1
|
Lee HB, Nguyen TTT, Noh SJ, Kim DH, Kang KH, Kim SJ, Kirk PM, Avery SV, Medina A, Hallsworth JE. Aspergillus ullungdoensis sp. nov., Penicillium jeongsukae sp. nov., and other fungi from Korea. Fungal Biol 2024; 128:2479-2492. [PMID: 39653494 DOI: 10.1016/j.funbio.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 01/05/2025]
Abstract
Eurotiales fungi are thought to be distributed worldwide but there is a paucity of information about their occurrence on diverse substrates or hosts and at specific localities. Some of the Eurotiales, including Aspergillus and Penicillium species, produce an array of secondary metabolites of use for agricultural, medicinal, and pharmaceutical applications. Here, we carried out a survey of the Eurotiales in South Korea, focusing on soil, freshwater, and plants (dried persimmon fruits and seeds of Perilla frutescens, known commonly as shiso). We obtained 11 species that-based on morphology, physiology, and multi-locus (ITS, BenA, CaM, and RPB2) phylogenetic analyses-include two new species, Aspergillus ullungdoensis sp. nov. and Penicillium jeongsukae sp. nov., and nine species that were known, but previously not described in South Korea, Aspergillus aculeatinus, Aspergillus aurantiacoflavus, Aspergillus croceiaffinis, Aspergillus pseudoviridinutans, Aspergillus uvarum, Penicillium ferraniaense, Penicillium glaucoroseum, Penicillium sajarovii, and one, Penicillium charlesii, that was isolated from previously unknown host, woodlouse (Porcellio scaber). We believe that biodiversity survey and identifying new species can contribute to set a baseline for future changes in the context of humanitarian crises such as climate change.
Collapse
Affiliation(s)
- Hyang Burm Lee
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Thuong T T Nguyen
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - So Jeong Noh
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dong Hee Kim
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ki Hyun Kang
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Su Jin Kim
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Paul M Kirk
- Biodiversity Informatics and Spatial Analysis, Jodrell Laboratory, Royal Botanic Gardens Kew, Surrey, TW9 3DS, UK
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Angel Medina
- Applied Mycology, Cranfield University, Cranfield, MK43 0AL, UK
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| |
Collapse
|
2
|
Araújo KS, Alves JL, Pereira OL, de Queiroz MV. Five new species of endophytic Penicillium from rubber trees in the Brazilian Amazon. Braz J Microbiol 2024; 55:3051-3074. [PMID: 39384703 PMCID: PMC11711848 DOI: 10.1007/s42770-024-01478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/28/2024] [Indexed: 10/11/2024] Open
Abstract
The Amazon rainforest is the world's most diverse ecosystem, full of fauna and flora. Among the trees that make up the forest are the rubber trees of the genus Hevea (H. brasiliensis and H. guianensis), which stand out for the industrial use of latex. It was previously shown that endophytic fungi colonize the leaves, stems, and roots of Hevea spp. In this study, 47 Penicillium spp. and three Talaromyces spp. isolates were analyzed using specific DNA barcodes: internal transcribed spacers region (ITS), β-tubulin (BenA), calmodulin (CaM), and the DNA-dependent RNA polymerase II second largest subunit (RPB2) genes and additionally, for species delimitation, the genealogical concordance phylogenetic species recognition (GCPSR) criteria were applied. The phylogenetic analyses placed the Penicillium isolates into four sections Lanata-Divaricata, Sclerotiora, Citrina, and Fasciculata. The morphological and molecular characteristics resulted in the discovery of five new species (P. heveae sp. nov., P. acrean sp. nov., P. aquiri sp. nov., P. amazonense sp. nov., and P. pseudomellis sp. nov.). The five new species were also compared to closely related species, with observations on morphologically distinguishing features and colony appearances. Bayesian inference and maximum likelihood analysis have supported the placement of P. heveae sp. nov. as a sister group to P. globosum; P. acrean sp. nov. and P. aquiri sp. nov. as sister groups to P. sumatrense; P. amazonense sp. nov. closely related to isolates of P. rolfsii, and P. pseudomellis sp. nov. closely related to P. mellis. The study of endophytic Penicillium species of rubber trees and the description of five new taxa of Penicillium sect. Citrina, Lanata-Divaricata, and Sclerotiora as endophytes add to the fungal biodiversity knowledge in native rubber trees. Reports of fungi in native tropical plants may reveal taxonomic novelties, potential pathogen control agents, and producers of molecular bioactive compounds of medical and agronomic interest.
Collapse
Affiliation(s)
- Kaliane Sírio Araújo
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Janaina Lana Alves
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Olinto Liparini Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
3
|
Mejías M, Madrid R, Díaz K, Gutiérrez-Cortés I, Pulgar R, Mandakovic D. The Impact of Environmental Gaseous Pollutants on the Cultivable Bacterial and Fungal Communities of the Aerobiome. Microorganisms 2024; 12:1103. [PMID: 38930485 PMCID: PMC11206153 DOI: 10.3390/microorganisms12061103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding air microbial content, especially in highly polluted urban areas, is crucial for assessing its effect on human health and ecosystems. In this context, the impact of gaseous pollutants on the aerobiome remains inconclusive due to a lack of studies separating this factor from other contaminants or environmental factors. In this study, we aimed to experimentally assess the influence of contrasting concentrations of atmospheric gaseous pollutants as isolated variables on the composition of the aerobiome. Our study sites were contrasting Air Quality Index (AQI) sites of the Metropolitan Region of Chile, where nitric oxide (NO) was significantly lower at the low-AQI site than at the high-AQI site, while ozone (O3) was significantly higher. Cultivable aerobiome communities from the low-AQI site were exposed to their own pollutants or those from the high-AQI site and characterized using high-throughput sequencing (HTS), which allowed comparisons between the entire cultivable communities. The results showed increased alpha diversity in bacterial and fungal communities exposed to the high-AQI site compared to the low-AQI site. Beta diversity and compositional hierarchical clustering analyses revealed a clear separation based on NO and O3 concentrations. At the phylum level, four bacterial and three fungal phyla were identified, revealing an over-representation of Actinobacteriota and Basidiomycota in the samples transferred to the high-AQI site, while Proteobacteria were more abundant in the community maintained at the low-AQI site. At the functional level, bacterial imputed functions were over-represented only in samples maintained at the low-AQI site, while fungal functions were affected in both conditions. Overall, our results highlight the impact of NO and/or O3 on both taxonomic and functional compositions of the cultivable aerobiome. This study provides, for the first time, insights into the influence of contrasting pollutant gases on entire bacterial and fungal cultivable communities through a controlled environmental intervention.
Collapse
Affiliation(s)
- Madelaine Mejías
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
- Programa de Doctorado en Ecología Integrativa, Universidad Mayor, Santiago 8580745, Chile
| | - Romina Madrid
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
| | - Karina Díaz
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
| | - Ignacio Gutiérrez-Cortés
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
| | - Rodrigo Pulgar
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento, Universidad de Chile, Santiago 7830490, Chile
| | - Dinka Mandakovic
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
| |
Collapse
|
4
|
da Silva MK, Barreto DLC, Vieira R, Neto AA, de Oliveira FS, Convey P, Rosa CA, Duarte AWF, Rosa LH. Diversity and enzymatic, biosurfactant and phytotoxic activities of culturable Ascomycota fungi present in marine sediments obtained near the South Shetland Islands, maritime Antarctica. Extremophiles 2024; 28:20. [PMID: 38493412 DOI: 10.1007/s00792-024-01336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/11/2024] [Indexed: 03/18/2024]
Abstract
We studied the culturable fungal community recovered from deep marine sediments in the maritime Antarctic, and assessed their capabilities to produce exoenzymes, emulsifiers and metabolites with phytotoxic activity. Sixty-eight Ascomycota fungal isolates were recovered and identified. The most abundant taxon recovered was the yeast Meyerozyma guilliermondii, followed by the filamentous fungi Penicillium chrysogenum, P. cf. palitans, Pseudeurotium cf. bakeri, Thelebolus balaustiformis, Antarctomyces psychrotrophicus and Cladosporium sp. Diversity indices displayed low values overall, with the highest values obtained at shallow depth, decreasing to the deepest location sampled. Only M. guilliermondii and P. cf. palitans were detected in the sediments at all depths sampled, and were the most abundant taxa at all sample sites. The most abundant enzymes detected were proteases, followed by invertases, cellulases, lipases, carrageenases, agarases, pectinases and esterases. Four isolates showed good biosurfactant activity, particularly the endemic species A. psychrotrophicus. Twenty-four isolates of P. cf. palitans displayed strong phytotoxic activities against the models Lactuca sativa and Allium schoenoprasum. The cultivable fungi recovered demonstrated good biosynthetic activity in the production of hydrolytic exoenzymes, biosurfactant molecules and metabolites with phytotoxic activity, reinforcing the importance of documenting the taxonomic, ecological and biotechnological properties of fungi present in deep oceanic sediments of the Southern Ocean.
Collapse
Affiliation(s)
- Mayanne Karla da Silva
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Débora Luiza Costa Barreto
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Arthur Ayres Neto
- Instituto de Geociências, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago, Chile
- Cape Horn International Center (CHIC), Puerto Williams, Chile
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luiz Henrique Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
5
|
Visagie C, Yilmaz N, Kocsubé S, Frisvad J, Hubka V, Samson R, Houbraken J. A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Stud Mycol 2024; 107:1-66. [PMID: 38600958 PMCID: PMC11003441 DOI: 10.3114/sim.2024.107.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/13/2023] [Indexed: 04/12/2024] Open
Abstract
The order Eurotiales is diverse and includes species that impact our daily lives in many ways. In the past, its taxonomy was difficult due to morphological similarities, which made accurate identification of species difficult. This situation improved and stabilised with recent taxonomic and nomenclatural revisions that modernised Aspergillus, Penicillium and Talaromyces. This was mainly due to the availability of curated accepted species lists and the publication of comprehensive DNA sequence reference datasets. This has also led to a sharp increase in the number of new species described each year with the accepted species lists in turn also needing regular updates. The focus of this study was to review the 160 species described between the last list of accepted species published in 2020 until 31 December 2022. To review these species, single-gene phylogenies were constructed and GCPSR (Genealogical Concordance Phylogenetic Species Recognition) was applied. Multi-gene phylogenetic analyses were performed to further determine the relationships of the newly introduced species. As a result, we accepted 133 species (37 Aspergillus, two Paecilomyces, 59 Penicillium, two Rasamsonia, 32 Talaromyces and one Xerochrysium), synonymised 22, classified four as doubtful and created a new combination for Paraxerochrysium coryli, which is classified in Xerochrysium. This brings the number of accepted species to 453 for Aspergillus, 12 for Paecilomyces, 535 for Penicillium, 14 for Rasamsonia, 203 for Talaromyces and four for Xerochrysium. We accept the newly introduced section Tenues (in Talaromyces), and series Hainanici (in Aspergillus sect. Cavernicolarum) and Vascosobrinhoana (in Penicillium sect. Citrina). In addition, we validate the invalidly described species Aspergillus annui and A. saccharicola, and series Annuorum (in Aspergillus sect. Flavi), introduce a new combination for Dichlaena lentisci (type of the genus) and place it in a new section in Aspergillus subgenus Circumdati, provide an updated description for Rasamsonia oblata, and list excluded and recently synonymised species that were previously accepted. This study represents an important update of the accepted species lists in Eurotiales. Taxonomic novelties: New sections: Aspergillus section Dichlaena Visagie, Kocsubé & Houbraken. New series: Aspergillus series Annuorum J.J. Silva, B.T. Iamanaka, Frisvad. New species: Aspergillus annui J.J. Silva, M.H.P. Fungaro, Frisvad, M.H. Taniwaki & B.T. Iamanaka; Aspergillus saccharicola J.J. Silva, Frisvad, M.H.P. Fungaro, M.H. Taniwaki & B.T. Iamanaka. New combinations: Aspergillus lentisci (Durieu & Mont.) Visagie, Malloch, L. Kriegsteiner, Samson & Houbraken; Xerochrysium coryli (Crous & Decock) Visagie & Houbraken. Citation: Visagie CM, Yilmaz N, Kocsubé S, Frisvad JC, Hubka V, Samson RA, Houbraken J (2024). A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Studies in Mycology 107: 1-66. doi: 10.3114/sim.2024.107.01.
Collapse
Affiliation(s)
- C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - S. Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
- ELKH-SZTE Pathomechanisms of Fungal Infections Research Group, University of Szeged, 6726 Szeged, Hungary
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Søltofts Plads, Building 221, Technical University of Denmark, Lyngby, DK-2800 Kgs, Denmark
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| |
Collapse
|
6
|
Liu X, Wang X, Zhou F, Xue Y, Liu C. Genomic insights into Penicillium chrysogenum adaptation to subseafloor sedimentary environments. BMC Genomics 2024; 25:4. [PMID: 38166640 PMCID: PMC10759354 DOI: 10.1186/s12864-023-09921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Penicillium chrysogenum is a filamentous fungal species with diverse habitats, yet little is known about its genetics in adapting to extreme subseafloor sedimental environments. RESULTS Here, we report the discovery of P. chrysogenum strain 28R-6-F01, isolated from deep coal-bearing sediments 2306 m beneath the seafloor. This strain possesses exceptional characteristics, including the ability to thrive in extreme conditions such as high temperature (45 °C), high pressure (35 Mpa), and anaerobic environments, and exhibits broad-spectrum antimicrobial activity, producing the antibiotic penicillin at a concentration of 358 μg/mL. Genome sequencing and assembly revealed a genome size of 33.19 Mb with a GC content of 48.84%, containing 6959 coding genes. Comparative analysis with eight terrestrial strains identified 88 unique genes primarily associated with penicillin and aflatoxins biosynthesis, carbohydrate degradation, viral resistance, and three secondary metabolism gene clusters. Furthermore, significant expansions in gene families related to DNA repair were observed, likely linked to the strain's adaptation to its environmental niche. CONCLUSIONS Our findings provide insights into the genomic and biological characteristics of P. chrysogenum adaptation to extreme anaerobic subseafloor sedimentary environments, such as high temperature and pressure.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China
| | - Xinran Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China
| | - Fan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China
| | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Nguyen TTT, Kang KH, Kim DH, Kim SJ, Mun HY, Cheon W, Lee HB. Additions to the Knowledge of the Fungal Order Eurotiales in Korea: Eight Undescribed Species. MYCOBIOLOGY 2023; 51:417-435. [PMID: 38179116 PMCID: PMC10763837 DOI: 10.1080/12298093.2023.2290759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Eurotiales is a relatively large order of Ascomycetes, well-known for their ability to produce secondary metabolites with potential beneficial applications. To understand their diversity and distribution, different environmental sources including soil, freshwater, insect, and indoor air were investigated. Eight strains of Eurotiales were isolated and identified based on their morphological characters and a multi-gene phylogenetic analysis of the ITS, BenA, CaM, and RPB2 regions. We identified eight taxa that were previously not reported from Korea: Aspergillus baeticus, A. griseoaurantiacus, A. spinulosporus, Penicillium anthracinoglaciei, P. labradorum, P. nalgiovense, Talaromyces atroroseus, and T. georgiensis. Detailed descriptions, illustrations, and phylogenetic tree for the eight new records species are presented, and information regarding the records is also discussed.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Ki Hyun Kang
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Dong Hee Kim
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Su Jin Kim
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Hye Yeon Mun
- Microbial Research Department, Fungal Research Team, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Wonsu Cheon
- Microbial Research Department, Fungal Research Team, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Hyang Burm Lee
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
8
|
Wang XC, Zhang ZK, Zhuang WY. Species Diversity of Penicillium in Southwest China with Discovery of Forty-Three New Species. J Fungi (Basel) 2023; 9:1150. [PMID: 38132751 PMCID: PMC10744262 DOI: 10.3390/jof9121150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Penicillium species are ubiquitous in all kinds of environments, and they are of industrial, agricultural and clinical importance. In this study, soil fungal diversity in Southwestern China was investigated, and that of Penicillium turned out to be unexpectedly high. The survey included a total of 179 cultures of the genus isolated from 33 soil samples. Three-locus phylogenetic analyses and morphological comparisons were carried out. The examinations revealed that they belonged to two subgenera (Aspergilloides and Penicillium), 11 sections (Aspergilloides, Canescentia, Citrina, Exilicaulis, Fasciculata, Gracilenta, Lanata-Divaricata, Penicillium, Ramosum, Robsamsonia, and Sclerotiorum), 25 series, and 74 species. Forty-three species were discovered as new to science, and a new series, Simianshanica, was established in sect. Aspergilloides. Additionally, 11 species were recorded for the first time in China. Species isolation frequency and distribution of the group were also discussed.
Collapse
Affiliation(s)
- Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Zhi-Kang Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
9
|
Torres-Garcia D, Gené J, García D, Cano-Lira JF. Insights into Some Onygenalean Fungi from Freshwater Sediments in Spain and Description of Novel Taxa. J Fungi (Basel) 2023; 9:1129. [PMID: 38132730 PMCID: PMC10744713 DOI: 10.3390/jof9121129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
During the course of a project investigating culturable Ascomycota diversity from freshwater sediments in Spain, we isolated 63 strains of cycloheximide-resistant fungi belonging to the order Onygenales. These well-known ascomycetes, able to infect both humans and animals, are commonly found in terrestrial habitats, colonizing keratin-rich soils or dung. Little is known about their diversity in aquatic environments. Combining morphological features and sequence analyses of the ITS and LSU regions of the nrDNA, we identified 14 species distributed in the genera Aphanoascus, Arachniotus, Arthroderma, Arthropsis, Emmonsiellopsis, Gymnoascoideus, Leucothecium, Malbranchea, and Myriodontium. Furthermore, three novel species for the genus Malbranchea are proposed as M. echinulata sp. nov., M. irregularis sp. nov., and M. sinuata sp. nov. The new genera Albidomyces and Neoarthropsis are introduced based on Arachniotus albicans and Arthropsis hispanica, respectively. Neoarthropsis sexualis sp. nov. is characterized and differentiated morphologically from its counterpart by the production of a sexual morph. The novel family Neoarthropsidaceae is proposed for the genera Albidomyes, Apinisia, Arachnotheca, Myriodontium, and Neoarthropsis, based on their phylogenetic relationships and phenotypic and ecological traits. Pseudoamaurascopsis gen. nov. is introduced to accommodate P. spiralis sp. nov., a fungus with unclear taxonomy related to Amaurascopsis and Polytolypa. We traced the ecology and global distribution of the novel fungi through ITS environmental sequences deposited in the GlobalFungi database. Studying the fungal diversity from freshwater sediments not only contributes to filling gaps in the relationships and taxonomy of the Ascomycota but also gives us insights into the fungal community that might represent a putative risk to the health of animals and humans inhabiting or transient in aquatic environments.
Collapse
Affiliation(s)
| | - Josepa Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Universitat Rovira i Virgili, 43201 Reus, Spain; (D.T.-G.); (D.G.); (J.F.C.-L.)
| | | | | |
Collapse
|
10
|
Liu C, Wang XC, Yu ZH, Zhuang WY, Zeng ZQ. Seven New Species of Eurotiales (Ascomycota) Isolated from Tidal Flat Sediments in China. J Fungi (Basel) 2023; 9:960. [PMID: 37888216 PMCID: PMC10607332 DOI: 10.3390/jof9100960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Tidal flats have been reported to contain many microorganisms and play a critical role in maintaining biodiversity. In surveys of filamentous fungi from tidal flat sediments in China, seven new species of Eurotiales were discovered and described. Morphological characteristics and DNA sequence analyses of combined datasets of the BenA, CaM, and RPB2 regions support their placements and recognition as new species. Aspergillus liaoningensis sp. nov. and A. plumeriae sp. nov. belong to sections Candidi and Flavipedes of subgenus Circumdati, and A. subinflatus sp. nov. is a member of section Cremei of subgenus Cremei. Penicillium danzhouense sp. nov., P. tenue sp. nov., and P. zhanjiangense sp. nov. are attributed to sections Exilicaulis and Lanata-Divaricata of subgenus Aspergilloides. Talaromyces virens sp. nov. is in section Talaromyces. Detailed descriptions and illustrations of these novel taxa are provided. Their differences from close relatives were compared and discussed.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.L.); (X.-C.W.); (W.-Y.Z.)
- College of Life Sciences, Yangtze University, Jingzhou 434025, China;
| | - Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.L.); (X.-C.W.); (W.-Y.Z.)
| | - Zhi-He Yu
- College of Life Sciences, Yangtze University, Jingzhou 434025, China;
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.L.); (X.-C.W.); (W.-Y.Z.)
| | - Zhao-Qing Zeng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.L.); (X.-C.W.); (W.-Y.Z.)
| |
Collapse
|
11
|
Ansari L, Asgari B, Zare R, Zamanizadeh HR. Penicillium rhizophilum, a novel species in the section Exilicaulis isolated from the rhizosphere of sugarcane in Southwest Iran. Int J Syst Evol Microbiol 2023; 73. [PMID: 37676702 DOI: 10.1099/ijsem.0.006028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
During a survey of species diversity of Penicillium and Talaromyces in sugarcane (Saccharum officinarum) rhizosphere in the Khuzestan province of Iran [1], 195 strains were examined, from which 187 belonged to Penicillium (11 species) and eight to Talaromyces (one species). In the present study, three strains of Penicillium belonging to section Exilicaulis series Restricta, identified as P. restrictum by Ansari et al. [1], were subjected to a phylogenetic study. The multilocus phylogeny of partial β-tubulin, calmodulin and RNA polymerase II second largest subunit genes enabled the recognition of one new phylogenetic species that is here formally described as Penicillium rhizophilum sp. nov. This species is phylogenetically distinct in series Restricta, but it does not show significant morphological differences from other species previously classified in the series. Therefore, we here placed bias on the phylogenetic species concept. The holotype of Penicillium rhizophilum sp. nov. is IRAN 18169F and the ex-type culture is LA30T (=IRAN 4042CT=CBS 149737T).
Collapse
Affiliation(s)
- Laleh Ansari
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bita Asgari
- Department of Botany, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Rasoul Zare
- Department of Botany, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Hamid Reza Zamanizadeh
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Torres-Garcia D, García D, Réblová M, Jurjević Ž, Hubka V, Gené J. Diversity and novel lineages of black yeasts in Chaetothyriales from freshwater sediments in Spain. PERSOONIA 2023; 51:194-228. [PMID: 38665982 PMCID: PMC11041900 DOI: 10.3767/persoonia.2023.51.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 04/28/2024]
Abstract
Black yeasts comprise a group of Ascomycota of the order Chaetothyriales with highly variable morphology, a great diversity of ecological niches and life cycles. Despite the ubiquity of these fungi, their diversity in freshwater sediments is still poorly understood. During a survey of culturable Ascomycota from river and stream sediments in various sampling sites in Spain, we obtained 47 isolates of black yeasts by using potato dextrose agar supplemented with cycloheximide. A preliminary morphological study and sequence analyses of the internal transcribed spacer region (ITS) and the large subunit (LSU) of the nuclear rDNA revealed that most of the isolates belonged to the family Herpotrichiellaceae. We have confidently identified 30 isolates representing the following species: Capronia pulcherrima, Cladophialophora emmonsii, Exophiala equina, Exophiala pisciphila, Exophiala radicis, and Phialophora americana. However, we encountered difficulty in assigning 17 cultures to any known species within Chaetothyriales. Combining phenotypic and multi-locus phylogenetic analyses based on the ITS, LSU, β-tubulin (tub2) and translation elongation factor 1-α (tef1-α) gene markers, we propose the new genus Aciculomyces in the Herpotrichiellaceae to accommodate the novel species Aciculomyces restrictus. Other novel species in this family include Cladophialophora denticulata, Cladophialophora heterospora, Cladophialophora irregularis, Exophiala candelabrata, Exophiala dehoogii, Exophiala ramosa, Exophiala verticillata and Phialophora submersa. The new species Cyphellophora spiralis, closely related to Cyphellophora suttonii, is described, and the phylogeny of the genus Anthopsis in the family Cyphellophoraceae is discussed. By utilizing these four markers, we were able to strengthen the phylogenetic resolution and provide more robust taxonomic assessments within the studied group. Our findings indicate that freshwater sediments may serve as a reservoir for intriguing black yeasts, which warrant further investigation to address gaps in phylogenetic relationships, particularly within Herpotrichiellaceae. Citation: Torres-Garcia D, García D, Réblová M, et al. 2023. Diversity and novel lineages of black yeasts in Chaetothyriales from freshwater sediments in Spain. Persoonia 51: 194-228. doi: 10.3767/persoonia.2023.51.05.
Collapse
Affiliation(s)
- D. Torres-Garcia
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - D. García
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - M. Réblová
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, Průhonice, Czech Republic
| | - Ž. Jurjević
- EMSL Analytical, Cinnaminson, New Jersey, USA
| | - V. Hubka
- Charles University, Faculty of Science, Department of Botany, Prague, Czech Republic
- The Czech Academy of Sciences, Institute of Microbiology, Laboratory of Fungal Genetics and Metabolism, Prague, Czech Republic
| | - J. Gené
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| |
Collapse
|