1
|
Panza G, Montanari M, Lopez D, Burattini S, Ciacci C, Fumelli PP, Pasini G, Fusi V, Giorgi L, Grandoni F, Papa S, Santolini R, Canonico B. Flow cytometric analysis of hepatopancreatic cells from Armadillidium vulgare highlights terrestrial isopods as efficient environmental bioindicators in ex vivo settings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9745-9763. [PMID: 38194171 PMCID: PMC10824867 DOI: 10.1007/s11356-023-31375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Several studies have reported the high bioindication capacity of Isopoda (Crustacea, Oniscidea), which is related to their important ability to accumulate contaminants, usefulness in soil ecotoxicology and bioindication activities. Any change in the isopod population, diversity and life cycle can indicate relevant pollution levels. The analysis of target tissues, such as the hepatopancreas, is another emerging approach (from a cytologic/histological level) to detect contaminant accumulation from different sources. In this study, tissue disaggregation procedures were optimised in the hepatopancreas, and flow cytometry (FC) was applied to detect cell viability and several cell functions. After disaggregation, two hepatopancreatic cell types, small (S) and big (B), were still recognisable: they differed in morphology and behaviour. The analyses were conducted for the first time on isopods from sites under different conditions of ecological disturbance through cytometric re-interpretation of ecological-environmental parameters. Significant differences in cell functional parameters were found, highlighting that isopod hepatopancreatic cells can be efficiently analysed by FC and represent standardisable, early biological indicators, tracing environmental-induced stress through cytologic/histologic analyses.
Collapse
Affiliation(s)
- Giovanna Panza
- Department of Biomolecular Sciences (DISB), University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences (DISB), University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Daniele Lopez
- Department of Biomolecular Sciences (DISB), University of Urbino Carlo Bo, 61029, Urbino, Italy
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences (DISB), University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DISB), University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Piermarco Paci Fumelli
- Department of Biomolecular Sciences (DISB), University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Giovanni Pasini
- Centro Ricerche Ecologiche E Naturalistiche (CREN), Soc. Coop., 47922, Rimini, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Francesco Grandoni
- Centro Di Ricerca Zootecnia E Acquacoltura (Research Centre for Animal Production and Aquaculture), CREA - Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Monterotondo, Rome, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences (DISB), University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Riccardo Santolini
- Department of Humanistic Studies (DISTUM), University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences (DISB), University of Urbino Carlo Bo, 61029, Urbino, Italy.
| |
Collapse
|
2
|
Nicolosi G, Mammola S, Verbrugge L, Isaia M. Aliens in caves: the global dimension of biological invasions in subterranean ecosystems. Biol Rev Camb Philos Soc 2023; 98:849-867. [PMID: 36680327 DOI: 10.1111/brv.12933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
Alien species are a significant threat to natural ecosystems and human economies. Despite global efforts to address this challenge, the documented number of alien species is rapidly increasing worldwide. However, the magnitude of the impact of alien species may vary significantly across habitats. For example, some habitats are naturally less prone to biological invasions due to stringent abiotic and biotic characteristics, selecting for a limited number of introduced species possessing traits closely related to the native organisms. Subterranean ecosystems are quintessential examples of habitats with strong environmental filters (e.g. lack of light and scarcity of food), driving convergent adaptations in species that have successfully adapted to life in darkness. Despite these stringent environmental constraints, the number of records of alien species in subterranean ecosystems has increased in recent decades, but the relevant literature remains largely fragmented and mostly anecdotal. Therefore, even though caves are generally considered very fragile ecosystems, their susceptibility to impacts by alien species remains untested other than for some very specific cases. We provide the first systematic literature survey to synthesise available knowledge on alien species in subterranean ecosystems globally. This review is supported by a database summarising the available literature, aiming to identify gaps in the distribution and spread of alien invertebrate species in subterranean habitats, and laying the foundations for future management practices and interventions. First, we quantitatively assessed the current knowledge of alien species in subterranean ecosystems to shed light on broader questions about taxonomic biases, geographical patterns, modes of dispersal, pathways for introductions and potential impacts. Secondly, we collected species-specific traits for each recorded alien species and tested whether subterranean habitats act as ecological filters for their establishment, favouring organisms with pre-adaptive traits suitable for subterranean life. We found information on the presence of 246 subterranean alien species belonging to 18 different classes. The dominant alien species were invertebrates, especially insects and arachnids. Most species were reported in terrestrial subterranean habitats from all continents except Antarctica. Palaearctic and Nearctic biogeographic regions represented the main source of alien species. The main routes of introductions into the recipient country are linked to commercial activities (84.3% of cases for which there was information available). Negative impacts have been documented for a small number of case studies (22.7%), mostly related to increased competition with native species. For a limited number of case studies (6.1%), management strategies were reported but the effectiveness of these interventions has rarely been quantified. Accordingly, information on costs is very limited. Approximately half of the species in our database can be considered established in subterranean habitats. According to our results, the presence of suitable traits grants access to the stringent environmental filter posed by subterranean environments, facilitating establishment in the new habitat. We recommend that future studies deepen the understanding of invasiveness into subterranean habitats, raising public and scientific community awareness of preserving these fragile ecosystems.
Collapse
Affiliation(s)
- Giuseppe Nicolosi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Stefano Mammola
- Molecular Ecology Group (Dark-MEG), Water Research Institute (IRSA), National Research Council (CNR), Corso Tonolli, 50, Pallanza, 28922, Italy.,Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Pohjoinen Rautatiekatu 13, Helsinki, 00100, Finland
| | - Laura Verbrugge
- Water and Development Research Group, Department of Built Environment, Aalto University, Tietotie 1E, Espoo, 02150, Finland
| | - Marco Isaia
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| |
Collapse
|
3
|
Mammola S, Meierhofer MB, Borges PA, Colado R, Culver DC, Deharveng L, Delić T, Di Lorenzo T, Dražina T, Ferreira RL, Fiasca B, Fišer C, Galassi DMP, Garzoli L, Gerovasileiou V, Griebler C, Halse S, Howarth FG, Isaia M, Johnson JS, Komerički A, Martínez A, Milano F, Moldovan OT, Nanni V, Nicolosi G, Niemiller ML, Pallarés S, Pavlek M, Piano E, Pipan T, Sanchez‐Fernandez D, Santangeli A, Schmidt SI, Wynne JJ, Zagmajster M, Zakšek V, Cardoso P. Towards evidence-based conservation of subterranean ecosystems. Biol Rev Camb Philos Soc 2022; 97:1476-1510. [PMID: 35315207 PMCID: PMC9545027 DOI: 10.1111/brv.12851] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
Abstract
Subterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution-based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer-reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence-base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost-effective, and long-lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta-analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert-based information rather than scientific evidence, without quantitatively testing their effectiveness.
Collapse
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Melissa B. Meierhofer
- BatLab Finland, Finnish Museum of Natural History Luomus (LUOMUS)University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
| | - Paulo A.V. Borges
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| | - Raquel Colado
- Departament of Ecology and HidrologyUniversity of MurciaMurcia30100Spain
| | - David C. Culver
- Department of Environmental ScienceAmerican University4400 Massachusetts Avenue, N.WWashingtonDC20016U.S.A.
| | - Louis Deharveng
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS UMR 7205, MNHN, UPMC, EPHEMuseum National d'Histoire Naturelle, Sorbonne UniversitéParisFrance
| | - Teo Delić
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET‐CNR), National Research CouncilVia Madonna del Piano 10, 50019 Sesto FiorentinoFlorenceItaly
| | - Tvrtko Dražina
- Division of Zoology, Department of BiologyFaculty of Science, University of ZagrebRooseveltov Trg 6Zagreb10000Croatia
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Rodrigo L. Ferreira
- Center of Studies in Subterranean Biology, Biology Department, Federal University of LavrasCampus universitário s/n, Aquenta SolLavrasMG37200‐900Brazil
| | - Barbara Fiasca
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Cene Fišer
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Diana M. P. Galassi
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Laura Garzoli
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Vasilis Gerovasileiou
- Department of Environment, Faculty of EnvironmentIonian University, M. Minotou‐Giannopoulou strPanagoulaZakynthos29100Greece
- Hellenic Centre for Marine Research (HCMR), Institute of Marine BiologyBiotechnology and Aquaculture (IMBBC)Thalassocosmos, GournesCrete71500Greece
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, Division of LimnologyUniversity of ViennaDjerassiplatz 1Vienna1030Austria
| | - Stuart Halse
- Bennelongia Environmental Consultants5 Bishop StreetJolimontWA6014Australia
| | | | - Marco Isaia
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Joseph S. Johnson
- Department of Biological SciencesOhio University57 Oxbow TrailAthensOH45701U.S.A.
| | - Ana Komerički
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Alejandro Martínez
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Filippo Milano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Oana T. Moldovan
- Emil Racovita Institute of SpeleologyClinicilor 5Cluj‐Napoca400006Romania
- Romanian Institute of Science and TechnologySaturn 24‐26Cluj‐Napoca400504Romania
| | - Veronica Nanni
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Giuseppe Nicolosi
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Matthew L. Niemiller
- Department of Biological SciencesThe University of Alabama in Huntsville301 Sparkman Drive NWHuntsvilleAL35899U.S.A.
| | - Susana Pallarés
- Departamento de Biogeografía y Cambio GlobalMuseo Nacional de Ciencias Naturales, CSICCalle de José Gutiérrez Abascal 2Madrid28006Spain
| | - Martina Pavlek
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
- Ruđer Bošković InstituteBijenička cesta 54Zagreb10000Croatia
| | - Elena Piano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Tanja Pipan
- ZRC SAZUKarst Research InstituteNovi trg 2Ljubljana1000Slovenia
- UNESCO Chair on Karst EducationUniversity of Nova GoricaGlavni trg 8Vipava5271Slovenia
| | | | - Andrea Santangeli
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiViikinkaari 1Helsinki00014Finland
| | - Susanne I. Schmidt
- Institute of Hydrobiology, Biology Centre CASNa Sádkách 702/7České Budějovice370 05Czech Republic
- Department of Lake ResearchHelmholtz Centre for Environmental ResearchBrückstraße 3aMagdeburg39114Germany
| | - J. Judson Wynne
- Department of Biological SciencesCenter for Adaptable Western Landscapes, Box 5640, Northern Arizona UniversityFlagstaffAZ86011U.S.A.
| | - Maja Zagmajster
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Valerija Zakšek
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| |
Collapse
|
4
|
Abstract
Since the initial experiments nearly 50 years ago, techniques for detecting caves using airborne and spacecraft acquired thermal imagery have improved markedly. These advances are largely due to a combination of higher instrument sensitivity, modern computing systems, and processor-intensive analytical techniques. Through applying these advancements, our goals were to: (1) Determine the efficacy of methods designed for terrain analysis and applied to thermal imagery; (2) evaluate the usefulness of predawn and midday imagery for detecting caves; and (3) ascertain which imagery type (predawn, midday, or the difference between those two times) was most informative. Using forward stepwise logistic (FSL) and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses for model selection, and a thermal imagery dataset acquired from the Mojave Desert, California, we examined the efficacy of three well-known terrain descriptors (i.e., slope, topographic position index (TPI), and curvature) on thermal imagery for cave detection. We also included the actual, untransformed thermal DN values (hereafter “unenhanced thermal”) as a fourth dataset. Thereafter, we compared the thermal signatures of known cave entrances to all non-cave surface locations. We determined these terrain-based analytical methods, which described the “shape” of the thermal landscape, hold significant promise for cave detection. All imagery types produced similar results. Down-selected covariates per imagery type, based upon the FSL models, were: Predawn— slope, TPI, curvature at 0 m from cave entrance, as well as slope at 1 m from cave entrance; midday— slope, TPI, and unenhanced thermal at 0 m from cave entrance; and difference— TPI and slope at 0 m from cave entrance, as well as unenhanced thermal and TPI at 3.5 m from cave entrance. We provide recommendations for future research directions in terrestrial and planetary cave detection using thermal imagery.
Collapse
|
5
|
Karasawa S. Sphaerillo boninensis Nunomura, 1990 (Crustacea, Isopoda, Oniscidea) is a junior synonym of a pantropical species, Venezillo parvus (Budde-Lund, 1885). Zookeys 2020; 923:1-14. [PMID: 32292267 PMCID: PMC7142170 DOI: 10.3897/zookeys.923.26018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 02/14/2020] [Indexed: 11/12/2022] Open
Abstract
Re-examination of the holotype and paratype of Sphaerillo boninensis Nunomura, 1990 from Chichijima Island of the Ogasawara archipelago, which is registered as a UNESCO World Heritage Site, indicates that this species is a junior synonym of a pantropical species, Venezillo parvus (Budde-Lund, 1885).
Collapse
Affiliation(s)
- Shigenori Karasawa
- Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-machi Minami, Tottori 680-8553, Japan Tottori University Tottori Japan
| |
Collapse
|
6
|
Liu W, Wynne JJ. Cave millipede diversity with the description of six new species from Guangxi, China. SUBTERRANEAN BIOLOGY 2019. [DOI: 10.3897/subtbiol.30.35559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We synthesized the current knowledge of cave-dwelling millipede diversity from Guangxi Zhuang Autonomous Region (Guangxi), South China Karst, China and described six new millipede species from four caves from the Guilin area, northeastern Guangxi. Fifty-two cave-dwelling millipedes are known for the region consisting of 38 troglobionts and 14 troglophiles. Of the troglobionts, 24 are presently considered single-cave endemics. New species described here include Hyleoglomerisrukouqusp. nov. and Hyleoglomerisxuxiakeisp. nov. (Family Glomeridae), Hylomusyuanisp. nov. (Family Paradoxosomatidae), Eutrichodesmusjianjiasp. nov. (Family Haplodesmidae), Trichopeltisliangfengdongsp. nov. (Family Cryptodesmidae), and Glyphiulusmaocunsp. nov. (Family Cambalopsidae). Our work also resulted in range expansions of Pacidesmustrifidus Golovatch & Geoffroy, 2014, Blingulussinicus Zhang & Li, 1981 and Glyphiulusmelanoporus Mauriès & Nguyen Duy-Jacquemin, 1997. As with many hypogean animals in Southeast Asia, intensive human activities threaten the persistence of both cave habitats and species. We provide both assessments on the newly described species’ distributions and recommendations for future research and conservation efforts.
Collapse
|
7
|
Fernandes CS, Campos-Filho IS, Beatriz Araujo P, Bichuette ME. Synopsis of terrestrial isopods (Crustacea: Isopoda: Oniscidea) from Brazilian caves, with emphasis on new records from north, midwest, northeast and southeast regions. J NAT HIST 2019. [DOI: 10.1080/00222933.2019.1634225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Camile Sorbo Fernandes
- Laboratório de Estudos Subterrâneos, Departamento de Ecologia e Biologia Evolutiva (DEBE), Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brasil
| | - Ivanklin Soares Campos-Filho
- Centro de Tecnologia e Recursos Naturais (CTRN), Universidade Federal de Campina Grande (UFCG), Campina Grande, Paraíba, Brasil
| | - Paula Beatriz Araujo
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil
| | - Maria Elina Bichuette
- Laboratório de Estudos Subterrâneos, Departamento de Ecologia e Biologia Evolutiva (DEBE), Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brasil
| |
Collapse
|
8
|
Horváthová T, Babik W, Kozłowski J, Bauchinger U. Vanishing benefits - The loss of actinobacterial symbionts at elevated temperatures. J Therm Biol 2019; 82:222-228. [PMID: 31128651 DOI: 10.1016/j.jtherbio.2019.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/15/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
Only a few insect species are known to engage in symbiotic associations with antibiotic-producing Actinobacteria and profit from this kind of protection against pathogens. However, it still remains elusive how widespread the symbiotic interactions with Actinobacteria in other organisms are and how these partnerships benefit the hosts in terms of the growth and survival. We characterized a drastic temperature-induced change in the occurrence of Actinobacteria in the gut of the terrestrial isopod Porcellio scaber reared under two different temperature (15 °C and 22 °C) and oxygen conditions (10% and 22% O2) using 16S rRNA gene sequencing. We show that the relative abundance of actinobacterial gut symbionts correlates with increased host growth at lower temperature. Actinobacterial symbionts were almost completely absent at 22 °C under both high and low oxygen conditions. In addition, we identified members of nearly half of the known actinobacterial families in the isopod microbiome, and most of these include members that are known to produce antibiotics. Our study suggests that hosting diverse actinobacterial symbionts may provide conditions favorable for host growth. These findings show how a temperature-driven decline in microbiome diversity may cause a loss of beneficial functions with negative effects on ectotherms.
Collapse
Affiliation(s)
- Terézia Horváthová
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland; Institute of Soil Biology, Biology Centre, Czech Academy of Sciences, Na Sádkách 7, České Budějovice, Czech Republic.
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Jan Kozłowski
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
9
|
Deerbák D, Dányi L, Hornung E. Life history characteristics of a cave isopod ( Mesoniscusgraniger Friv.). Zookeys 2018; 801:359-370. [PMID: 30564043 PMCID: PMC6288248 DOI: 10.3897/zookeys.801.23391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/02/2018] [Indexed: 11/30/2022] Open
Abstract
The special environmental conditions of caves provide habitat for several endemic and relict species, among them terrestrial isopods. The Baradla Cave system (north-eastern Hungary) hosts Mesoniscusgraniger (Frivaldszky, 1865) (Oniscidea, Microcheta, Mesoniscidae), a pygmy, blind, fragile troglophile woodlice species. Its stable environment can be characterised by the lack of light, high relative humidity (96%), low and constant temperature (about 10 °C). We explored the population characteristics (sex ratio, size distribution) and life history traits of the species (e.g. longevity, reproductive strategy, offspring number, and size). Sex ratio and size distribution of the individuals (head-width measurements) were estimated based on a yearly pooled pitfall-trap data set (N = 677). We studied the species' reproductive strategy under natural conditions (Baradla Cave, Aggtelek National Park). Model populations were set up in the cave and checked monthly between March and October, 2016 (15 replicates, each with 12 randomly chosen adult individuals; ΣN = 180). Digital photos were taken of the live animals and their length was estimated based on the photos by using ImageJ software (average body length: 6.56 ± 0.79 mm). The results showed female dominance in the population [(male:female = 0.43:0.57); p < 0.001 (GLM)]. Female head width (0.87 ± 0.18 mm) was significantly greater than that of males [0.79 ± 0.08 mm; p < 0.001 (t-test)]. Based on our present data we assume that the offspring number per single female is low (3-5), and new-borns have a relatively large size (body length: 4.22 ± 0.53 mm) compared to the adults. The probability of reproduction was continuous by monthly intervals (binomial test) and longevity exceeds one year. Our results suggest that the species follows a stenodynamic life history.
Collapse
Affiliation(s)
- Dávid Deerbák
- Department of Ecology, Institute for Biology, University of Veterinary Medicine Budapest, H-1077 Budapest, Rottenbiller str. 50, HungaryUniversity of Veterinary Medicine BudapestBudapestHungary
| | - László Dányi
- Hungarian Natural History Museum, Department of Zoology, Baross u. 13, H–1088 Budapest, HungaryHungarian Natural History MuseumBudapestHungary
| | - Elisabeth Hornung
- Department of Ecology, Institute for Biology, University of Veterinary Medicine Budapest, H-1077 Budapest, Rottenbiller str. 50, HungaryUniversity of Veterinary Medicine BudapestBudapestHungary
| |
Collapse
|
10
|
Pérez-Schultheiss J, Ayala K, Fariña JM, Coccia C. Exotic oniscideans (Crustacea: Isopoda) in coastal salt marshes: first record of the families Halophilosciidae and Platyarthridae in Continental Chile. NEW ZEALAND JOURNAL OF ZOOLOGY 2018. [DOI: 10.1080/03014223.2018.1539017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Karina Ayala
- Área de Zoología, Museo Nacional de Historia Natural, Santiago, Chile
| | - José Miguel Fariña
- Center of Applied Ecology and Sustainability – CAPES, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Coccia
- Center of Applied Ecology and Sustainability – CAPES, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Wynne JJ, Sommer S, Howarth FG, Dickson BG, Voyles KD. Capturing arthropod diversity in complex cave systems. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12772] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- J. Judson Wynne
- Department of Biological Sciences; Merriam-Powell Center for Environmental Research; Northern Arizona University; Flagstaff Arizona
| | - Stefan Sommer
- Department of Biological Sciences; Merriam-Powell Center for Environmental Research; Northern Arizona University; Flagstaff Arizona
| | - Francis G. Howarth
- Department of Natural Sciences; Bernice P. Bishop Museum; Honolulu Hawai'i
| | - Brett G. Dickson
- Conservation Science Partners; Truckee California
- Lab of Landscape Ecology and Conservation Biology; Landscape Conservation Initiative; Northern Arizona University; Flagstaff Arizona
| | - Kyle D. Voyles
- Saint George Field Office; Bureau of Land Management; St. George Utah
| |
Collapse
|
12
|
Taiti S, Montesanto G. New species of subterranean and endogean terrestrial isopods (Crustacea, Oniscidea) from Tuscany (central Italy). ZOOSYSTEMA 2018. [DOI: 10.5252/zoosystema2018v40a11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Stefano Taiti
- Istituto per lo Studio degli Ecosistemi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 1
| | - Giuseppe Montesanto
- Dipartimento di Biologia, Università di Pisa, Via A. Volta 4bis, 56126 Pisa (Italy) giuseppe.montesa
| |
Collapse
|
13
|
Hurtado LA, Mateos M, Wang C, Santamaria CA, Jung J, Khalaji-Pirbalouty V, Kim W. Out of Asia: mitochondrial evolutionary history of the globally introduced supralittoral isopod Ligia exotica. PeerJ 2018; 6:e4337. [PMID: 29576934 PMCID: PMC5853605 DOI: 10.7717/peerj.4337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/17/2018] [Indexed: 11/20/2022] Open
Abstract
The native ranges and invasion histories of many marine species remain elusive due to a dynamic dispersal process via marine vessels. Molecular markers can aid in identification of native ranges and elucidation of the introduction and establishment process. The supralittoral isopod Ligia exotica has a wide tropical and subtropical distribution, frequently found in harbors and ports around the globe. This isopod is hypothesized to have an Old World origin, from where it was unintentionally introduced to other regions via wooden ships and solid ballast. Its native range, however, remains uncertain. Recent molecular studies uncovered the presence of two highly divergent lineages of L. exotica in East Asia, and suggest this region is a source of nonindigenous populations. In this study, we conducted phylogenetic analyses (Maximum Likelihood and Bayesian) of a fragment of the mitochondrial 16S ribosomal (r)DNA gene using a dataset of this isopod that greatly expanded previous representation from Asia and putative nonindigenous populations around the world. For a subset of samples, sequences of 12S rDNA and NaK were also obtained and analyzed together with 16S rDNA. Our results show that L. exotica is comprised of several highly divergent genetic lineages, which probably represent different species. Most of the 16S rDNA genetic diversity (48 haplotypes) was detected in East and Southeast Asia. Only seven haplotypes were observed outside this region (in the Americas, Hawai'i, Africa and India), which were identical or closely related to haplotypes found in East and Southeast Asia. Phylogenetic patterns indicate the L. exotica clade originated and diversified in East and Southeast Asia, and only members of one of the divergent lineages have spread out of this region, recently, suggesting the potential to become invasive is phylogenetically constrained.
Collapse
Affiliation(s)
- Luis A. Hurtado
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States of America
| | - Mariana Mateos
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States of America
| | - Chang Wang
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States of America
- Department of Biology, New York University, New York City, NY, United States of America
| | - Carlos A. Santamaria
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States of America
- Biology Faculty, College of Science and Mathematics, University of South Florida, Sarasota, FL, United States of America
| | - Jongwoo Jung
- Department of Science Education, Ewha Women’s University, Seoul, South Korea
| | | | - Won Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
14
|
De los Rios-Escalante P, Arancibia EI, Pérez-Schultheiss J. A checklist of non-marine crustaceans from Chilean oceanic islands. P BIOL SOC WASH 2018. [DOI: 10.2988/17-00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
| | - Eliana Ibáñez Arancibia
- (PDE, EIA) Escuela de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile
| | | |
Collapse
|
15
|
Campos-Filho IS, Bichuette ME, Montesanto G, Araujo PB, Taiti S. The first troglobiotic species of the family Pudeoniscidae (Crustacea, Isopoda, Oniscidea), with descriptions of a new genus and two new species. SUBTERRANEAN BIOLOGY 2017. [DOI: 10.3897/subtbiol.23.20963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
16
|
Santamaria CA, Bluemel JK, Bunbury N, Curran M. Cryptic biodiversity and phylogeographic patterns of Seychellois Ligia isopods. PeerJ 2017; 5:e3894. [PMID: 29018626 PMCID: PMC5633021 DOI: 10.7717/peerj.3894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/15/2017] [Indexed: 12/02/2022] Open
Abstract
Ligia isopods are conspicuous inhabitants of rocky intertidal habitats exhibiting several biological traits that severely limit their dispersal potential. Their presence in patchy habitats and low vagility may lead to long term isolation, allopatric isolation and possible cryptic speciation. Indeed, various species of Ligia have been suggested to represent instead cryptic species complexes. Past studies; however, have largely focused in Eastern Pacific and Atlantic species of Ligia, leaving in doubt whether cryptic diversity occurs in other highly biodiverse areas. The Seychelles consists of 115 islands of different ages and geological origins spread across the western Indian Ocean. They are well known for their rich biodiversity with recent reports of cryptic species in terrestrial Seychellois organisms. Despite these studies, it is unclear whether coastal invertebrates from the Seychelles harbor any cryptic diversity. In this study, we examined patterns of genetic diversity and isolation within Ligia isopods across the Seychelles archipelago by characterizing individuals from locations across both inner and outer islands of the Seychelles using mitochondrial and nuclear markers. We report the presence of highly divergent lineages of independent origin. At Aldabra Atoll, we uncovered a lineage closely related to the Ligia vitiensis cryptic species complex. Within the inner islands of Cousine, Silhouette, and Mahé we detected the presence of two moderately divergent and geographically disjunct lineages most closely related to Ligia dentipes. Our findings suggest that the Seychelles may harbor at least three novel species of Ligia in need of description and that these species may have originated independently.
Collapse
Affiliation(s)
- Carlos A. Santamaria
- Biology Faculty, College of Science and Mathematics, University of South Florida Sarasota-Manatee, Sarasota, FL, United States of America
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, United States of America
| | - Joanna K. Bluemel
- Marine Conservation Society Seychelles, Mahé, Seychelles
- Lowestoft Laboratory, Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, Suffolk, United Kingdom
| | | | | |
Collapse
|
17
|
Taiti S, Wynne JJ. The terrestrial Isopoda (Crustacea, Oniscidea) of Rapa Nui (Easter Island), with descriptions of two new species. Zookeys 2015; 515:27-49. [PMID: 26261438 PMCID: PMC4525033 DOI: 10.3897/zookeys.515.9477] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/18/2015] [Indexed: 12/04/2022] Open
Abstract
Nine species of terrestrial isopods are reported for the Polynesian island of Rapa Nui (Easter Island) based upon museum materials and recent collections from field sampling. Most of these animals are non-native species, but two are new to science: Styloniscusmanuvaka sp. n. and Hawaiiosciarapui sp. n. Of these, the former is believed to be a Polynesian endemic as it has been recorded from Rapa Iti, Austral Islands, while the latter is identified as a Rapa Nui island endemic. Both of these new species are considered 'disturbance relicts' and appear restricted to the cave environment on Rapa Nui. A short key to all the oniscidean species presently recorded from Rapa Nui is provided. We also offered conservation and management recommendations for the two new isopod species.
Collapse
Affiliation(s)
- Stefano Taiti
- Istituto per lo Studio degli Ecosistemi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
| | - J. Judson Wynne
- Department of Biological Sciences, Colorado Plateau Biodiversity Center, Northern Arizona University, Box 5640, Flagstaff, Arizona 86011-5614, USA
| |
Collapse
|