1
|
He J, Qu H, Yu Y, Huang J. Characterization and phylogenetic analysis of the Talaromyces liani (kamyschko) Yilmaz, Frisvad & Samson, 2014 (Eurotiales: trichocomaceae) mitochondrial genome. Mitochondrial DNA B Resour 2024; 9:1201-1206. [PMID: 39286475 PMCID: PMC11404368 DOI: 10.1080/23802359.2024.2403409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
The filamentous fungus Talaromyces liani (Kamyschko) Yilmaz, Frisvad & Samson, 2014, has attracted considerable interest in biotechnology due to its diverse industrial applications and physiological characteristics. However, the mitochondrial genome of T. liani remains uncharacterized. Here, we present the complete mitochondrial genome of T. liani, comprising 38,000 bp with a GC content of 24.61%. This genome includes 15 core protein-coding genes, 4 independent ORFs, 6 intronic ORFs, 26 tRNAs, and 2 rRNA genes. Phylogenetic analysis using Bayesian inference (BI) revealed the evolutionary relationships among 15 fungi from Eurotiales, strongly supporting distinct clades and indicating that T. liani most closely related to T. pinophilus.
Collapse
Affiliation(s)
- Jing He
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, Sichuan, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Huijuan Qu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Youqiao Yu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Zhu HQ, Feng S, Xie RK, Zhu ZT, Lou YH, Zhou XM, Song XM. New Indole Alkaloids from the Fungus Talaromyces assiutensis JTY2. Chem Biodivers 2024; 21:e202400937. [PMID: 38682724 DOI: 10.1002/cbdv.202400937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/01/2024]
Abstract
Three new indole alkaloids, named talatensindoids A-C (1-3), together with two known biogenetically related indole alkaloids tryptamine (4) and L-tryptophan (5) were isolated from the Talaromyces assiutensis JTY2 based on the guidance of OSMAC approach. The structures of these indole alkaloids were determined by comprehensive spectroscopic analyses. The absolute configuration of 3 was confirmed by X-ray crystallographic analysis. Compound 1 represent the rare example of a chlorine-substituted indole alkaloid from natural products. The inhibitory activity of compounds 1-5 against two phytopathogenic fungi and three phytopathogenic bacteria was evaluated. Compound 1 exhibited broad spectrum antibacterial activities.
Collapse
Affiliation(s)
- Hong-Quan Zhu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan, Normal University, Haikou, Hainan, 571158, China Tel
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Shuo Feng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan, Normal University, Haikou, Hainan, 571158, China Tel
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Rong-Kun Xie
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan, Normal University, Haikou, Hainan, 571158, China Tel
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Zheng-Tian Zhu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan, Normal University, Haikou, Hainan, 571158, China Tel
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Yong-Hao Lou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan, Normal University, Haikou, Hainan, 571158, China Tel
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Xue-Ming Zhou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan, Normal University, Haikou, Hainan, 571158, China Tel
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Xin-Ming Song
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan, Normal University, Haikou, Hainan, 571158, China Tel
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| |
Collapse
|
3
|
Liang X, Huang ZH, Shen WB, Lu XH, Zhang XX, Ma X, Qi SH. Prenylated indole diketopiperazine alkaloids as phosphatase inhibitors from the marine-derived fungus Talaromyces purpureogenus. PHYTOCHEMISTRY 2024; 223:114119. [PMID: 38705266 DOI: 10.1016/j.phytochem.2024.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/16/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Six previously undescribed prenylated indole diketopiperazine alkaloids, talaromyines A-F (1-6), were isolated from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. Their structures including absolute configurations were elucidated on the basis of comprehensive spectroscopic data including NMR, HR-ESI-MS, and electronic circular dichroism calculations, together with chemical analysis of hydrolysates. Compounds 1-5 represent the first example of spirocyclic indole diketopiperazines biosynthesized from the condensation of L-tryptophan and L-alanine. Compounds 2 and 4-5 showed selective inhibitory activities against phosphatases TCPTP and MEG2 with IC50 value of 17.9-29.7 μM, respectively. Compounds 4-5 exhibited mild cytotoxic activities against two human cancer cell lines H1975 and HepG-2.
Collapse
Affiliation(s)
- Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhong-Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Wen-Bin Shen
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei Industry Microbial Metabolic Technology Innovation Centre, Shijiazhuang Microbial Drugs Technology Innovation Center, Hebei Synthetic Biology High-Energy-Level Technology Innovation Center, Shijiazhuang, Hebei, 050015, China
| | - Xin-Hua Lu
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei Industry Microbial Metabolic Technology Innovation Centre, Shijiazhuang Microbial Drugs Technology Innovation Center, Hebei Synthetic Biology High-Energy-Level Technology Innovation Center, Shijiazhuang, Hebei, 050015, China
| | - Xue-Xia Zhang
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei Industry Microbial Metabolic Technology Innovation Centre, Shijiazhuang Microbial Drugs Technology Innovation Center, Hebei Synthetic Biology High-Energy-Level Technology Innovation Center, Shijiazhuang, Hebei, 050015, China
| | - Xuan Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
4
|
Quan ND, Nguyen NL, Giang TTH, Ngan NTT, Hien NT, Tung NV, Trang NHT, Lien NTK, Nguyen HH. Genome Characteristics of the Endophytic Fungus Talaromyces sp. DC2 Isolated from Catharanthus roseus (L.) G. Don. J Fungi (Basel) 2024; 10:352. [PMID: 38786707 PMCID: PMC11122143 DOI: 10.3390/jof10050352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Talaromyces sp. DC2 is an endophytic fungus that was isolated from the stem of Catharanthus roseus (L.) G. Don in Hanoi, Vietnam and is capable of producing vinca alkaloids. This study utilizes the PacBio Sequel technology to completely sequence the whole genome of Talaromyces sp. DC2The genome study revealed that DC2 contains a total of 34.58 Mb spanned by 156 contigs, with a GC content of 46.5%. The identification and prediction of functional protein-coding genes, tRNA, and rRNA were comprehensively predicted and highly annotated using various BLAST databases, including non-redundant (Nr) protein sequence, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Carbohydrate-Active Enzymes (CAZy) databases. The genome of DC2 has a total of 149, 227, 65, 153, 53, and 6 genes responsible for cellulose, hemicellulose, lignin, pectin, chitin, starch, and inulin degradation, respectively. The Antibiotics and Secondary Metabolites Analysis Shell (AntiSMASH) analyses revealed that strain DC2 possesses 20 biosynthetic gene clusters responsible for producing secondary metabolites. The strain DC2 has also been found to harbor the DDC gene encoding aromatic L-amino acid decarboxylase enzyme. Conclusively, this study has provided a comprehensive understanding of the processes involved in secondary metabolites and the ability of the Talaromyces sp. DC2 strain to degrade plant cell walls.
Collapse
Affiliation(s)
- Nguyen Duc Quan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
| | - Ngoc-Lan Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Tran Thi Huong Giang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
| | - Nguyen Thi Thanh Ngan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Thanh Hien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Hoang Thanh Trang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Huy Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (N.D.Q.); (N.-L.N.); (T.T.H.G.); (N.T.T.N.); (N.T.H.); (N.V.T.); (N.H.T.T.); (N.T.K.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|
5
|
Hassan S, Syun-Ichi U, Shabeer S, Kiran TA, Wu CF, Moriyama H, Coutts RHA, Kotta Loizou I, Jamal A. Molecular and biological characterization of a novel partitivirus from Talaromyces pinophilus. Virus Res 2024; 343:199351. [PMID: 38453057 PMCID: PMC10982079 DOI: 10.1016/j.virusres.2024.199351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Talaromyces spp. have a worldwide distribution, are ecologically diverse and have been isolated from numerous different substrates. Talaromyces spp. are considered biotechnologically important due to their ability to produce a range of enzymes and pigments. Talaromyces pinophilus, belonging to genus Talaromyces and family Trichocomaceae, is known for producing several important bioactive metabolites. Here we report the isolation and characterisation of a partitivirus from T. pinophilus which we have nominated Talaromyces pinophilus partitivirus-1 (TpPV-1). TpPV-1 possesses a genome consisting of three double stranded (ds) RNA segments i.e., dsRNAs1-3, 1824 bp, 1638 bp and 1451 bp respectively, which are encapsidated in icosahedral particles 35 nm in diameter. Both dsRNA1 and dsRNA2 contain a single open reading frame (ORF) encoding respectively a 572 amino acid (aa) protein of 65 kDa and a 504 aa protein of 50 kDa. The third segment (dsRNA3) is potentially a satellite RNA. Phylogenetic analysis revealed that the TpPV-1 belongs to the family Partitiviridae in the proposed genus Zetapartitivirus. TpPV-1 infection decreases the mycelial growth rate of the host fungus and alters pigmentation as indicated by time course experiments performed on a range of different solid media comparing virus-infected and virus-free isogenic lines. This is the first report of mycovirus infection in T. pinophilus and may provide insights into understanding the effect of the mycovirus on the production of enzymes and pigments by the host fungus.
Collapse
Affiliation(s)
- Sidra Hassan
- Department of Plant and Environmental Protection, PARC Institute of Advanced Studies in Agriculture (Affiliated with Quaid-i-Azam University), National Agricultural Research Centre, Islamabad 45500, Pakistan
| | - Urayama Syun-Ichi
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Saba Shabeer
- Department of Bioscience, COMSATS University, Islamabad 44000, Pakistan; Crop Diseases Research Institute (CDRI), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Tahseen Ali Kiran
- Crop Diseases Research Institute (CDRI), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Chien-Fu Wu
- Laboratory of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture & Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 184-8509, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture & Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 184-8509, Japan
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical & Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, United Kingdom
| | - Ioly Kotta Loizou
- Department of Clinical, Pharmaceutical & Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, United Kingdom; Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, United Kingdom.
| | - Atif Jamal
- Crop Diseases Research Institute (CDRI), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan.
| |
Collapse
|
6
|
Rasheed R, Bhat A, Singh B, Tian F. Biogenic Synthesis of Selenium and Copper Oxide Nanoparticles and Inhibitory Effect against Multi-Drug Resistant Biofilm-Forming Bacterial Pathogens. Biomedicines 2024; 12:994. [PMID: 38790956 PMCID: PMC11117875 DOI: 10.3390/biomedicines12050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial resistance (AMR), caused by microbial infections, has become a major contributor to morbid rates of mortality worldwide and a serious threat to public health. The exponential increase in resistant pathogen strains including Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) poses significant hurdles in the health sector due to their greater resistance to traditional treatments and medicines. Efforts to tackle infectious diseases caused by resistant microbes have prompted the development of novel antibacterial agents. Herein, we present selenium and copper oxide monometallic nanoparticles (Se-MMNPs and CuO-MMNPs), characterized using various techniques and evaluated for their antibacterial potential via disc diffusion, determination of minimum inhibitory concentration (MIC), antibiofilm, and killing kinetic action. Dynamic light scattering (DLS), scanning electron microscopy (SEM/EDX), and X-ray diffraction (XRD) techniques confirmed the size-distribution, spherical-shape, stability, elemental composition, and structural aspects of the synthesized nanoparticles. The MIC values of Se-MMNPs and CuO-MMNPs against S. aureus and E. coli were determined to be 125 μg/mL and 100 μg/mL, respectively. Time-kill kinetics studies revealed that CuO-MMNPs efficiently mitigate the growth of S. aureus and E. coli within 3 and 3.5 h while Se-MMNPs took 4 and 5 h, respectively. Moreover, CuO-MMNPs demonstrated better inhibition compared to Se-MMNPs. Overall, the proposed materials exhibited promising antibacterial activity against S. aureus and E. coli pathogens.
Collapse
Affiliation(s)
- Rida Rasheed
- University of Wah, Wah Cantonment 47040, Pakistan;
| | - Abhijnan Bhat
- School of Food Science & Environmental Health, Technological University Dublin (TU Dublin), Grangegorman, D07 ADY7 Dublin, Ireland; (A.B.); (B.S.)
| | - Baljit Singh
- School of Food Science & Environmental Health, Technological University Dublin (TU Dublin), Grangegorman, D07 ADY7 Dublin, Ireland; (A.B.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Hub, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Furong Tian
- School of Food Science & Environmental Health, Technological University Dublin (TU Dublin), Grangegorman, D07 ADY7 Dublin, Ireland; (A.B.); (B.S.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin (TU Dublin), Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
7
|
Rasheed R, Uzair B, Raza A, Binsuwaidan R, Alshammari N. Fungus-mediated synthesis of Se-BiO-CuO multimetallic nanoparticles as a potential alternative antimicrobial against ESBL-producing Escherichia coli of veterinary origin. Front Cell Infect Microbiol 2024; 14:1301351. [PMID: 38655284 PMCID: PMC11037251 DOI: 10.3389/fcimb.2024.1301351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/23/2024] [Indexed: 04/26/2024] Open
Abstract
Bacterial infections emerge as a significant contributor to mortality and morbidity worldwide. Emerging extended-spectrum β-lactamase (ESBL) Escherichia coli strains provide a greater risk of bacteremia and mortality, are increasingly resistant to antibiotics, and are a major producer of ESBLs. E. coli bacteremia-linked mastitis is one of the most common bacterial diseases in animals, which can affect the quality of the milk and damage organ functions. There is an elevated menace of treatment failure and recurrence of E. coli bacteremia necessitating the adoption of rigorous alternative treatment approaches. In this study, Se-Boil-CuO multimetallic nanoparticles (MMNPs) were synthesized as an alternate treatment from Talaromyces haitouensis extract, and their efficiency in treating ESBL E. coli was confirmed using standard antimicrobial assays. Scanning electron microscopy, UV-visible spectroscopy, and dynamic light scattering were used to validate and characterize the mycosynthesized Se-BiO-CuO MMNPs. UV-visible spectra of Se-BiO-CuO MMNPs showed absorption peak bands at 570, 376, and 290 nm, respectively. The average diameters of the amorphous-shaped Se-BiO-CuO MMNPs synthesized by T. haitouensis extract were approximately 66-80 nm, respectively. Se-BiO-CuO MMNPs (100 μg/mL) showed a maximal inhibition zone of 18.33 ± 0.57 mm against E. coli. Se-BiO-CuO MMNPs also exhibited a deleterious impact on E. coli killing kinetics, biofilm formation, swimming motility, efflux of cellular components, and membrane integrity. The hemolysis assay also confirms the biocompatibility of Se-BiO-CuO MMNPs at the minimum inhibitory concentration (MIC) range. Our findings suggest that Se-BiO-CuO MMNPs may serve as a potential substitute for ESBL E. coli bacteremia.
Collapse
Affiliation(s)
- Rida Rasheed
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Abida Raza
- National Center of Industrial Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
8
|
Mo YX, Kan YZ, Jia LM, Cao XT, Sikandar A, Wu HY. Characterization and Effect of a Nematophagous Fungus Talaromyces cystophila sp. nov. for the Biological Control of Corn Cyst Nematode. PHYTOPATHOLOGY 2024; 114:618-629. [PMID: 37889191 DOI: 10.1094/phyto-02-23-0045-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The dynamic of plant-parasitic nematode populations in soil is closely related to soil microorganisms. Fungi from Heterodera zeae cysts were isolated to explore the phenomenon of decline in the H. zeae population in the soil. Phylogenetic study of partial ITS, BenA, CaM, and RPB2 gene sequences, in addition to morphological investigations, was utilized to identify a nematode-destroying fungus. The nematicidal activity of a novel strain GX1 against H. zeae was assessed in vitro and in the greenhouse. Our findings revealed that strain GX1 is a new species of Talaromyces, named Talaromyces cystophila. It has a strong parasitic and lethal effect on H. zeae cysts, with 91.11% parasitism on cysts at 3 days after treatment. The contents of second-stage juveniles (J2s) and eggs inside the cysts were degraded and formed dense vacuoles, and the damaged eggs could not hatch normally. The spore suspension exhibited high nematophagous activity against nematodes, and fermentation filtrate exhibited marked inhibition of egg hatching and nematicidal activities on J2s. The hatching inhibition rates of eggs exposed to 1 × 108 CFU/ml spore suspensions or 20% 1-week fermentation filtrate (1-WF) for 15 days were 98.56 and 100%, respectively. The mortality of J2s exposed to 1 × 108 CFU/ml spore suspension reached 100% at 24 h; exposure to 50% 2-WF was 98.65 and 100% at 24 and 48 h, respectively. Greenhouse experiments revealed that the spore suspension and fermentation broth considerably decreased H. zeae reproduction by 56.17 to 78.76%. T. cystophila is a potential biocontrol strain with nematophagous and nematicidal activity that deserves attention and application.
Collapse
Affiliation(s)
- Yi Xue Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuan Zi Kan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Lu Ming Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiao Tian Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Aatika Sikandar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hai Yan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Visagie C, Yilmaz N, Kocsubé S, Frisvad J, Hubka V, Samson R, Houbraken J. A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Stud Mycol 2024; 107:1-66. [PMID: 38600958 PMCID: PMC11003441 DOI: 10.3114/sim.2024.107.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/13/2023] [Indexed: 04/12/2024] Open
Abstract
The order Eurotiales is diverse and includes species that impact our daily lives in many ways. In the past, its taxonomy was difficult due to morphological similarities, which made accurate identification of species difficult. This situation improved and stabilised with recent taxonomic and nomenclatural revisions that modernised Aspergillus, Penicillium and Talaromyces. This was mainly due to the availability of curated accepted species lists and the publication of comprehensive DNA sequence reference datasets. This has also led to a sharp increase in the number of new species described each year with the accepted species lists in turn also needing regular updates. The focus of this study was to review the 160 species described between the last list of accepted species published in 2020 until 31 December 2022. To review these species, single-gene phylogenies were constructed and GCPSR (Genealogical Concordance Phylogenetic Species Recognition) was applied. Multi-gene phylogenetic analyses were performed to further determine the relationships of the newly introduced species. As a result, we accepted 133 species (37 Aspergillus, two Paecilomyces, 59 Penicillium, two Rasamsonia, 32 Talaromyces and one Xerochrysium), synonymised 22, classified four as doubtful and created a new combination for Paraxerochrysium coryli, which is classified in Xerochrysium. This brings the number of accepted species to 453 for Aspergillus, 12 for Paecilomyces, 535 for Penicillium, 14 for Rasamsonia, 203 for Talaromyces and four for Xerochrysium. We accept the newly introduced section Tenues (in Talaromyces), and series Hainanici (in Aspergillus sect. Cavernicolarum) and Vascosobrinhoana (in Penicillium sect. Citrina). In addition, we validate the invalidly described species Aspergillus annui and A. saccharicola, and series Annuorum (in Aspergillus sect. Flavi), introduce a new combination for Dichlaena lentisci (type of the genus) and place it in a new section in Aspergillus subgenus Circumdati, provide an updated description for Rasamsonia oblata, and list excluded and recently synonymised species that were previously accepted. This study represents an important update of the accepted species lists in Eurotiales. Taxonomic novelties: New sections: Aspergillus section Dichlaena Visagie, Kocsubé & Houbraken. New series: Aspergillus series Annuorum J.J. Silva, B.T. Iamanaka, Frisvad. New species: Aspergillus annui J.J. Silva, M.H.P. Fungaro, Frisvad, M.H. Taniwaki & B.T. Iamanaka; Aspergillus saccharicola J.J. Silva, Frisvad, M.H.P. Fungaro, M.H. Taniwaki & B.T. Iamanaka. New combinations: Aspergillus lentisci (Durieu & Mont.) Visagie, Malloch, L. Kriegsteiner, Samson & Houbraken; Xerochrysium coryli (Crous & Decock) Visagie & Houbraken. Citation: Visagie CM, Yilmaz N, Kocsubé S, Frisvad JC, Hubka V, Samson RA, Houbraken J (2024). A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Studies in Mycology 107: 1-66. doi: 10.3114/sim.2024.107.01.
Collapse
Affiliation(s)
- C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - S. Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
- ELKH-SZTE Pathomechanisms of Fungal Infections Research Group, University of Szeged, 6726 Szeged, Hungary
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Søltofts Plads, Building 221, Technical University of Denmark, Lyngby, DK-2800 Kgs, Denmark
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| |
Collapse
|
10
|
Okubo A, Itagaki T, Hirose D. Talaromyces mellisjaponici sp. nov., a xerophilic species isolated from honey in Japan. Int J Syst Evol Microbiol 2024; 74. [PMID: 38180000 DOI: 10.1099/ijsem.0.006212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Five isolates of a xerophilic Talaromyces species were obtained from honey in Japan. Molecular phylogenetic analysis based on a combined dataset for four regions (rRNA internal transcribed spacer, β-tubulin, calmodulin and RNA polymerase II second largest subunit) revealed that the strains formed an independent clade in section Trachyspermi, which is sister to Talaromyces affinitatimellis, Talaromyces basipetosporus and Talaromyces speluncarum. The strains and their relatives have different growth on creatine agar, yeast extract sucrose agar and dichloran 18 % glycerol agar, different branching patterns (mostly monoverticillate or biverticillate, less frequently divaricate or terverticillate), and different sizes and surface structures of conidia. Xerotolerance tests were also conducted using media adjusted to five different sucrose concentrations (0, 20, 40, 60 and 80 %). The colony diameters of the strains were larger than those of T. affinitatimellis, T. basipetosporus and T. speluncarum at each sucrose concentration. Altogether, the obtained morphological, molecular and physiological data allowed the proposal of Talaromyces mellisjaponici sp. nov. for this novel species, with NBRC 116048T as the type strain.
Collapse
Affiliation(s)
- Akari Okubo
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Tadashi Itagaki
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Dai Hirose
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| |
Collapse
|
11
|
Nguyen TTT, Kang KH, Kim DH, Kim SJ, Mun HY, Cheon W, Lee HB. Additions to the Knowledge of the Fungal Order Eurotiales in Korea: Eight Undescribed Species. MYCOBIOLOGY 2023; 51:417-435. [PMID: 38179116 PMCID: PMC10763837 DOI: 10.1080/12298093.2023.2290759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Eurotiales is a relatively large order of Ascomycetes, well-known for their ability to produce secondary metabolites with potential beneficial applications. To understand their diversity and distribution, different environmental sources including soil, freshwater, insect, and indoor air were investigated. Eight strains of Eurotiales were isolated and identified based on their morphological characters and a multi-gene phylogenetic analysis of the ITS, BenA, CaM, and RPB2 regions. We identified eight taxa that were previously not reported from Korea: Aspergillus baeticus, A. griseoaurantiacus, A. spinulosporus, Penicillium anthracinoglaciei, P. labradorum, P. nalgiovense, Talaromyces atroroseus, and T. georgiensis. Detailed descriptions, illustrations, and phylogenetic tree for the eight new records species are presented, and information regarding the records is also discussed.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Ki Hyun Kang
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Dong Hee Kim
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Su Jin Kim
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Hye Yeon Mun
- Microbial Research Department, Fungal Research Team, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Wonsu Cheon
- Microbial Research Department, Fungal Research Team, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Hyang Burm Lee
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
12
|
Zhang D, Wang X, Liu B, Li S, Wang Y, Guo T, Sun Y. New Dipyrroloquinones from a Plant-Derived Endophytic Fungus Talaromyces sp. Molecules 2023; 28:7847. [PMID: 38067576 PMCID: PMC10708468 DOI: 10.3390/molecules28237847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Two new dipyrroloquinones, namely talaroterreusinones A (1) and B (2), together with four known secondary metabolites, terreusinone A (3), penicillixanthone A (4), isorhodoptilometrin (5), and chrysomutanin (6), were isolated from the solid culture of the endophytic fungus Talaromyces sp. by integrating mass spectrometry-based metabolic profiling and a bioassay-guided method. Their planar structures and stereochemistry were elucidated by comprehensive spectroscopic analysis including NMR and MS. The absolute configuration at C-1″ of terreusinone A (1) was established by applying the modified Mosher's method. Compounds 1-6 were evaluated for anti-inflammatory activity and cytotoxicity. As a result, 1-3 inhibited the LPS-stimulated NO production in macrophage RAW264.7 cells, with IC50 values of 20.3, 30.7, and 20.6 µM, respectively. Penicillixanthone A (4) exhibited potent cytotoxic activity against Hep G2 and A549 cell lines, with IC50 values of 117 nM and 212 nM, respectively, and displayed significant antitumour effects in A549 cells by inhibiting the PI3K-Akt-mTOR signalling pathway.
Collapse
Affiliation(s)
- Dandan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China; (D.Z.); (X.W.); (B.L.); (S.L.); (Y.W.)
| | - Xiaoqing Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China; (D.Z.); (X.W.); (B.L.); (S.L.); (Y.W.)
| | - Bo Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China; (D.Z.); (X.W.); (B.L.); (S.L.); (Y.W.)
| | - Shuhui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China; (D.Z.); (X.W.); (B.L.); (S.L.); (Y.W.)
| | - Yanlei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China; (D.Z.); (X.W.); (B.L.); (S.L.); (Y.W.)
| | - Tao Guo
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Yi Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China; (D.Z.); (X.W.); (B.L.); (S.L.); (Y.W.)
| |
Collapse
|
13
|
Nguyen TTT, Lee HB. A New Species and Five New Records of Talaromyces ( Eurotiales, Aspergillaceae) Belonging to Section Talaromyces in Korea. MYCOBIOLOGY 2023; 51:320-332. [PMID: 37929009 PMCID: PMC10621255 DOI: 10.1080/12298093.2023.2265645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Talaromyces is a genus within the phylum Ascomycota (class Eurotiomycetes, order Eurotiales, family Trichocomaceae). Many species in this genus are known to produce diverse secondary metabolites with great potential for agricultural, medical, and pharmaceutical applications. During a survey on fungal diversity in the genus Talaromyces in Korea, six strains were isolated from soil, indoor air, and freshwater environments. Based on morphological, physiological, and multi-locus (ITS, BenA, CaM, and RPB2) phylogenetic analyses, we identified five previously unrecorded species in Korea (T. brevis, T. fusiformis, T. muroii, T. ruber, and T. soli) and a new species (T. echinulatus sp. nov.) belonging to section Talaromyces. Herein, detailed descriptions, illustrations, and phylogenetic tree are provided.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
14
|
Lee Y, Kim N, Kim S, Ha J, Moon J, Chu K. Talaromyces rugulosus ventriculitis diagnosed by nanopore amplicon sequencing, 2022. J Infect Chemother 2023; 29:985-987. [PMID: 37279804 DOI: 10.1016/j.jiac.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
Ventriculitis has serious complications and a high mortality rate, so it is important to early identification of the pathogen for appropriate treatment. We report case of ventriculitis caused by Talaromyces rugulosus, a rare pathogen, in South Korea. Affected patient was immunocompromised. Repeated cerebrospinal fluid culture tests were negative, but the pathogen was identified by fungal internal transcribed spacer amplicon nanopore sequencing. The pathogen was detected outside the endemic area of talaromycosis.
Collapse
Affiliation(s)
- Yoonkyung Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, 03080, South Korea; Department of Neurology, Dong-A University Hospital, Busan, 49315, South Korea
| | - Narae Kim
- Department of Neurology, Laboratory for Neurotherapeutics, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Seungae Kim
- Department of Neurology, Laboratory for Neurotherapeutics, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Jiyeon Ha
- Department of Neurology, Laboratory for Neurotherapeutics, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Jangsup Moon
- Department of Neurology, Laboratory for Neurotherapeutics, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, 03080, South Korea; Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, South Korea.
| | - Kon Chu
- Department of Neurology, Laboratory for Neurotherapeutics, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
15
|
Zang W, Li M, Sun J, Gao C, Wang L. Two New Species of Talaromyces Sect. Trachyspermi Discovered in China. Mycopathologia 2023; 188:793-804. [PMID: 37698735 DOI: 10.1007/s11046-023-00784-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/31/2023] [Indexed: 09/13/2023]
Abstract
Two new species of sect. Trachyspermi isolated from soil are proposed, namely, T. albidus (ex-type AS3.26143T) and T. rubidus (ex-type AS3.26142T), based on the integrated taxonomic methods. Morphologically, T. albidus is characterized by slow growth, white gymnothecia, singly-borne asci and ellipsoidal echinulate ascospores. Talaromyces rubidus is distinguished by restricted growth, moderate to abundant red soluble pigment on CYA and YES, biverticillate penicilli, and commonly ovoid to globose echinulate conidia. The two proposed novelties are further confirmed by the phylogenetic analyses of the concatenated BenA-CaM-Rpb2-ITS sequence matrix and the individual BenA, CaM, Rpb2 and ITS sequence matrices. Talaromyces albidus is closely related to T. assiutensis and T. trachyspermus, while T. rubidus is in the clade containing T. albobiverticillius, T. rubrifaciens, T. catalonicus, T. heiheensis, T. erythromellis, T. halophytorum, T. pernambucoensis, T. solicola and T. aerius.
Collapse
Affiliation(s)
- Wei Zang
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Mi Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Jianqiu Sun
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
16
|
Špetík M, Eichmeier A, Burgová J, Houbraken J. Two new species of Trichocomaceae (Eurotiales), accommodated in Rasamsonia and Talaromyces section Bacillispori, from the Czech Republic. Sci Rep 2023; 13:14903. [PMID: 37689797 PMCID: PMC10492856 DOI: 10.1038/s41598-023-42002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
During a previous study on microfungi associated with clematis roots, Penicillium-like fungi were isolated and identified based on morphology. In this study, we subjected those strains to a detailed examination which led to the proposal of two taxonomic novelties, named Rasamsonia chlamydospora and Talaromyces clematidis. The first taxon is characterized by rough-walled mycelium, acerose to flask shaped phialides, cylindrical conidia and by production of chlamydospore-like structures. The four-loci-based phylogeny analysis delineated the taxon as a taxonomic novelty in Rasamsonia. Talaromyces clematidis is characterized by restricted growth on Czapek yeast extract agar, dichloran 18% glycerol agar and yeast extract sucrose agar, and production of yellow ascomata on oatmeal agar. Phylogenetic analyses placed this taxon as a taxonomic novelty in Talaromyces sect. Bacillispori. Both taxa are introduced here with detailed descriptions, photoplates and information on their phylogenetic relationship with related species.
Collapse
Affiliation(s)
- Milan Špetík
- Mendeleum-Institute of Genetics, Mendel University in Brno, Valtická 334, 691 44, Lednice na Moravě, Czech Republic.
| | - Aleš Eichmeier
- Mendeleum-Institute of Genetics, Mendel University in Brno, Valtická 334, 691 44, Lednice na Moravě, Czech Republic
| | - Jana Burgová
- Department of Breeding and Propagation of Horticultural Plants, Mendel University in Brno, Valtická 334, 691 44, Lednice na Moravě, Czech Republic
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
17
|
Wang T, Chen S, Niu Q, Xu G, Lu C, Zhang J. Genomic Sequence Resource of Talaromyces albobiverticillius, the Causative Pathogen of Pomegranate Pulp Rot Disease. J Fungi (Basel) 2023; 9:909. [PMID: 37755017 PMCID: PMC10533087 DOI: 10.3390/jof9090909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Talaromyces albobiverticillius, a prominent pathogen responsible for pomegranate pulp rot disease, inflicts significant damage on Punica granatum L. Besides its pathogenicity, this fungus possesses the potential to produce substantial amounts of red pigments, making it promising for industrial applications. This study presents the genome annotation of T. albobiverticillius field strain Tp-2, isolated from pomegranates. The genome assembly, generated through a combination of Oxford Nanopore and Illumina sequencing reads, yielded a high-quality assembly with 14 contigs, featuring an N50 length of 4,594,200 bp. The complete genome of strain Tp-2 spans 38,354,882 bp, with a GC content of 45.78%. Importantly, the assembly exhibits remarkable integrity, with 98.3% of complete Benchmarking Universal Single-Copy Orthologs validating genome completeness. Genome prediction analysis reveals the presence of 10,380 protein-coding genes. To our knowledge, this study is the first report on the genome sequence of T. albobiverticillius, offering valuable insights into its genetic variation and molecular mechanisms of pigment production.
Collapse
Affiliation(s)
- Tan Wang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Shuchang Chen
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qiuhong Niu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Guangling Xu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Chenxu Lu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jin Zhang
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
18
|
Zhang ZY, Li X, Chen WH, Liang JD, Han YF. Culturable fungi from urban soils in China II, with the description of 18 novel species in Ascomycota (Dothideomycetes, Eurotiomycetes, Leotiomycetes and Sordariomycetes). MycoKeys 2023; 98:167-220. [PMID: 37425100 PMCID: PMC10326621 DOI: 10.3897/mycokeys.98.102816] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
As China's urbanisation continues to advance, more people are choosing to live in cities. However, this trend has a significant impact on the natural ecosystem. For instance, the accumulation of keratin-rich substrates in urban habitats has led to an increase in keratinophilic microbes. Despite this, there is still a limited amount of research on the prevalence of keratinophilic fungi in urban areas. Fortunately, our group has conducted in-depth investigations into this topic since 2015. Through our research, we have discovered a significant amount of keratinophilic fungi in soil samples collected from various urban areas in China. In this study, we have identified and characterised 18 new species through the integration of morphological and phylogenetic analyses. These findings reveal the presence of numerous unexplored fungal taxa in urban habitats, emphasising the need for further taxonomic research in urban China.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, ChinaGuizhou Minzu UniversityGuiyangChina
| | - Xin Li
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
| | - Wan-Hao Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, ChinaGuizhou University of Traditional Chinese MedicineGuiyangChina
| | - Jian-Dong Liang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, ChinaGuizhou University of Traditional Chinese MedicineGuiyangChina
| | - Yan-Feng Han
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
| |
Collapse
|
19
|
Guerra Sierra BE, Arteaga-Figueroa LA, Sierra-Pelaéz S, Alvarez JC. Talaromyces santanderensis: A New Cadmium-Tolerant Fungus from Cacao Soils in Colombia. J Fungi (Basel) 2022; 8:jof8101042. [PMID: 36294607 PMCID: PMC9605138 DOI: 10.3390/jof8101042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022] Open
Abstract
Inorganic pollutants in Colombian cocoa (Theobroma cacao L.) agrosystems cause problems in the production, quality, and exportation of this raw material worldwide. There has been an increased interest in bioprospecting studies of different fungal species focused on the biosorption of heavy metals. Furthermore, fungi constitute a valuable, profitable, ecological, and efficient natural soil resource that could be considered in the integrated management of cadmium mitigation. This study reports a new species of Talaromyces isolated from a cocoa soil sample collected in San Vicente de Chucurí, Colombia. T. santanderensis is featured by Lemon Yellow (R. Pl. IV) mycelium on CYA, mono-to-biverticillade conidiophores, and acerose phialides. T. santanderensis is distinguished from related species by its growth rate on CYAS and powdery textures on MEA, YES and OA, high acid production on CREA and smaller conidia. It is differentiated from T. lentulus by its growth rate on CYA medium at 37 °C without exudate production, its cream (R. PI. XVI) margin on MEA, and dense sporulation on YES and CYA. Phylogenetic analysis was performed using a polyphasic approach, including different phylogenetic analyses of combined and individual ITS, CaM, BenA, and RPB2 gene sequences that indicate that it is new to science and is named Talaromyces santanderensis sp. nov. This new species belongs to the Talaromyces section and is closely related to T. lentulus, T. soli, T. tumuli, and T. pratensis (inside the T. pinophilus species complex) in the inferred phylogeny. Mycelia growth of the fungal strains was subjected to a range of 0–400 mg/kg Cd and incorporated into malt extract agar (MEA) in triplicates. Fungal radial growth was recorded every three days over a 13-day incubation period and In vitro cadmium tolerance tests showed a high tolerance index (0.81) when the mycelium was exposed to 300 mg/kg of Cd. Results suggest that T. santanderensis showed tolerance to Cd concentrations that exceed the permissible limits for contaminated soils, and it is promising for its use in bioremediation strategies to eliminate Cd from highly contaminated agricultural soils.
Collapse
Affiliation(s)
- Beatriz E. Guerra Sierra
- Universidad de Santander–Facultad de Ciencias Exactas Naturales Y Agropecuarias, Research Group in Agro–Environmental Biotechnology and Health (MICROBIOTA), Bucaramanga 680002, Colombia
- Correspondence: (B.E.G.S.); (J.C.A.)
| | - Luis A. Arteaga-Figueroa
- Research Group in Biodiversity, Evolution and Conservation (BEC), School of Applied Sciences and Engineering, EAFIT University, Medellín 050022, Colombia
| | - Susana Sierra-Pelaéz
- Research Group in Biodiversity, Evolution and Conservation (BEC), School of Applied Sciences and Engineering, EAFIT University, Medellín 050022, Colombia
| | - Javier C. Alvarez
- Research Group in Biodiversity, Evolution and Conservation (BEC), School of Applied Sciences and Engineering, EAFIT University, Medellín 050022, Colombia
- Correspondence: (B.E.G.S.); (J.C.A.)
| |
Collapse
|
20
|
New Species of Talaromyces (Trichocomaceae, Eurotiales) from Southwestern China. J Fungi (Basel) 2022; 8:jof8070647. [PMID: 35887409 PMCID: PMC9319149 DOI: 10.3390/jof8070647] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/01/2022] Open
Abstract
Species of Talaromyces are cosmopolitan and ubiquitous, and some are of industrial and medicinal importance. Species of Talaromyces have been successively reported in China. During our examinations of samples collected from southwestern China, two new species belonging to Talaromyces sect. Talaromyces were further discovered based on phylogenetic analyses and morphological comparisons. Talaromyces ginkgonis sp. nov., isolated from a partially colonized fruit of Ginkgo biloba, differs from closely-related fungi in the combination of conidia ellipsoidal, smooth and 3.5−4 × 2−3 μm, no growth on CYA at 37 °C and sequence divergences; T. shilinensis sp. nov. is distinguished from its related allies in the combination of smooth conidia, colonies 10−11 mm diameter on CYA at 25 °C and sequence differences. Detailed descriptions and illustrations of the new taxa are given.
Collapse
|
21
|
Sun XR, Xu MY, Kong WL, Wu F, Zhang Y, Xie XL, Li DW, Wu XQ. Fine Identification and Classification of a Novel Beneficial Talaromyces Fungal Species from Masson Pine Rhizosphere Soil. J Fungi (Basel) 2022; 8:jof8020155. [PMID: 35205909 PMCID: PMC8877249 DOI: 10.3390/jof8020155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Rhizosphere fungi have the beneficial functions of promoting plant growth and protecting plants from pests and pathogens. In our preliminary study, rhizosphere fungus JP-NJ4 was obtained from the soil rhizosphere of Pinus massoniana and selected for further analyses to confirm its functions of phosphate solubilization and plant growth promotion. In order to comprehensively investigate the function of this strain, it is necessary to ascertain its taxonomic position. With the help of genealogical concordance phylogenetic species recognition (GCPSR) using five genes/regions (ITS, BenA, CaM, RPB1, and RPB2) as well as macro-morphological and micro-morphological characters, we accurately determined the classification status of strain JP-NJ4. The concatenated phylogenies of five (or four) gene regions and single gene phylogenetic trees (ITS, BenA, CaM, RPB1, and RPB2 genes) all show that strain JP-NJ4 clustered together with Talaromyces brevis and Talaromyces liani, but differ markedly in the genetic distance (in BenA gene) from type strain and multiple collections of T. brevis and T. liani. The morphology of JP-NJ4 largely matches the characteristics of genes Talaromyces, and the rich and specific morphological information provided by its colonies was different from that of T. brevis and T. liani. In addition, strain JP-NJ4 could produce reduced conidiophores consisting of solitary phialides. From molecular and phenotypic data, strain JP-NJ4 was identified as a putative novel Talaromyces fungal species, designated T. nanjingensis.
Collapse
Affiliation(s)
- Xiao-Rui Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
| | - Ming-Ye Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
| | - Fei Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
| | - Yu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
| | - Xing-Li Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
| | - De-Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, USA;
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
- Correspondence:
| |
Collapse
|
22
|
Xu H, Zhou L, Wang M, Wei L, Qu H, Ma J, Ju J, Han Z. Chemical constituents from marine derived fungus Talaromyces cellulolyticus SHJ-3 and its chemotaxonomic significance. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2021.104377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Zhang H, Wei TP, Mao YT, Ma MX, Ma K, Shen Y, Zheng MJ, Jia WY, Luo MY, Zeng Y, Jiang YL, Tao GC. Ascodesmisrosicola sp. nov. and Talaromycesrosarhiza sp. nov., two endophytes from Rosaroxburghii in China. Biodivers Data J 2022; 9:e70088. [PMID: 34984041 PMCID: PMC8718520 DOI: 10.3897/bdj.9.e70088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/13/2021] [Indexed: 01/19/2023] Open
Abstract
Background Rosaroxburghii Tratt., a deciduous shrub of the family Rosaceae, is usually used as food and medicinal materials and also cultivated as an ornamental. Plant endophytic fungi are a large class of microbial resources not fully researched, with great potential applications. Two strains of Ascodesmis and Talaromyces were isolated during a survey of biodiversity on endophytic fungi of R.roxburghii in China. Multigene phylogenetic analyses showed that each of the two fungi formed a distinct lineage and separated from known congeneric species and they are proposed as two novel taxa. New information Ascodesmisrosicola sp. nov. usually has one or two conspicuous simple or branched ridges extending to the majority of the ascospore surface and remarkably small asci, distinguishing it from the previously-described species in the genus Ascodesmis. Talaromycesrosarhiza sp. nov., of the section Talaromyces, is closely related to T.francoae. It differs from the latter by having both monoverticillate and biverticillate conidiophores, while those of T.francoae are biverticillate. Both novel endophytes are illustrated and described.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China Department of Plant Pathology, College of Agriculture, Guizhou University Guiyang China.,Guizhou Academy of Testing and Analysis, Guiyang, China Guizhou Academy of Testing and Analysis Guiyang China
| | - Tian-Peng Wei
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China Department of Plant Pathology, College of Agriculture, Guizhou University Guiyang China
| | - Yu-Tao Mao
- Grain and Oil Quality Testing Center of Guiyang, Guiyang, China Grain and Oil Quality Testing Center of Guiyang Guiyang China
| | - Ming-Xia Ma
- Guizhou Academy of Testing and Analysis, Guiyang, China Guizhou Academy of Testing and Analysis Guiyang China
| | - Kai Ma
- Guizhou Academy of Testing and Analysis, Guiyang, China Guizhou Academy of Testing and Analysis Guiyang China
| | - Ying Shen
- Guizhou Academy of Testing and Analysis, Guiyang, China Guizhou Academy of Testing and Analysis Guiyang China
| | - Mei-Juan Zheng
- Guizhou Academy of Testing and Analysis, Guiyang, China Guizhou Academy of Testing and Analysis Guiyang China
| | - Wei-Yu Jia
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China Department of Plant Pathology, College of Agriculture, Guizhou University Guiyang China
| | - Ming-Yan Luo
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China Department of Plant Pathology, College of Agriculture, Guizhou University Guiyang China
| | - Yan Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China Department of Plant Pathology, College of Agriculture, Guizhou University Guiyang China
| | - Yu-Lan Jiang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China Department of Plant Pathology, College of Agriculture, Guizhou University Guiyang China
| | - Guang-Can Tao
- Guizhou Academy of Testing and Analysis, Guiyang, China Guizhou Academy of Testing and Analysis Guiyang China
| |
Collapse
|
24
|
Han PJ, Sun JQ, Wang L. Two New Sexual Talaromyces Species Discovered in Estuary Soil in China. J Fungi (Basel) 2021; 8:jof8010036. [PMID: 35049976 PMCID: PMC8778840 DOI: 10.3390/jof8010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
In the survey of mycobiota of mudflats in China, two new sexually reproducing Talaromyces sect. Talaromyces species were discovered and studied using a polyphasic approach. These species are named here Talaromyces haitouensis (ex-type AS3.160101T) and Talaromyces zhenhaiensis (ex-type AS3.16102T). Morphologically, T. haitouensis is distinguished by moderate growth, green-yellow gymnothecia, orange-brown mycelium, and echinulate ellipsoidal ascospores. T. zhenhaiensis is characterized by fast growth, absence of sporulation, cream yellow to naphthalene yellow gymnothecia and mycelium, and smooth-walled ellipsoidal ascospores with one equatorial ridge. The two novelties are further confirmed by phylogenetic analyses based on either individual sequences of BenA, CaM, Rpb2, and ITS1-5.8S-ITS2 or the concatenated BenA-CaM-Rpb2 sequences.
Collapse
Affiliation(s)
- Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jian-Qiu Sun
- Department of biology, School of Life Science, Shaoxing University, Shaoxing 312000, China;
| | - Long Wang
- Department of biology, School of Life Science, Shaoxing University, Shaoxing 312000, China;
- Correspondence:
| |
Collapse
|
25
|
Nguyen TTT, Kwan Noh KJ, Lee HB. New Species and Eight Undescribed Species Belonging to the Families Aspergillaceae and Trichocomaceae in Korea. MYCOBIOLOGY 2021; 49:534-550. [PMID: 35035246 PMCID: PMC8725871 DOI: 10.1080/12298093.2021.1997461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
During a survey of fungal diversity associated with insects, mud, soil, and freshwater niches in different areas in Korea, nine interesting fungal strains were isolated. Based on their morphological characteristics and molecular phylogeny analyses, using a combined data set of β-tubulin (BenA), calmodulin (CaM), and second largest subunit of RNA polymerase (RPB2) sequences, the strains CNUFC AM-44, CNUFC JCW3-4, CNUFC S708, CNUFC WT202, CNUFC AS1-29, CNUFC JCW3-5, CNUFC JDP37, and CNUFC JDP62 were identified as Aspergillus alabamensis, A. floridensis, A. subversicolor, Penicillium flavigenum, P. laevigatum, P. lenticrescens, Talaromyces adpressus, and T. beijingensis, respectively. The strain CNUFC JT1301 belongs to series Westlingiorum in section Citrina and is phylogenetically related to P. manginii. However, slow growth when cultivated on CYA, MEA, CREA is observed and the property can be used to easily distinguish the new species from these species. Additionally, P. manginii is known to produce sclerotia, while CNUFC JT1301 strain does not. Herein, the new fungal species is proposed as P. aquadulcis sp. nov. Eight species, A. alabamensis, A. floridensis, A. subversicolor, P. flavigenum, P. laevigatum, P. lenticrescens, T. adpressus, and T. beijingensis, have not been previously reported in Korea. The present study expands the known distribution of fungal species belonging to the families Aspergillaceae and Trichocomaceae in Korea.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Kyo Jang Kwan Noh
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
26
|
Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 2021; 105:8157-8193. [PMID: 34625822 DOI: 10.1007/s00253-021-11597-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy. KEY POINTS: • Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. • Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries. • Quinones are grouped into families and compared between genera according to the revised taxonomy.
Collapse
Affiliation(s)
- J V Christiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - T Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - C Petersen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - T E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - M R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T B Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - J L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
27
|
Discovery and Extrolite Production of Three New Species of Talaromyces Belonging to Sections Helici and Purpurei from Freshwater in Korea. J Fungi (Basel) 2021; 7:jof7090722. [PMID: 34575760 PMCID: PMC8471979 DOI: 10.3390/jof7090722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Three novel fungal species, Talaromyces gwangjuensis, T. koreana, and T. teleomorpha were found in Korea during an investigation of fungi in freshwater. The new species are described here using morphological characters, a multi-gene phylogenetic analysis of the ITS, BenA, CaM, RPB2 regions, and extrolite data. Talaromyces gwangjuensis is characterized by restricted growth on CYA, YES, monoverticillate and biverticillate conidiophores, and globose smooth-walled conidia. Talaromyces koreana is characterized by fast growth on MEA, biverticillate conidiophores, or sometimes with additional branches and the production of acid on CREA. Talaromyces teleomorpha is characterized by producing creamish-white or yellow ascomata on OA and MEA, restricted growth on CREA, and no asexual morph observed in the culture. A phylogenetic analysis of the ITS, BenA, CaM, and RPB2 sequences showed that the three new taxa form distinct monophyletic clades. Detailed descriptions, illustrations, and phylogenetic trees are provided.
Collapse
|
28
|
Zhang ZK, Wang XC, Zhuang WY, Cheng XH, Zhao P. New Species of Talaromyces (Fungi) Isolated from Soil in Southwestern China. BIOLOGY 2021; 10:745. [PMID: 34439977 PMCID: PMC8389673 DOI: 10.3390/biology10080745] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/17/2022]
Abstract
Southwestern China belongs among the global biodiversity hotspots and the Daba Mountains are recognized as one of the priority conservation areas. During the exploration of fungal biodiversity from soil samples collected from Mount Daba, two species of Talaromyces were discovered as new to science based on phylogenetic analyses and morphological comparisons. Talaromyces chongqingensis sp. nov. is a sister taxon of T. minioluteus and T. minnesotensis in the section Trachyspermi; and T. wushanicus sp. nov., affiliated to the section Talaromyces, is closely related to T. cnidii and T. siamensis. The new species differ from their sisters in DNA sequences, growth rates, and morphological characteristics. Descriptions and illustrations of them are provided in detail.
Collapse
Affiliation(s)
- Zhi-Kang Zhang
- School of Agriculture, Ludong University, Yantai 264025, China; (Z.-K.Z.); (X.-H.C.)
| | - Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Xian-Hao Cheng
- School of Agriculture, Ludong University, Yantai 264025, China; (Z.-K.Z.); (X.-H.C.)
| | - Peng Zhao
- School of Agriculture, Ludong University, Yantai 264025, China; (Z.-K.Z.); (X.-H.C.)
| |
Collapse
|
29
|
Zhang J, Liu H, Xi L, Chang YC, Kwon-Chung KJ, Seyedmousavi S. Antifungal Susceptibility Profiles of Olorofim (Formerly F901318) and Currently Available Systemic Antifungals against Mold and Yeast Phases of Talaromyces marneffei. Antimicrob Agents Chemother 2021; 65:e00256-21. [PMID: 33753341 PMCID: PMC8316025 DOI: 10.1128/aac.00256-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
In vitro antifungal susceptibility profiling of 32 clinical and environmental Talaromyces marneffei isolates recovered from southern China was performed against olorofim and 7 other systemic antifungals, including amphotericin B, 5-flucytosine, posaconazole, voriconazole, caspofungin, and terbinafine, using CLSI methodology. In comparison, olorofim was the most active antifungal agent against both mold and yeast phases of all tested Talaromyces marneffei isolates, exhibiting an MIC range, MIC50, and MIC90 of 0.0005 to 0.002 μg/ml, 0.0005 μg/ml, and 0.0005 μg/ml, respectively.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Dermatology and Venerology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongfang Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Liyan Xi
- Department of Dermatology and Venerology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yun C Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Seyedmojtaba Seyedmousavi
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Lim HJ, Nguyen TTT, Lee HB. Six Newly Recorded Fungal Taxa from Freshwater Niche in Korea. MYCOBIOLOGY 2020; 49:105-121. [PMID: 37970186 PMCID: PMC10635171 DOI: 10.1080/12298093.2020.1862472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2023]
Abstract
Six interesting fungal strains were isolated during a survey of fungal diversity associated with freshwater; these strains were designated as CNUFC YJW2-22, CNUFC MSW11-6-2, CNUFC HRS5-3, CNUFC MSW242-6, CNUFC DMW2-2, and CNUFC CPWS-1. Based on a polyphasic approach including phylogenetic analyses of internal transcribed space (ITS), large subunit (LSU), beta-tubulin (BenA), and calmodulin (CaM) gene sequences, morphological analyses, the six strains were found to be identical to Acremonium guillematii, Cadophora novi-eboraci, Lectera nordwiniana, Mycoarthris corallina, Talaromyces siamensis, and Tetracladium globosum, respectively. To our knowledge, these are the first records of the rare Lectera, Mycoarthris, and Tetracladium genera in Korea, and the first reports of A. guillematii, C. novi-eboraci, L. nordwiniana, M. corallina, T. siamensis, and Te. globosum in a freshwater environment.
Collapse
Affiliation(s)
- Hyo Jin Lim
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Thuong T. T Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
31
|
Doilom M, Guo JW, Phookamsak R, Mortimer PE, Karunarathna SC, Dong W, Liao CF, Yan K, Pem D, Suwannarach N, Promputtha I, Lumyong S, Xu JC. Screening of Phosphate-Solubilizing Fungi From Air and Soil in Yunnan, China: Four Novel Species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Front Microbiol 2020; 11:585215. [PMID: 33123114 PMCID: PMC7574596 DOI: 10.3389/fmicb.2020.585215] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 11/25/2022] Open
Abstract
Phosphate-solubilizing fungi (PSF) play an important role in increasing the bioavailability of phosphorus in soils for plants. Thirteen fungal strains, one collected from air and 12 from soil, were screened and described here in detail. These fungal strains were tested for their ability to solubilize tricalcium phosphate (TCP) on both solid and liquid Pikovskaya (PVK) media in vitro. The airborne fungal strain KUMCC 18-0196 (Aspergillus hydei sp. nov.) showed the most significant phosphate solubilizing activity on a solid PVK medium with the solubilization index (SI) (2.58 ± 0.04 cm) and the highest solubilized phosphates (1523.33 ± 47.87 μg/mL) on a liquid PVK medium. To the best of our knowledge, A. hydei sp. nov. is the first phosphate-solubilizing fungus reported from air. We also provide the identification especially for Aspergillus, Penicillium and Talaromyces, generally reported as PSF. It is important to not only screen for PSF but also identify species properly so that researchers have a clearer taxonomic picture for identifying potential taxa for future plant growth-promoting applications. Herein, A. hydei (section Nigri), Gongronella hydei, Penicillium soli (section Lanata-Divaricata) and Talaromyces yunnanensis (section Talaromyces) are fully described and introduced as new to science. These four new species are identified based on both morphological characteristics and multigene phylogenetic analyses, including the genealogical concordance phylogenetic species recognition method where necessary. Penicillium austrosinense is considered to be a synonym of P. guaibinense.
Collapse
Affiliation(s)
- Mingkwan Doilom
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jian-Wei Guo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
| | - Rungtiwa Phookamsak
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Samantha C. Karunarathna
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
| | - Wei Dong
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Chun-Fang Liao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
| | - Kai Yan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Dhandevi Pem
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Jian-Chu Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
| |
Collapse
|