1
|
Li Y, Wang G, Geng Y, Li J, Feng Y. Variation in Seed Morphological Traits Affects the Dispersal Strategies of Chromolaena odorata Following Invasion. PLANTS (BASEL, SWITZERLAND) 2024; 13:1747. [PMID: 38999587 PMCID: PMC11244504 DOI: 10.3390/plants13131747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Seed germination and dispersal have an important impact on the establishment and spread of invasive plants. Understanding the extent of intraspecific seed trait variations can enhance our understanding of how invasive plants respond to environmental change after introduction and help predict the dynamic of invasive species under future environmental conditions. However, less attention has been given to the variation in seed traits within species as opposed to among species. We compared seed production, seed morphological traits, dispersal ability, and seedling performance of Chromolaena odorata from 10 introduced populations in Asia and 12 native populations in America in a common garden. The results showed that range (introduced vs. native) and climate affected these traits. Compared with the native population, the introduced populations had higher seed numbers per capitula, lighter seeds, and higher potential dispersal ability seeds (lower terminal velocity) but lower germination rates and seedling lengths. Climatic clines in seed numbers per capitula and pappus length were observed; however, the clines in pappus length differed between the introduced and native populations. Trait covariation patterns were also different between both ranges. In the native populations, there was a trade-off between seed numbers per capitula and seed mass, while this relationship was not found for the introduced populations. These results indicate that C. odorata alters the ecological strategy of seed following invasion, which facilitates its establishment and fast dispersal and contributes to successful invasion in the introduced ranges.
Collapse
Affiliation(s)
- Yangping Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Guofen Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yupeng Geng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Ju Li
- Public Technology Service Center, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Yulong Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
2
|
Binama B, Caroline M. Differences in growth and competition between plants of a naturalized and an invasive population of Bunias orientalis. Ecol Evol 2024; 14:e11153. [PMID: 38505180 PMCID: PMC10948592 DOI: 10.1002/ece3.11153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
The global shift of species' distributions has led to high numbers of noninvasive naturalized plants and the accumulation of invasive species within ecosystems. Competition between species may influence population dynamics, but little is known about the impacts of competition between conspecifics of naturalized and invasive populations. We investigated several plant traits at initial growth and regrowth following artificial defoliation in intra and interpopulation competition. Therefore, we used plants of Bunias orientalis from one noninvasive naturalized and one invasive population grown alone or in competition of two or three. Plants from the naturalized population were expected to be less competitive than plants from the invasive population, reflecting their differential impact in the introduced range. Independent of status, intrapopulation competition was expected to have less negative impacts on plants than interpopulation competition. Our results show that competition impacted mostly growth- rather than physiology-related traits. The relative magnitude of intra and interpopulation competition differed among plant traits at the first and second harvest. Plants of the invasive population outperformed the naturalized population by allocating relatively more resources to the aboveground biomass and producing more and longer leaves particularly when grown in competition against two plants. Moreover, plants of the invasive population were more competitive, which may influence their successful establishment and range expansion in the introduced range, but growth patterns differed after artificial defoliation. Although evolution of intrapopulation competition in naturalized and invasive ranges may be expected, interpopulation competition seems to adversely impact the performance of the naturalized plant population of B. orientalis studied here. Apart from the status (naturalized vs. invasive), other factors may have had an influence on plant performance. Thus, further research is needed with more naturalized and invasive populations to test the generality of our findings and to isolate the specific mechanisms driving differences in competitiveness.
Collapse
Affiliation(s)
- Blaise Binama
- Department of Chemical EcologyBielefeld UniversityBielefeldGermany
| | - Müller Caroline
- Department of Chemical EcologyBielefeld UniversityBielefeldGermany
| |
Collapse
|
3
|
Binama B, Behrendt M, Müller C. Responses of Bunias orientalis to Short-term Fungal Infection and Insect Herbivory are Independent of Nutrient Supply. J Chem Ecol 2022; 48:827-840. [PMID: 36401688 PMCID: PMC9840571 DOI: 10.1007/s10886-022-01392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/20/2022]
Abstract
Plants have to allocate their resources in both growth and defense under different environmental challenges. Several plant species have become invasive particularly in disturbed fertile habitats, which may influence their resource allocation. We studied the effects of nitrate fertilization (low versus high) on various plant responses towards a pathogenic fungus, Alternaria brassicae, and a herbivorous insect species, Mamestra brassicae, in a population of Bunias orientalis, which is invasive in parts of central Europe. Aboveground biomass and leaf trichome density were enhanced in plants under high fertilization. In contrast, the short-term fungal infection and herbivory had no effect on aboveground biomass. Leaf water, nitrogen content and glucosinolate concentrations were neither affected by fertilization nor in response to antagonist attack. The total soluble sugar content, especially fructose, as well as leaf peroxidase activity increased significantly in leaves upon fungal infection, but independent of fertilization. Larval biomass gain and herbivore survival were likewise unaffected by fertilization. Our findings highlight that under conditions of high fertilization, B. orientalis plants allocate more resources into growth and morphological defenses than chemical defenses. In contrast, induced responses to short-term antagonist attack seem independent of nitrate availability in this population.
Collapse
Affiliation(s)
- Blaise Binama
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Miriam Behrendt
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
4
|
Li YP, Feng YL, Li WT, Tomlinson K, Liao ZY, Zheng YL, Zhang JL. Leaf trait association in relation to herbivore defense, drought resistance, and economics in a tropical invasive plant. AMERICAN JOURNAL OF BOTANY 2022; 109:910-921. [PMID: 35471767 DOI: 10.1002/ajb2.1858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Exploring how functional traits vary and covary is important to understand plant responses to environmental change. However, we have limited understanding of the ways multiple functional traits vary and covary within invasive species. METHODS We measured 12 leaf traits of an invasive plant Chromolaena odorata, associated with plant or leaf economics, herbivore defense, and drought resistance on 10 introduced populations from Asia and 12 native populations from South and Central America, selected across a broad range of climatic conditions, and grown in a common garden. RESULTS Species' range and climatic conditions influenced leaf traits, but trait variation across climate space differed between the introduced and native ranges. Traits that confer defense against herbivores and drought resistance were associated with economic strategy, but the patterns differed by range. Plants from introduced populations that were at the fast-return end of the spectrum (high photosynthetic capacity) had high physical defense traits (high trichome density), whereas plants from native populations that were at the fast-return end of the spectrum had high drought escape traits (early leaf senescence and high percentage of withered shoots). CONCLUSIONS Our results indicate that invasive plants can rapidly adapt to novel environmental conditions. Chromolaena odorata showed multiple different functional trait covariation patterns and clines in the native and introduced ranges. Our results emphasize that interaction between multiple traits or functions should be considered when investigating the adaptive evolution of invasive plants.
Collapse
Affiliation(s)
- Yang-Ping Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Wei-Tao Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Kyle Tomlinson
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Zhi-Yong Liao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yu-Long Zheng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
5
|
Kalske A, Luntamo N, Salminen JP, Ramula S. Introduced populations of the garden lupine are adapted to local generalist snails but have lost alkaloid diversity. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02622-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractIntraspecific variation in growth and defence among plant populations can be driven by differences in (a)biotic conditions, such as herbivory and resources. Introduction of species to novel environments affects simultaneously herbivory encountered by a plant and resource availability both directly and via altered competitive environment. Here, we address the question of how growth (leaf mass per area (LMA), plant size) and resistance traits (leaf alkaloids, leaf trichomes, resistance to a generalist snail) vary and covary between native and introduced populations of the garden lupine, Lupinus polyphyllus. We focused specifically on evolved differences among populations by measuring traits from plants grown from seed in a common environment. Plants from the introduced populations were more resistant against the generalist snail, Arianta arbustorum, and they had more leaf trichomes and higher LMA than plants from the native populations. The composition of alkaloids differed between native and introduced populations, with the native populations having more diversity in alkaloids among them. Resistance was positively associated with plant size and LMA across all populations. Other trait associations differed between native and introduced areas, implying that certain trade-offs may be fundamentally different between native and introduced populations. Our results suggest that, for the introduced populations, the loss of native herbivores and the alterations in resource availability have led to a lower diversity in leaf alkaloids among populations and may facilitate the evolution of novel trait optima without compensatory trade-offs. Such phytochemical similarity among introduced populations provides novel insights into mechanisms promoting successful plant invasions.
Collapse
|
6
|
Barber A, Müller C. Drought and Subsequent Soil Flooding Affect the Growth and Metabolism of Savoy Cabbage. Int J Mol Sci 2021; 22:ijms222413307. [PMID: 34948111 PMCID: PMC8705109 DOI: 10.3390/ijms222413307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
An important factor of current climate change is water availability, with both droughts and flooding becoming more frequent. Effects of individual stresses on plant traits are well studied, although less is known about the impacts of sequences of different stresses. We used savoy cabbage to study the consequences of control conditions (well-watered) versus continuous drought versus drought followed by soil flooding and a potential recovery phase on shoot growth and leaf metabolism. Under continuous drought, plants produced less than half of the shoot biomass compared to controls, but had a >20% higher water use efficiency. In the soil flooding treatment, plants exhibited the poorest growth performance, particularly after the "recovery" phase. The carbon-to-nitrogen ratio was at least twice as high, whereas amino acid concentrations were lowest in leaves of controls compared to stressed plants. Some glucosinolates, characteristic metabolites of Brassicales, showed lower concentrations, especially in plants of the flooding treatment. Stress-specific investment into different amino acids, many of them acting as osmolytes, as well as glucosinolates, indicate that these metabolites play distinct roles in the responses of plants to different water availability conditions. To reduce losses in crop production, we need to understand plant responses to dynamic climate change scenarios.
Collapse
|
7
|
Liu M, Pan Y, Pan X, Sosa A, Blumenthal DM, Van Kleunen M, Li B. Plant invasion alters latitudinal pattern of plant-defense syndromes. Ecology 2021; 102:e03511. [PMID: 34355383 DOI: 10.1002/ecy.3511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 11/07/2022]
Abstract
The relationship between herbivory and latitude may differ between native and introduced populations of invasive plants, which can generate latitudinal heterogeneity in the strength of enemy release. However, still little is known about how latitudinal heterogeneity in herbivore pressure influences latitudinal variation in defense phenotypes of invasive plants. We tested how latitudinal patterns in multi-variate defense syndromes differed between native (Argentinian) and introduced (Chinese) populations of the invasive herb Alternanthera philoxeroides. In addition, to better understand the drivers underlying latitudinal patterns, we also tested whether associations of defense syndromes with climate and herbivory differed between native and introduced ranges. We found that native plant populations clustered into three main defense syndromes associated with latitude. In contrast, we only found two defense syndromes in the introduced range. One matched the high-latitude syndrome from the native range, but was distributed at both the northern and southern range limits in the introduced range. The other was unique to the introduced range and occurred at mid-latitudes. Climatic conditions were associated with variation in syndromes in the native range, and climatic conditions and herbivory were associated with variation in syndromes in the introduced range. Together, our results demonstrate that plants may under the new environmental conditions in the introduced range show latitudinal patterns of defense syndromes that are different from those in their native range. This emphasizes that geographical dependence of population differentiation should be explicitly considered in studies on the evolution of defense in invasive plants.
Collapse
Affiliation(s)
- Mu Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuanfei Pan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China.,School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xiaoyun Pan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Research Center for Ecology, College of Science, Tibet University, Lhasa, 850000, China.,Tibet University - Fudan University Joint Laboratory for Biodiversity and Global Change, Fudan University, Shanghai, 200438, China
| | - Alejandro Sosa
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, 999071, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, 999071, Argentina
| | - Dana M Blumenthal
- Rangeland Resources & Systems Research Unit, USDA Agricultural Research Service, Fort Collins, Colorado, 80526, USA
| | - Mark Van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, 78464, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
8
|
Tewes LJ, Müller C. Interactions of Bunias orientalis plant chemotypes and fungal pathogens with different host specificity in vivo and in vitro. Sci Rep 2020; 10:10750. [PMID: 32612111 PMCID: PMC7330031 DOI: 10.1038/s41598-020-67600-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 06/11/2020] [Indexed: 12/28/2022] Open
Abstract
Within several plant species, a high variation in the composition of particular defence metabolites can be found, forming distinct chemotypes. Such chemotypes show different effects on specialist and generalist plant enemies, whereby studies examining interactions with pathogens are underrepresented. We aimed to determine factors mediating the interaction of two chemotypes of Bunias orientalis (Brassicaceae) with two plant pathogenic fungal species of different host range, Alternaria brassicae (narrow host range = specialist) and Botrytis cinerea (broad host-range = generalist) using a combination of controlled bioassays. We found that the specialist, but not the generalist, was sensitive to differences between plant chemotypes in vivo and in vitro. The specialist fungus was more virulent (measured as leaf water loss) on one chemotype in vivo without differing in biomass produced during infection, while extracts from the same chemotype caused strong growth inhibition in that species in vitro. Furthermore, fractions of extracts from B. orientalis had divergent in vitro effects on the specialist versus the generalist, supporting presumed adaptations to certain compound classes. This study underlines the necessity to combine various experimental approaches to elucidate the complex interplay between plants and different pathogens.
Collapse
Affiliation(s)
- Lisa Johanna Tewes
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
9
|
Pankoke H, Tewes LJ, Matties S, Hensen I, Schädler M, Ebeling S, Auge H, Müller C. Pre-adaptations and shifted chemical defences provide Buddleja davidii populations with high resistance against antagonists in the invasive range. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1825-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Müller C, Orians CM. From plants to herbivores: novel insights into the ecological and evolutionary consequences of plant variation. Oecologia 2018; 187:357-360. [DOI: 10.1007/s00442-018-4126-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
|