biological characteristics of some tumors, but its roles in gastric cancer have never been reported. In the present study, we found that HMBOX1 expression was significantly upregulated in gastric cancer tissues and cell lines and correlated with the TNM stage, lymph-node metastatic and the overall survival (OS) of patients of gastric cancer. The overexpression of HMBOX1 in gastric cancer cells enhanced cell proliferation by accelerating cell cycle, induced cell migration. In contrast, silencing HMBOX1 inhibited these processes. And the expression of HMBOX1 was related with the expression of vascular endothelial growth factor receptor (VEGFR), transforming growth factor-β (TGF-β) and CD133. What's more, we found that the expression of CD133 had a significantly positive correlation with HMBOX1 in gastric cancer tissues, and the co-expression of HMBOX1 and CD133 was significantly correlated with poor prognosis of gastric cancer patients, especially for patients at III and IV stage. In conclusion, HMBOX1 was upregulated in gastric cancer and correlated with gastric cancer cell proliferation and migration. Moreover, HMBOX1 combined CD133 might be useful to predict survival of patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Nannan Diao
- Institute of Diagnostics, School of Medicine, Shandong University, Ji'nan, Shandong, China; Department of Clinical Laboratory, Shanghai Skin Disease Hospital, Shanghai, China
| | - Yuzheng Li
- Institute of Yantai, China Agricultural University, Beijing, China
| | - Jinling Yang
- Institute of Diagnostics, School of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Chengjuan Jin
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China; Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital, Shandong University, Ji'nan, Shandong, China
| | - Xiaohui Meng
- Institute of Diagnostics, School of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Wenlin Jiao
- National Research Center for Assisted Reproductive Technology and Reproduction Genetics, Ji'nan, Shandong, China
| | - Jinbo Feng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China; Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital, Shandong University, Ji'nan, Shandong, China
| | - Zhenping Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China; Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital, Shandong University, Ji'nan, Shandong, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Shandong University, Ji'nan, Shandong, China.
| |
Collapse
|
12
|
Zhou J, Wang M, Deng D. c-Fos/microRNA-18a feedback loop modulates the tumor growth via HMBOX1 in human gliomas. Biomed Pharmacother 2018; 107:1705-1711. [PMID: 30257388 DOI: 10.1016/j.biopha.2018.08.157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
Glioma is one of the most aggressive and lethal human cancers in central nervous system (CNS). Recent studies have identified many dysregulated microRNAs (miRNA, miR) in human glioma, which are a class of small non-coding RNA molecules. Increasing data have shown that miR-18a plays significant roles in several tumors. However, its effects on glioma are unclear. In this study, we found the elevated expression of c-Fos and miR-18a in tissues of human glioma patients and glioma cells. Then the miR-18a inhibitor or c-Fos siRNA were transfected into glioma cells line H4 to determine their effects on H4 cells. MTT assay showed that both miR-18a inhibitor and si-c-Fos suppressed the H4 cell proliferation. Transwell assay showed the reduced cell migration by miR-18a inhibitor and si-c-Fos in H4 cells. The increased level of H4 cells apoptosis by miR-18a inhibitor and si-c-Fos was also determined. Moreover, knockout of c-Fos decreased the miR-18a level, while miR-18a inhibitor reduced the c-Fos level in H4 cells. Added with the results of ChIP assay, this report showed a positive feedback between c-Fos and miR-18a. Finally, luciferase assay showed that HMBOX1 was directly targeted by miR-18a in H4 cells, and the HMBOX1 siRNA reversed the effects of miR-18a inhibitor on cell proliferation, migration and apoptosis of H4 cells. In conclusion, our study determine that c-Fos/miR-18a feedback loop promotes the tumor growth of gliomas by HMBOX1, providing important clues for understanding the key roles of transcription factor mediated mRNA-miRNA functional network in the regulation of gliomas.
Collapse
Affiliation(s)
- Jingbin Zhou
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, PR China
| | - Muchun Wang
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, PR China
| | - Dongfeng Deng
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, PR China.
| |
Collapse
|