1
|
Tomé C, Oliveira-Ramos F, Campanilho-Marques R, Mourão AF, Sousa S, Marques C, Melo AT, Teixeira RL, Martins AP, Moeda S, Costa-Reis P, Torres RP, Bandeira M, Fonseca H, Gonçalves M, Santos MJ, Graca L, Fonseca JE, Moura RA. Children with extended oligoarticular and polyarticular juvenile idiopathic arthritis have alterations in B and T follicular cell subsets in peripheral blood and a cytokine profile sustaining B cell activation. RMD Open 2023; 9:e002901. [PMID: 37652558 PMCID: PMC10476142 DOI: 10.1136/rmdopen-2022-002901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/03/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVES The main goal of this study was to characterise the frequency and phenotype of B, T follicular helper (Tfh) and T follicular regulatory (Tfr) cells in peripheral blood and the cytokine environment present in circulation in children with extended oligoarticular juvenile idiopathic arthritis (extended oligo JIA) and polyarticular JIA (poly JIA) when compared with healthy controls, children with persistent oligoarticular JIA (persistent oligo JIA) and adult JIA patients. METHODS Blood samples were collected from 105 JIA patients (children and adults) and 50 age-matched healthy individuals. The frequency and phenotype of B, Tfh and Tfr cells were evaluated by flow cytometry. Serum levels of APRIL, BAFF, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-17A, IL-21, IL-22, IFN-γ, PD-1, PD-L1, sCD40L, CXCL13 and TNF were measured by multiplex bead-based immunoassay and/or ELISA in all groups included. RESULTS The frequency of B, Tfh and Tfr cells was similar between JIA patients and controls. Children with extended oligo JIA and poly JIA, but not persistent oligo JIA, had significantly lower frequencies of plasmablasts, regulatory T cells and higher levels of Th17-like Tfh cells in circulation when compared with controls. Furthermore, APRIL, BAFF, IL-6 and IL-17A serum levels were significantly higher in paediatric extended oligo JIA and poly JIA patients when compared with controls. These immunological alterations were not found in adult JIA patients in comparison to controls. CONCLUSIONS Our results suggest a potential role and/or activation profile of B and Th17-like Tfh cells in the pathogenesis of extended oligo JIA and poly JIA, but not persistent oligo JIA.
Collapse
Affiliation(s)
- Catarina Tomé
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Filipa Oliveira-Ramos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Raquel Campanilho-Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana F Mourão
- Rheumatology Department, Hospital de São Francisco Xavier, Centro Hospitalar Lisboa Ocidental, EPE, Lisbon, Portugal
| | - Sandra Sousa
- Reumatology Department, Hospital Garcia de Orta, EPE, Almada, Portugal
| | - Cláudia Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana T Melo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Rui L Teixeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana P Martins
- Pediatric Surgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Sofia Moeda
- Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Patrícia Costa-Reis
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Rita P Torres
- Rheumatology Department, Hospital de São Francisco Xavier, Centro Hospitalar Lisboa Ocidental, EPE, Lisbon, Portugal
| | - Matilde Bandeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Helena Fonseca
- Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Miroslava Gonçalves
- Pediatric Surgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Maria J Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Reumatology Department, Hospital Garcia de Orta, EPE, Almada, Portugal
| | - Luis Graca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - João E Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Rita A Moura
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Niu Q, Gao J, Wang L, Liu J, Zhang L. Regulation of differentiation and generation of osteoclasts in rheumatoid arthritis. Front Immunol 2022; 13:1034050. [PMID: 36466887 PMCID: PMC9716075 DOI: 10.3389/fimmu.2022.1034050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 09/25/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA), which affects nearly 1% of the world's population, is a debilitating autoimmune disease. Bone erosion caused by periarticular osteopenia and synovial pannus formation is the most destructive pathological changes of RA, also leads to joint deformity and loss of function,and ultimately affects the quality of life of patients. Osteoclasts (OCs) are the only known bone resorption cells and their abnormal differentiation and production play an important role in the occurrence and development of RA bone destruction; this remains the main culprit behind RA. METHOD Based on the latest published literature and research progress at home and abroad, this paper reviews the abnormal regulation mechanism of OC generation and differentiation in RA and the possible targeted therapy. RESULT OC-mediated bone destruction is achieved through the regulation of a variety of cytokines and cell-to-cell interactions, including gene transcription, epigenetics and environmental factors. At present, most methods for the treatment of RA are based on the regulation of inflammation, the inhibition of bone injury and joint deformities remains unexplored. DISCUSSION This article will review the mechanism of abnormal differentiation of OC in RA, and summarise the current treatment oftargeting cytokines in the process of OC generation and differentiation to reduce bone destruction in patients with RA, which isexpected to become a valuable treatment choice to inhibit bone destruction in RA.
Collapse
Affiliation(s)
- Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Lei Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Romão VC, Fonseca JE. Disease mechanisms in preclinical rheumatoid arthritis: A narrative review. Front Med (Lausanne) 2022; 9:689711. [PMID: 36059838 PMCID: PMC9437632 DOI: 10.3389/fmed.2022.689711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
In the last decades, the concept of preclinical rheumatoid arthritis (RA) has become established. In fact, the discovery that disease mechanisms start years before the onset of clinical RA has been one of the major recent insights in the understanding of RA pathogenesis. In accordance with the complex nature of the disease, preclinical events extend over several sequential phases. In a genetically predisposed host, environmental factors will further increase susceptibility for incident RA. In the initial steps of preclinical disease, immune disturbance mechanisms take place outside the joint compartment, namely in mucosal surfaces, such as the lung, gums or gut. Herein, the persistent immunologic response to altered antigens will lead to breach of tolerance and trigger autoimmunity. In a second phase, the immune response matures and is amplified at a systemic level, with epitope spreading and widening of the autoantibody repertoire. Finally, the synovial and bone compartment are targeted by specific autoantibodies against modified antigens, initiating a local inflammatory response that will eventually culminate in clinically evident synovitis. In this review, we discuss the elaborate disease mechanisms in place during preclinical RA, providing a broad perspective in the light of current evidence.
Collapse
Affiliation(s)
- Vasco C. Romão
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Moura RA, Fonseca JE. B Cells on the Stage of Inflammation in Juvenile Idiopathic Arthritis: Leading or Supporting Actors in Disease Pathogenesis? Front Med (Lausanne) 2022; 9:851532. [PMID: 35449805 PMCID: PMC9017649 DOI: 10.3389/fmed.2022.851532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) is a term that collectively refers to a group of chronic childhood arthritides, which together constitute the most common rheumatic condition in children. The International League of Associations for Rheumatology (ILAR) criteria define seven categories of JIA: oligoarticular, polyarticular rheumatoid factor (RF) negative (RF-), polyarticular RF positive (RF+), systemic, enthesitis-related arthritis, psoriatic arthritis, and undifferentiated arthritis. The ILAR classification includes persistent and extended oligoarthritis as subcategories of oligoarticular JIA, but not as distinct categories. JIA is characterized by a chronic inflammatory process affecting the synovia that begins before the age of 16 and persists at least 6 weeks. If not treated, JIA can cause significant disability and loss of quality of life. Treatment of JIA is adjusted according to the severity of the disease as combinations of non-steroidal anti-inflammatory drugs (NSAIDs), synthetic and/ or biological disease modifying anti-rheumatic drugs (DMARDs). Although the disease etiology is unknown, disturbances in innate and adaptive immune responses have been implicated in JIA development. B cells may have important roles in JIA pathogenesis through autoantibody production, antigen presentation, cytokine release and/ or T cell activation. The study of B cells has not been extensively explored in JIA, but evidence from the literature suggests that B cells might have indeed a relevant role in JIA pathophysiology. The detection of autoantibodies such as antinuclear antibodies (ANA), RF and anti-citrullinated protein antibodies (ACPA) in JIA patients supports a breakdown in B cell tolerance. Furthermore, alterations in B cell subpopulations have been documented in peripheral blood and synovial fluid from JIA patients. In fact, altered B cell homeostasis, B cell differentiation and B cell hyperactivity have been described in JIA. Of note, B cell depletion therapy with rituximab has been shown to be an effective and well-tolerated treatment in children with JIA, which further supports B cell intervention in disease development.
Collapse
Affiliation(s)
- Rita A Moura
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Centre, Lisbon, Portugal
| |
Collapse
|
5
|
Zhang Y, Tian J, Xiao F, Zheng L, Zhu X, Wu L, Zhao C, Wang S, Rui K, Zou H, Lu L. B cell-activating factor and its targeted therapy in autoimmune diseases. Cytokine Growth Factor Rev 2021; 64:57-70. [DOI: 10.1016/j.cytogfr.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
|
6
|
BAFF, involved in B cell activation through the NF-κB pathway, is related to disease activity and bone destruction in rheumatoid arthritis. Acta Pharmacol Sin 2021; 42:1665-1675. [PMID: 33483588 PMCID: PMC8463593 DOI: 10.1038/s41401-020-00582-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/16/2020] [Indexed: 02/02/2023] Open
Abstract
B cell activating factor of TNF family (BAFF) is a member of TNF ligand superfamily and plays a key role in B cell homeostasis, proliferation, maturation, and survival. In this study, we detected BAFF level, the expressions of BAFF receptors and important molecules in NF-κB pathway in rheumatoid arthritis (RA) patients and analyzed the correlation between BAFF level and clinical variables, laboratory parameters or X-ray scores in order to elucidate the roles of BAFF in RA. A total of 50 RA patients and 50 healthy controls (HCs) were enrolled. We showed that the serum BAFF level in RA patients was significantly higher than that of HCs, and the percentages of B cell subsets (CD19+ B cells, CD19+CD27+ B cells, CD19+CD20+CD27+ B cells, and CD19+CD20-CD27+ B cells) in the serum of RA patients were significantly increased compared with those of HCs. The percentages of CD19+BAFFR+ B cells, CD19+ BCMA+ B cells, and CD19+ TACI+ B cells in RA patients were significantly increased compared with those in HCs. The expression of important molecules in the NF-κB pathway (MKK3, MKK6, p-P38, p-P65, TRAF2, and p52) was significantly higher in RA patients than in HCs, but p100 level in RA patients was lower than that in HCs. The serum BAFF level was positively correlated with C-reactive protein, rheumatoid factor, disease activity score (in 28 joints), swollen joint counts, tender joint counts, and X-ray scores. When normal B cells were treated with BAFF in vitro, the percentages of the B cell subset and the expression of BAFF receptors were significantly upregulated. BAFF also promoted the expression of MKK3, MKK6, p-P38, p-P65, TRAF2, and p52. In conclusion, this study demonstrates that BAFF level is correlated with the disease activity and bone destruction of RA. BAFF is involved in the differentiation, proliferation, and activation of B cells in RA through NF-κB signaling pathway, suggesting that BAFF might be an ideal therapeutic target for RA.
Collapse
|
7
|
Moura RA, Fonseca JE. JAK Inhibitors and Modulation of B Cell Immune Responses in Rheumatoid Arthritis. Front Med (Lausanne) 2021; 7:607725. [PMID: 33614673 PMCID: PMC7892604 DOI: 10.3389/fmed.2020.607725] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic immune-mediated inflammatory disease that can lead to joint destruction, functional disability and substantial comorbidity due to the involvement of multiple organs and systems. B cells have several important roles in RA pathogenesis, namely through autoantibody production, antigen presentation, T cell activation, cytokine release and ectopic lymphoid neogenesis. The success of B cell depletion therapy with rituximab, a monoclonal antibody directed against CD20 expressed by B cells, has further supported B cell intervention in RA development. Despite the efficacy of synthetic and biologic disease modifying anti-rheumatic drugs (DMARDs) in the treatment of RA, few patients reach sustained remission and refractory disease is a concern that needs critical evaluation and close monitoring. Janus kinase (JAK) inhibitors or JAKi are a new class of oral medications recently approved for the treatment of RA. JAK inhibitors suppress the activity of one or more of the JAK family of tyrosine kinases, thus interfering with the JAK-Signal Transducer and Activator of Transcription (STAT) signaling pathway. To date, there are five JAK inhibitors (tofacitinib, baricitinib, upadacitinib, peficitinib and filgotinib) approved in the USA, Europe and/ or Japan for RA treatment. Evidence from the literature indicates that JAK inhibitors interfere with B cell functions. In this review, the main results obtained in clinical trials, pharmacokinetic, in vitro and in vivo studies concerning the effects of JAK inhibitors on B cell immune responses in RA are summarized.
Collapse
Affiliation(s)
- Rita A Moura
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Centre, Lisbon, Portugal
| |
Collapse
|
8
|
Silverman GJ. Could Compensatory Autoantibody Production Affect Rheumatoid Arthritis Etiopathogenesis? Arthritis Rheumatol 2021; 73:728-730. [PMID: 33538128 DOI: 10.1002/art.41673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 11/10/2022]
|
9
|
Gowhari Shabgah A, Shariati-Sarabi Z, Tavakkol-Afshari J, Ghasemi A, Ghoryani M, Mohammadi M. A significant decrease of BAFF, APRIL, and BAFF receptors following mesenchymal stem cell transplantation in patients with refractory rheumatoid arthritis. Gene 2020; 732:144336. [PMID: 31935514 DOI: 10.1016/j.gene.2020.144336] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/03/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022]
Abstract
In the present study, we aimed to evaluate effects of autologous mesenchymal stem cells (MSCs) intravenous administration on the response of B cells, BAFF, APRIL, and their receptors on the surface of B cells at 1, 6, and 12 month follow-up periods in refractory rheumatoid arthritis (RA) patients. Thirteen patients with refractory RA received autologous MSCs. Plasma levels of BAFF and APRIL were measured employing ELISA method, followed by estimating B cell population and BAFFRs evaluation by flow cytometry technique. Gene expression of BAFF, APRIL, and their receptors on B cell surface in PBMCs was evaluated by SYBR Green real-time PCR technique. Plasma concentration of BAFF significantly decreased 1 and 6 months after the MSCT (MSCs Transplantation). Plasma concentration of APRIL significantly decreased 1 month after the MSCT. Percentages of CD19 + B cells in the PBMC population significantly decreased 12 months after the MSCT. Percentages of BR3 + CD19 + B cells and BCMA + CD19 + B cells significantly decreased at the 12th month after the MSCT. The gene expression of BAFF in the PBMC population significantly decreased during 6, and 12 months after the MSCT. The gene expression of APRIL significantly decreased on month 6 after the MSCT. The gene expression of BR3 significantly decreased during 1, 6, and 12 months after the MSCT. The MSCT seems to decrease B cells response because of the reduced production of BAFF and APRIL cytokines and decrease the expression of their receptors on the surface of B cells.
Collapse
Affiliation(s)
- Arezoo Gowhari Shabgah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zhaleh Shariati-Sarabi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Internal Medicine Department, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakkol-Afshari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ghasemi
- Department of Pediatric, Hematology and Oncology and Stem Cell Transplantation, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Ghoryani
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Abu El-Asrar AM, Berghmans N, Al-Obeidan SA, Gikandi PW, Opdenakker G, Van Damme J, Struyf S. Local Cytokine Expression Profiling in Patients with Specific Autoimmune Uveitic Entities. Ocul Immunol Inflamm 2019; 28:453-462. [PMID: 31161935 DOI: 10.1080/09273948.2019.1604974] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose: To evaluate expression of cytokines GM-CSF, IL-11, IL-12p40, IL-12p70, IL-27p28, IL-35, APRIL, BAFF, TWEAK, and LIGHT in uveitis.Methods: Aqueous humor samples from patients with active uveitis associated with Behçet's disease (BD), sarcoidosis, HLA-B27-related inflammation, and Vogt-Koyanagi-Harada (VKH) disease and control patients were assayed with a multiplex assay.Results: Comparing all patients to controls, GM-CSF, IL-11, IL-12p40, APRIL, and BAFF were significantly increased, whereas LIGHT was significantly decreased. IL-11 and BAFF were the most strongly upregulated, being elevated 19.7-fold and 14.1-fold, respectively, compared with controls. IL-11 was significantly highest in HLA-B27 uveitis. GM-CSF, IL-11, and IL-12p40 were significantly higher in nongranulomatous uveitis (BD and HLA-B27) than in granulomatous uveitis (sarcoidosis and VKH), whereas APRIL and TWEAK were significantly higher in granulomatous uveitis.Conclusions: IL-11-driven immune responses might be more potent in nongranulomatous uveitis, particularly in HLA-B27 uveitis. BAFF and APRIL might contribute to B cell-driven autoimmune response in uveitis.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Nele Berghmans
- Laboratory of Immunobiology, Rega Institute for Medical Research and Department of Microbiology and Immunology, University of Leuven, KU Leuven, Leuven, Belgium
| | - Saleh A Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Priscilla W Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research and Department of Microbiology and Immunology, University of Leuven, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Immunobiology, Rega Institute for Medical Research and Department of Microbiology and Immunology, University of Leuven, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Immunobiology, Rega Institute for Medical Research and Department of Microbiology and Immunology, University of Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Chlorogenic Acid Inhibits BAFF Expression in Collagen-Induced Arthritis and Human Synoviocyte MH7A Cells by Modulating the Activation of the NF- κB Signaling Pathway. J Immunol Res 2019; 2019:8042097. [PMID: 31240234 PMCID: PMC6556285 DOI: 10.1155/2019/8042097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 11/22/2022] Open
Abstract
B cell activating factor (BAFF), a member of the tumor necrosis factor (TNF) family, plays a critical role in the pathogenesis and progression of rheumatoid arthritis (RA). Chlorogenic acid (CGA) is a phenolic compound and exerts antiarthritic activities in arthritis. However, it is not clear whether the anti-inflammatory property of CGA is associated with the regulation of BAFF expression. In this study, we found that treatment of the collagen-induced arthritis (CIA) mice with CGA significantly attenuated arthritis progression and markedly inhibited BAFF production in serum as well as the production of serum TNF-α. Furthermore, CGA inhibits TNF-α-induced BAFF expression in a dose-dependent manner and apoptosis in MH7A cells. Mechanistically, we found the DNA-binding site for the transcription factor NF-κB in the BAFF promoter region is required for this regulation. Moreover, CGA reduces the DNA-binding activity of NF-κB to the BAFF promoter region and suppresses BAFF expression through the NF-κB pathway in TNF-α-stimulated MH7A cells. These results suggest that CGA may serve as a novel therapeutic agent for the treatment of RA by targeting BAFF.
Collapse
|
12
|
Shabgah AG, Shariati-Sarabi Z, Tavakkol-Afshari J, Mohammadi M. The role of BAFF and APRIL in rheumatoid arthritis. J Cell Physiol 2019; 234:17050-17063. [PMID: 30941763 DOI: 10.1002/jcp.28445] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
Development and activation of B cells quickly became clear after identifying new ligands and receptors in the tumor necrosis factor superfamily. B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) are the members of membrane proteins Type 2 family released by proteolytic cleavage of furin to form active, soluble homotrimers. Except for B cells, ligands are expressed by all such immune cells like T cells, dendritic cells, monocytes, and macrophages. BAFF and APRIL have two common receptors, namely TNFR homolog transmembrane activator and Ca2+ modulator and CAML interactor (TACI) and B cell-maturation antigen. BAFF alone can also be coupled with a third receptor called BAFFR (also called BR3 or BLyS Receptor). These receptors are often expressed by immune cells in the B-cell lineage. The binding of BAFF or APRIL to their receptors supports B cells differentiation and proliferation, immunoglobulin production and the upregulation of B cell-effector molecules expression. It is possible that the overexpression of BAFF and APRIL contributes to the pathogenesis of autoimmune diseases. In BAFF transgenic mice, there is a pseudo-autoimmune manifestation, which is associated with an increase in B-lymphocytes, hyperglobulinemia, anti-single stranded DNA, and anti-double-stranded DNA antibodies, and immune complexes in their peripheral blood. Furthermore, overexpressing BAFF augments the number of peripheral B220+ B cells with a normal proliferation rate, high levels of Bcl2, and prolonged survival and hyperactivity. Therefore, in this review article, we studied BAFF and APRIL as important mediators in B-cell and discussed their role in rheumatoid arthritis.
Collapse
Affiliation(s)
- Arezoo G Shabgah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zhaleh Shariati-Sarabi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Maglione PJ, Gyimesi G, Cols M, Radigan L, Ko HM, Weinberger T, Lee BH, Grasset EK, Rahman AH, Cerutti A, Cunningham-Rundles C. BAFF-driven B cell hyperplasia underlies lung disease in common variable immunodeficiency. JCI Insight 2019; 4:122728. [PMID: 30843876 DOI: 10.1172/jci.insight.122728] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/25/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency and is frequently complicated by interstitial lung disease (ILD) for which etiology is unknown and therapy inadequate. METHODS Medical record review implicated B cell dysregulation in CVID ILD progression. This was further studied in blood and lung samples using culture, cytometry, ELISA, and histology. Eleven CVID ILD patients were treated with rituximab and followed for 18 months. RESULTS Serum IgM increased in conjunction with ILD progression, a finding that reflected the extent of IgM production within B cell follicles in lung parenchyma. Targeting these pulmonary B cell follicles with rituximab ameliorated CVID ILD, but disease recurred in association with IgM elevation. Searching for a stimulus of this pulmonary B cell hyperplasia, we found B cell-activating factor (BAFF) increased in blood and lungs of progressive and post-rituximab CVID ILD patients and detected elevation of BAFF-producing monocytes in progressive ILD. This elevated BAFF interacts with naive B cells, as they are the predominant subset in progressive CVID ILD, expressing BAFF receptor (BAFF-R) within pulmonary B cell follicles and blood to promote Bcl-2 expression. Antiapoptotic Bcl-2 was linked with exclusion of apoptosis from B cell follicles in CVID ILD and increased survival of naive CVID B cells cultured with BAFF. CONCLUSION CVID ILD is driven by pulmonary B cell hyperplasia that is reflected by serum IgM elevation, ameliorated by rituximab, and bolstered by elevated BAFF-mediated apoptosis resistance via BAFF-R. FUNDING NIH, Primary Immune Deficiency Treatment Consortium, and Rare Disease Foundation.
Collapse
Affiliation(s)
| | - Gavin Gyimesi
- Division of Clinical Immunology, Department of Medicine
| | | | - Lin Radigan
- Division of Clinical Immunology, Department of Medicine
| | | | | | - Brian H Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emilie K Grasset
- Division of Clinical Immunology, Department of Medicine.,Experimental Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Adeeb H Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea Cerutti
- Division of Clinical Immunology, Department of Medicine.,Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | |
Collapse
|
14
|
BAFF-R and TACI expression on CD3+ T cells: Interplay among BAFF, APRIL and T helper cytokines profile in systemic lupus erythematosus. Cytokine 2018; 114:115-127. [PMID: 30467093 DOI: 10.1016/j.cyto.2018.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/07/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is the prototype of systemic autoimmune disease, characterized by loss of immune tolerance against self-antigens where autoantibody production is the hallmark of disease. B-cell-activating factor (BAFF) and A proliferation-inducing ligand (APRIL) are cytokines that promote autoreactive cell survival, immunoglobulin-class switching and autoantibody responses in human and mouse SLE models. BAFF and APRIL exert their functions through interactions with their receptors BAFF-R and TACI that are differentially expressed in B lymphocyte subsets, monocytes, dendritic cells and T lymphocytes. BAFF stimulation favors T lymphocyte activation and cytokine production through BAFF-R, which could contribute to the Th1, Th17 and/or Th2 response dysregulation observed in SLE patients. OBJECTIVE To evaluate the expression of the cytokines BAFF and APRIL and their association with the receptors BAFF-R and TACI on CD3+ T cells and to evaluate Th1/Th2/Th17 cytokine profile in patients with SLE. METHODS Fifteen healthy controls (HC) and 36 SLE patients were included, and their demographic and clinical data were assessed. The disease activity index (Mex-SLEDAI) and damage index (SLICC) were applied to the SLE patients. BAFF-R and TACI expression on CD3+ T cells were evaluated by flow cytometry. Serum BAFF and APRIL concentrations were measured by enzyme-linked immunosorbent assays (ELISA). Cytokine levels of Th1 (IL-12, IL-2, IFN-γ, TNF-α), Th2 (IL-4, IL-6, IL-10, IL-13) and Th17 (IL-1β e IL-17) were quantified with a multiplex assay (MAGPIX). Statistical analysis was performed using PASW Statistics v.20 and GraphPad Prism v.6 software. RESULTS No differences in BAFF-R or TACI expression on the CD3+ T cells of SLE and HC were observed. BAFF-R expression correlates inversely with disease activity (r = -0.538, p < 0.01), while TACI correlates with disease activity (r = 0.530, p < 0.05). Serum BAFF and APRIL levels were high in SLE patients and correlated with the disease activity index Mex-SLEDAI (r = 0.621, p < 0.01 and r = 0.416, p < 0.05). SLE patients were found to have significantly higher levels of IL-12, IFN-γ, TNF-α, IL-6, IL-10, IL-13, IL-1β and IL-17 compared to HC (p < 0.05). Cytokines IL-17 (r = 0.526) and TNF-α (r = 0.410) correlate with disease activity (p < 0.05), while APRIL (r = 0.477), IL-10 (r = 0.426) and IFN-γ (r = 0.440) levels were associated with organ damage (p < 0.01). Serum BAFF expression levels correlate with IL-4 (r = 0.424; p < 0.05), IL-6 (r = 0.420; p < 0.05) and IL-10 (r = 0.459; p < 0.01), whereas APRIL levels correlate with IL-2 (r = 0.666; p < 0.01), IL-12 (r = 0.611; p < 0.01) and TNF-α (r = 0.471; p < 0.05) cytokines. A subgroup of SLE patients with high serum BAFF levels (>2 ng/mL) also showed increased APRIL, IL-2, IL-6 and IL-10 levels (p < 0.05). Finally, BAFF, IL-4 and TNF-α serum levels were associated with high titers of antinuclear antibodies. CONCLUSIONS The study demonstrates an imbalance in the Th1/Th2 cytokine profile, with increased proinflammatory cytokines, as well as BAFF and APRIL serum levels. Associations of BAFF with Th2 profile cytokines and disease activity, as well as APRIL with Th1 profile cytokines and organ damage, suggest that BAFF and APRIL generated in the autoimmunity context could through still unknown mechanisms, modulate the microenvironment, and perpetuate the inflammatory response, autoantibody production and organ damage observed in SLE patients.
Collapse
|
15
|
Rana AK, Li Y, Dang Q, Yang F. Monocytes in rheumatoid arthritis: Circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis. Int Immunopharmacol 2018; 65:348-359. [PMID: 30366278 DOI: 10.1016/j.intimp.2018.10.016] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/24/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic, autoimmune and inflammatory disease represented as synovitis, pannus formation, adjacent bone erosions, and joint destruction. The major cells involved in the perpetuation of RA pathogenesis are CD4+ T-cells (mainly Th1 cells and Th17 cells), fibroblasts like synoviocytes (FLS), macrophages and B cells. Other autoimmune cells such as dendritic cells, neutrophils, mast cells, and monocytes also contribute to RA pathogenesis. Monocytes are mainly bone marrow (BM) derived cells in the circulation. The chemokine receptors CCR2 and CX3CR1 expressed by monocytes interact with chemokine ligands CCL2 (MCP-1) and CX3CL1 (fractalkine) respectively produced by FLS and this interaction promotes their migration and recruitment into RA synovium. Activated monocytes on their surface exhibit upregulated antigenic expressions such as CD14, CD16, HLA-DR, toll-like receptors (TLRs), and adhesion molecules B1 and B2 integrins. RA monocytes interconnect with other cells in a positive loop manner in the propagation of the rheumatoid process. They skew towards mainly intermediate monocyte subsets (CD14++ CD16+) which produce proinflammatory cytokines such as TNF-α, IL-1β, and IL-6. Moreover, the predominant intermediate monocytes in RA differentiate into M1-macrophages which play a major role in synovial inflammation. Demonstrations suggest monocytes with CD14+ and CD16- expression (classical monocytes?) differentiate to osteoclasts which are the cells responsible for bone erosion in RA synovial joints. Th17 cells induce the production of RANKL by FLS which promotes osteoclastogenesis. Cytokines mainly TNF-α, IL-1β, and IL-6 amplify osteoclastogenesis. Hence, monocytes are the circulating precursors of macrophages and osteoclasts in RA. AIM OF THE REVIEW: To enlighten the identity of monocytes, the antigenic expression on monocyte surface and their cytokines role in RA. We also emphasize about the chemokine receptors expressed by monocytes subsets and chemotaxis of circulating monocytes into RA synovium. Additionally, we review monocytes as the circulating precursors of macrophages and osteoclasts in RA joints and their heterogeneity and plasticity role in RA.
Collapse
Affiliation(s)
- Amit Kumar Rana
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yang Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Qiujie Dang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Fan Yang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| |
Collapse
|
16
|
Rodríguez-Carrio J, Alperi-López M, López P, Ballina-García FJ, Suárez A. Profiling of B-Cell Factors and Their Decoy Receptors in Rheumatoid Arthritis: Association With Clinical Features and Treatment Outcomes. Front Immunol 2018; 9:2351. [PMID: 30369929 PMCID: PMC6194314 DOI: 10.3389/fimmu.2018.02351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
Introduction: B-cell activation is pivotal in rheumatoid arthritis (RA) pathogenesis and represents a relevant therapeutic target. The main aim of this study was to characterize the profiles of B-cell factors and their decoy receptors in RA and evaluate their clinical relevance. Methods: sBLyS, sAPRIL, sBCMA, sTACI, sBLyS-R, and several cytokines' serum levels were measured by immunoassays in 104 RA patients and 33 healthy controls (HC). An additional group of 42 systemic lupus erythematosus (SLE) patients were enrolled as disease controls. Whole blood IFI44, IFI44L, IFI6, and MX1 gene expression was measured and averaged into an IFN-score. BLyS membrane expression (mBLyS) was assessed on blood cell subsets by flow cytometry. Results: increased sAPRIL and sBCMA levels were found in RA, whereas BLyS was elevated in very early RA (VERA). No differences were observed for sTACI and sBLyS-R. An increased sBLyS/sBLyS-R ratio was associated with poor clinical outcome at 6 and 12 months in VERA, whereas a positive association with disease activity was observed in established disease. Increased mBLyS expression was found on monocytes, mDCs, neutrophils and B-cells in RA, to a similar extent that in SLE patients. Cluster analysis identified a specific B-cell factors profile overrepresented in RA and associated with autoantibodies, elevated proinflammatory cytokines (IFNα, MIP1α, TNFα, IL-37, and GM-CSF) and increased type-I IFN signature. Increasing sBCMA and sBLyS serum levels upon treatment and mBLyS expression at baseline on monocytes and mDCs, but not B-cells, were associated with poor clinical outcome upon TNFα-blockade. Conclusions: profound and complex alterations of soluble and membrane-bound B-cell factors are observed in RA associated with clinical outcomes, thus supporting its applicability to guide patient stratification along disease course.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Mercedes Alperi-López
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Department of Rheumatology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Patricia López
- Area of Immunology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Francisco J Ballina-García
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Department of Rheumatology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ana Suárez
- Area of Immunology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
17
|
Moura RA, Quaresma C, Vieira AR, Gonçalves MJ, Polido-Pereira J, Romão VC, Martins N, Canhão H, Fonseca JE. B-cell phenotype and IgD-CD27- memory B cells are affected by TNF-inhibitors and tocilizumab treatment in rheumatoid arthritis. PLoS One 2017; 12:e0182927. [PMID: 28886017 PMCID: PMC5590747 DOI: 10.1371/journal.pone.0182927] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 07/18/2017] [Indexed: 01/22/2023] Open
Abstract
Background The use of TNF-inhibitors and/or the IL-6 receptor antagonist, tocilizumab, in rheumatoid arthritis (RA) have pleiotropic effects that also involve circulating B-cells. The main goal of this study was to assess the effect of TNF-inhibitors and tocilizumab on B-cell phenotype and gene expression in RA. Methods Blood samples were collected from untreated early RA (ERA) patients, established RA patients under methotrexate treatment, established RA patients before and after treatment with TNF-inhibitors and tocilizumab, and healthy donors. B-cell subpopulations were characterized by flow cytometry and B-cell gene expression was analyzed by real-time PCR on isolated B-cells. Serum levels of BAFF, CXCL13 and sCD23 were determined by ELISA. Results The frequency of total CD19+ B cells in circulation was similar between controls and all RA groups, irrespective of treatment, but double negative (DN) IgD-CD27- memory B cells were significantly increased in ERA and established RA when compared to controls. Treatment with TNF-inhibitors and tocilizumab restored the frequency of IgD-CD27- B-cells to normal levels, but did not affect other B cell subpopulations. TACI, CD95, CD5, HLA-DR and TLR9 expression on B-cells significantly increased after treatment with either TNF-inhibitors and/ or tocilizumab, but no significant changes were observed in BAFF-R, BCMA, CD69, CD86, CXCR5, CD23, CD38 and IgM expression on B-cells when comparing baseline with post-treatment follow-ups. Alterations in B-cell gene expression of BAFF-R, TACI, TLR9, FcγRIIB, BCL-2, BLIMP-1 and β2M were found in ERA and established RA patients, but no significant differences were observed after TNF-inhibitors and tocilizumab treatment when comparing baseline and follow-ups. Serum levels of CXCL13, sCD23 and BAFF were not significantly affected by treatment with TNF-inhibitors and tocilizumab. Conclusions In RA patients, the use of TNF-inhibitors and/ or tocilizumab treatment affects B-cell phenotype and IgD-CD27- memory B cells in circulation, but not B-cell gene expression levels.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Arthritis, Rheumatoid/diagnosis
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- B-Lymphocyte Subsets/drug effects
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Biomarkers
- Chemokine CXCL13/blood
- Follow-Up Studies
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Humans
- Immunoglobulin D/metabolism
- Immunologic Memory
- Immunophenotyping
- Lymphocyte Count
- Methotrexate/pharmacology
- Methotrexate/therapeutic use
- Phenotype
- Receptors, CXCR5/metabolism
- Receptors, IgE/blood
- Treatment Outcome
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
Collapse
Affiliation(s)
- Rita A. Moura
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- * E-mail:
| | - Cláudia Quaresma
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana R. Vieira
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria J. Gonçalves
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Joaquim Polido-Pereira
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Vasco C. Romão
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Nádia Martins
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Helena Canhão
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - João E. Fonseca
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| |
Collapse
|
18
|
Chen L, Huang G, Gao M, Shen X, Gong W, Xu Z, Zeng Y, He F. Chicoric acid suppresses BAFF expression in B lymphocytes by inhibiting NF-κB activity. Int Immunopharmacol 2017; 44:211-215. [DOI: 10.1016/j.intimp.2017.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/06/2017] [Accepted: 01/15/2017] [Indexed: 01/24/2023]
|
19
|
Heßler N, Geisel MH, Coassin S, Erbel R, Heilmann S, Hennig F, Hoffmann B, Jöckel KH, Moebus S, Moskau-Hartmann S, Nürnberg G, Nürnberg P, Vens M, Klockgether T, Kronenberg F, Scherag A, Ziegler A. Linkage and Association Analysis Identifies TRAF1 Influencing Common Carotid Intima-Media Thickness. Stroke 2016; 47:2904-2909. [PMID: 27827325 DOI: 10.1161/strokeaha.116.013943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/01/2016] [Accepted: 09/28/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND PURPOSE Carotid intima-media thickness is a marker for subclinical atherosclerosis that predicts subsequent clinical cardiovascular events. The aim of this study was to identify chromosomal loci with linkage or association to common carotid intima-media thickness. METHODS Nuclear families were recruited using the single parental proband sib-pair design. Genotype data were available for 546 individuals from 132 nuclear families of the Bonn IMT Family Study using the Affymetrix GeneChip Human Mapping 250K Sty chip. Multipoint logarithm of the odds (LOD) scores were determined with the quantitative trait locus statistic implemented in multipoint engine for rapid likelihood. Linkage analysis and family-based association tests were conducted. Data from 2471 German participants from the HNR (Heinz Nixdorf Recall) Study were used for subsequent replication. RESULTS Two new genomic regions with suggestive linkage (LOD>2) were identified on chromosome 4 (LOD=2.26) and on chromosome 17 (LOD=2.01). Previously reported linkage findings were replicated on chromosomes 13 and 14. Fifteen single nucleotide polymorhisms, located on chromosomes 4, 6, and 9, revealed P<10-4 in the family-based association analyses. One of these signals was replicated in HNR (rs2416804, 1-sided P=1.60×10-3, located in the gene TRAF1). CONCLUSIONS This study presents the first genome-wide linkage and association study of common carotid intima-media thickness in the German population. Alleles of rs2416804 in TRAF1 were identified as being linked and associated with carotid intima-media thickness. Further studies are needed to evaluate the contribution of this locus to the development of atherosclerosis.
Collapse
Affiliation(s)
- Nicole Heßler
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Marie Henrike Geisel
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Stefan Coassin
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Raimund Erbel
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Stefanie Heilmann
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Frauke Hennig
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Barbara Hoffmann
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Karl-Heinz Jöckel
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Susanne Moebus
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Susanna Moskau-Hartmann
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Gudrun Nürnberg
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Peter Nürnberg
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Maren Vens
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Thomas Klockgether
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Florian Kronenberg
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - André Scherag
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.)
| | - Andreas Ziegler
- From the Institute of Medical Biometry and Statistics (IMBS), University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany (N.H., M.V., A.Z.); Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany (M.H.G., A.S.); Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany (M.H.G., R.E., K.-H.J., S.M.); Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria (S.C., F.K.); Institute of Human Genetics (S.H.) and Department of Epileptology (S.M.-H.), University of Bonn, Germany; Department of Genomics, Life & Brain Research Center, Bonn, Germany (S.H.); Institute of Occupational, Social and Environmental Medicine, Center for Health and Society, Faculty of Medicine, University of Düsseldorf, Germany (F.H., B.H.); Department of Neurology, University Hospital Bonn, Germany (S.M.-H., T.K.); Cologne Center of Genomics, University of Cologne, Germany (G.N., P.N.); Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany (M.V.); Center for Clinical Trials, University of Lübeck, Germany (A.Z.); and School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa (A.Z.).
| |
Collapse
|
20
|
Alivernini S, Kurowska-Stolarska M, Tolusso B, Benvenuto R, Elmesmari A, Canestri S, Petricca L, Mangoni A, Fedele AL, Di Mario C, Gigante MR, Gremese E, McInnes IB, Ferraccioli G. MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis. Nat Commun 2016; 7:12970. [PMID: 27671860 PMCID: PMC5052655 DOI: 10.1038/ncomms12970] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/19/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-155 (miR-155) is an important regulator of B cells in mice. B cells have a critical role in the pathogenesis of rheumatoid arthritis (RA). Here we show that miR-155 is highly expressed in peripheral blood B cells from RA patients compared with healthy individuals, particularly in the IgD-CD27- memory B-cell population in ACPA+ RA. MiR-155 is highly expressed in RA B cells from patients with synovial tissue containing ectopic germinal centres compared with diffuse synovial tissue. MiR-155 expression is associated reciprocally with lower expression of PU.1 at B-cell level in the synovial compartment. Stimulation of healthy donor B cells with CD40L, anti-IgM, IL-21, CpG, IFN-α, IL-6 or BAFF induces miR-155 and decreases PU.1 expression. Finally, inhibition of endogenous miR-155 in B cells of RA patients restores PU.1 and reduces production of antibodies. Our data suggest that miR-155 is an important regulator of B-cell activation in RA. MiR-155 is thought to inhibit PU.1 and thereby drive antigen-induced B-cell maturation. Here the authors show that patients with rheumatoid arthritis have high B-cell miR-155 expression and that an antagomir can rescue PU.1 expression, suggesting potential therapeutic avenues to treat rheumatoid arthritis.
Collapse
Affiliation(s)
- Stefano Alivernini
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Barbara Tolusso
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Roberta Benvenuto
- Division of Pathology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Aziza Elmesmari
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Silvia Canestri
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Luca Petricca
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Antonella Mangoni
- Division of Pathology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Anna Laura Fedele
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Clara Di Mario
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy.,Division of Pathology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Maria Rita Gigante
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Elisa Gremese
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gianfranco Ferraccioli
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| |
Collapse
|
21
|
BAFF and its receptors involved in the inflammation progress in adjuvant induced arthritis rats. Int Immunopharmacol 2016; 31:1-8. [DOI: 10.1016/j.intimp.2015.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 01/07/2023]
|
22
|
Activation of LXR attenuates collagen-induced arthritis via suppressing BLyS production. Clin Immunol 2015; 161:339-47. [PMID: 26431776 DOI: 10.1016/j.clim.2015.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/16/2015] [Accepted: 09/29/2015] [Indexed: 01/03/2023]
Abstract
B-lymphocyte stimulator (BLyS) plays a critical role in the pathogenesis and progression of rheumatoid arthritis (RA). Liver X receptor (LXR), a nuclear receptor, has an important anti-inflammatory effect. However, it is unclear whether the BLyS expression is regulated by LXR. In this study, we found that treatment with LXR agonist in collagen-induced arthritis (CIA) mice significantly attenuated arthritis progression, and markedly decreased BLyS production in serum and splenocytes as well as the production of serum IFNγ and TGFβ. Activation of LXR in B lymphocytes dramatically suppressed the basal and IFNγ/TGFβ-induced BLyS expression. Moreover, LXR agonist prominently suppressed the binding of NF-κB to BLyS promoter region, and decreased the promoter's transcriptional activity. Additionally, activation of LXR obviously repressed IFNγ-induced STAT1 activation and TGFβ-induced SMAD3 activation. These results indicated that downregulation of BLyS may be a novel mechanism by which LXR ameliorates RA, and LXR/BLyS pathway may serve as a novel target for the treatment of RA.
Collapse
|
23
|
Salazar-Camarena DC, Ortiz-Lazareno PC, Cruz A, Oregon-Romero E, Machado-Contreras JR, Muñoz-Valle JF, Orozco-López M, Marín-Rosales M, Palafox-Sánchez CA. Association of BAFF, APRIL serum levels, BAFF-R, TACI and BCMA expression on peripheral B-cell subsets with clinical manifestations in systemic lupus erythematosus. Lupus 2015; 25:582-92. [DOI: 10.1177/0961203315608254] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 09/02/2015] [Indexed: 12/30/2022]
Abstract
Objective B-cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) signaling pathways regulate B-cell survival through interactions with their receptors BAFF-R, TACI and BCMA. We evaluated the association of these ligands/receptors on B-cell subsets according to clinical manifestations of systemic lupus erythematosus (SLE). Methods BAFF and APRIL serum concentrations were measured in 30 SLE patients by enzyme-linked immunosorbent assay. The BAFF-R, TACI and BCMA expression was analyzed on each B cell subset (CD19 + CD27-CD38–/ + naïve; CD19 + CD27 + CD38–/ + memory; CD19 + CD27-CD38 + + immature and CD19 + CD27 + CD38 + + plasma cells) by flow cytometry, and compared among patients with different clinical manifestations as well as healthy controls (HCs). Results Serum BAFF and APRIL levels were high in SLE patients and correlated with the Mex-SLEDAI disease activity index ( r = 0.584; p = 0.001 and r = 0.456; p = 0.011, respectively). The SLE patients showed an increased proportion of memory and plasma B cells ( p < 0.05). BAFF-R, TACI and BCMA expression in SLE patients was decreased in almost all B cell subsets compared to HCs ( p < 0.05). A lower BCMA expression was associated with severe disease activity, glomerulonephritis, serositis and hemolytic anemia ( p < 0.01). BCMA expression showed a negative correlation with Mex-SLEDAI score ( r = –0.494, p = 0.006). Conclusions Decreased BCMA expression on peripheral B cells according to severe disease activity suggests that BCMA plays an important regulating role in B-cell hyperactivity and immune tolerance homeostasis in SLE patients.
Collapse
Affiliation(s)
- D C Salazar-Camarena
- Instituto de Investigación en Ciencias Biomédicas (IICB), Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - P C Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social IMSS, Guadalajara, Jalisco, México
| | - A Cruz
- Instituto de Investigación en Ciencias Biomédicas (IICB), Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - E Oregon-Romero
- Instituto de Investigación en Ciencias Biomédicas (IICB), Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - J R Machado-Contreras
- Instituto de Investigación en Ciencias Biomédicas (IICB), Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - J F Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - M Orozco-López
- Instituto de Investigación en Ciencias Biomédicas (IICB), Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - M Marín-Rosales
- Instituto de Investigación en Ciencias Biomédicas (IICB), Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - C A Palafox-Sánchez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
24
|
Abstract
As our understanding of the pathogenesis of autoimmune diseases is growing, new therapies are being developed to target disease-specific pathways. Since the introduction of etanercept in 1998, several biotechnological agents have been developed, most of them indicated in the treatment of rheumatoid arthritis, but also psoriatic arthritis. Most currently available molecules target TNF-alfa with different strategies (i.e., etanercept, infliximab, adalimumab, golimumab, and certolizumab pegol), IL-6 (tocilizumab), CTLA-4 (abatacept), and B cells (rituximab, belimumab) as they are key mediators in the cascade of inflammation. Further, small molecules have been recently developed to target intracellular signaling, such as Janus Kinases for tofacitinib, the first FDA-approved small molecule for rheumatoid arthritis. Most novel treatments are being developed for arthritis with specific differences between rheumatoid and psoriatic arthritis, as well as for systemic lupus erythematosus, following the approval of belimumab. Finally, biologic therapies are effective also in gout, mainly targeting interleukin-1 to block the inflammasome. This review article describes the new and upcoming treatment options for rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, and gout to dissect what we should be aware of when discussing these new and promising molecules.
Collapse
|
25
|
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease that is marked by a systemic inflammatory reaction and joint erosions. Elevated levels of B cell activating factor (BAFF) have been detected in the serum and synovial fluid of RA patients. Moreover, the levels of BAFF increase in cases of autoimmune disease and are correlated with the level of disease activity. As an innate cytokine mediator, BAFF affects the immune response of the synovial microenvironment. In this review, we consider recent observations of BAFF and its receptors in RA progression, as well as the effects of BAFF on the cell-cell interactions network. We also summarize the clinical development of BAFF antagonists for the treatment of RA.
Collapse
|
26
|
Weldon AJ, Moldovan I, Cabling MG, Hernandez EA, Hsu S, Gonzalez J, Parra A, Benitez A, Daoud N, Colburn K, Payne KJ. Surface APRIL Is Elevated on Myeloid Cells and Is Associated with Disease Activity in Patients with Rheumatoid Arthritis. J Rheumatol 2015; 42:749-59. [PMID: 25729037 DOI: 10.3899/jrheum.140630] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To assess surface APRIL (a proliferation-inducing ligand; CD256) expression by circulating myeloid cells in rheumatoid arthritis (RA) and to determine its relationship to disease activity. METHODS Peripheral blood mononuclear cells (PBMC) and plasma were obtained from patients with RA and healthy donors. PBMC were stained for flow cytometry to detect surface APRIL and blood cell markers to identify circulating myeloid cell subsets. Based on CD14 and CD16 phenotypes, monocyte subsets described as classical (CD14+CD16-), intermediate (CD14+CD16+), and nonclassical (CD14loCD16+) were identified. Levels of surface APRIL expression were measured by flow cytometry and median fluorescence intensity was used for comparisons. Levels of soluble APRIL in the plasma were determined by ELISA. Disease activity was measured by the Disease Activity Score in 28 joints. RESULTS In patients with RA, total myeloid cells showed expression of surface APRIL that correlated with disease activity and with plasma APRIL levels observed in these patients. In healthy donors, classical monocytes were composed of > 80% of circulating monocytes. However, in patients with RA, the intermediate and nonclassical subsets were elevated and made up the majority of circulating monocytes. In contrast to healthy donors, where high levels of surface APRIL were only observed in nonclassical monocytes, patients with RA showed high levels of surface APRIL expression by all circulating monocyte subsets. CONCLUSION Surface APRIL is elevated in circulating myeloid cells in patients with RA where it is highly correlated with disease activity. Patients with RA also showed skewing of monocytes toward subsets associated with secretion of tumor necrosis factor-α and/or interleukin 1β.
Collapse
Affiliation(s)
- Abby Jones Weldon
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University.
| | - Ioana Moldovan
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Marven G Cabling
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Elvin A Hernandez
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Sheri Hsu
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Jennifer Gonzalez
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Andrea Parra
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Abigail Benitez
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Nasim Daoud
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Keith Colburn
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| | - Kimberly J Payne
- From the Center for Health Disparities and Molecular Medicine, Department of Microbiology and Molecular Genetics, Department of Medicine, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda; Division of Rheumatology, Beaver Medical Group, Redlands, California, USA.A.J. Weldon, MS; A. Benitez, PhD, Center for Health Disparities and Molecular Medicine, and Department of Microbiology and Molecular Genetics, Loma Linda University; I. Moldovan, MD, Department of Medicine, Loma Linda University, and Division of Rheumatology, Beaver Medical Group; M.G. Cabling, MD; S. Hsu, MD; N. Daoud, MD; K. Colburn, MD, Department of Medicine, Loma Linda University; E.A. Hernandez, PhD, Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University; J. Gonzalez, BS; A. Parra, BS, Center for Health Disparities and Molecular Medicine, Loma Linda University; K.J. Payne, PhD, Center for Health Disparities and Molecular Medicine, and Department of Pathology and Human Anatomy, Loma Linda University
| |
Collapse
|
27
|
Cambridge G, Moura RA, Santos T, Khawaja AA, Polido-Pereira J, Canhão H, Leandro MJ, Fonseca JE. Expression of the inherently autoreactive idiotope 9G4 on autoantibodies to citrullinated peptides and on rheumatoid factors in patients with early and established rheumatoid arthritis. PLoS One 2014; 9:e107513. [PMID: 25222933 PMCID: PMC4164660 DOI: 10.1371/journal.pone.0107513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/11/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The pre-symptomatic stage of Rheumatoid arthritis (RA) is associated with pro-inflammatory cytokines and autoantibodies. High levels and epitope spread by Rheumatoid factors (RhF) and autoantibodies to citrullinated proteins signify progression towards disease expression. In established RA, the persistence of high autoantibody levels reflects production by both long-lived plasma cells and short-lived plasmablasts. Neither the relative contributions to pathogenesis by autoantibodies from either source, nor the factors responsible for deciding the fate of autoantigen specific 'parent' B-cells, is understood. Phenotypic markers identifying subsets of autoreactive B-cells are therefore of interest in understanding the origin and perpetuation of the autoimmune response in RA. One such phenotypic marker is the rat monoclonal antibody, 9G4, which recognises an idiotope on immunoglobuins derived from the inherently autoreactive VH-gene, VH4-34. We therefore investigated whether the 9G4 idiotope was expressed on autoantibodies in patients with RA. METHODOLOGY/PRINCIPAL FINDINGS Sera from 19 patients with established RA and those with <1year history of untreated polyarthritis either resolving into RA (n = 42) or non-RA diagnosis (n = 31) were included. Autoantibodies to cyclic citrullinated peptides (CCP), RhF and co-expression of the 9G4 idiotope were measured by ELISA. 9G4 recognised a population of anti-CCP antibodies in the majority of sera from patients with established disease and also in samples from patients with early disaese. 9G4+RhF levels were generally lower and not associated with positivity for, or levels of 9G4+CCP. CONCLUSIONS/SIGNIFICANCE The persistence of 9G4+ immunoglobulins, of any isotype, in serum is rare. We describe here the novel finding of 9G4 expression on anti-CCP antibodies in patients from the earliest symptoms of RA through to established disease. Our results suggest that 9G4 expression on anti-CCP autoantibodies was not due to polyclonal expansion of VH4-34-encoded immunoglobulins. These studies may therefore provide a new focus for investigation into the evolution of the autoimmune response in RA patients.
Collapse
Affiliation(s)
- Geraldine Cambridge
- Centre for Rheumatology, University College London, London, United Kingdom
- * E-mail:
| | - Rita A. Moura
- Centre for Rheumatology, University College London, London, United Kingdom
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tania Santos
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Akif A. Khawaja
- Centre for Rheumatology, University College London, London, United Kingdom
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Joaquim Polido-Pereira
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon, Portugal
| | - Helena Canhão
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon, Portugal
| | - Maria J. Leandro
- Centre for Rheumatology, University College London, London, United Kingdom
| | - João E. Fonseca
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon, Portugal
| |
Collapse
|
28
|
Leandro MJ, Cambridge G. Expression of B cell activating factor (BAFF) and BAFF-binding receptors in rheumatoid arthritis. J Rheumatol 2014; 40:1247-50. [PMID: 23908529 DOI: 10.3899/jrheum.130677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Mahdy AA, Raafat HA, El-Fishawy HS, Gheita TA. Therapeutic potential of hydroxychloroquine on serum B-cell activating factor belonging to the tumor necrosis factor family (BAFF) in rheumatoid arthritis patients. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bfopcu.2014.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Maseda D, Bonami RH, Crofford LJ. Regulation of B lymphocytes and plasma cells by innate immune mechanisms and stromal cells in rheumatoid arthritis. Expert Rev Clin Immunol 2014; 10:747-62. [PMID: 24734886 DOI: 10.1586/1744666x.2014.907744] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
B cells mediate multiple functions that influence immune and inflammatory responses in rheumatoid arthritis. Production of a diverse array of autoantibodies can happen at different stages of the disease, and are important markers of disease outcome. In turn, the magnitude and quality of acquired humoral immune responses is strongly dependent on signals delivered by innate immune cells. Additionally, the milieu of cells and chemokines that constitute a niche for plasma cells rely strongly on signals provided by stromal cells at different anatomical locations and times. The chronic inflammatory state therefore importantly impacts the developing humoral immune response and its intensity and specificity. We focus this review on B cell biology and the role of the innate immune system in the development of autoimmunity in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
31
|
Therapeutic effects of PADRE-BAFF autovaccine on rat adjuvant arthritis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:854954. [PMID: 24791002 PMCID: PMC3984822 DOI: 10.1155/2014/854954] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 12/21/2022]
Abstract
B cell activating factor (BAFF) is a cytokine of tumor necrosis factor family mainly produced by monocytes and dendritic cells. BAFF can regulate the proliferation, differentiation, and survival of B lymphocytes by binding with BAFF-R on B cell membrane. Accumulating evidences showed that BAFF played crucial roles and was overexpressed in various autoimmune diseases such as systemic lupus erythematous (SLE) and rheumatoid arthritis (RA). This suggests that BAFF may be a therapeutic target for these diseases. In the present study, we developed a BAFF therapeutic vaccine by coupling a T helper cell epitope AKFVAAWTLKAA (PADRE) to the N terminus of BAFF extracellular domains (PADRE-BAFF) and expressed this fusion protein in Escherichia coli. The purified vaccine can induce high titer of neutralizing BAFF antibodies and ameliorate the syndrome of complete Freund's adjuvant (CFA) induced rheumatoid arthritis in rats. Our data indicated that the BAFF autovaccine may be a useful candidate for the treatment of some autoimmune diseases associated with high level of BAFF.
Collapse
|