1
|
Ali A, Chaudhary A, Sharma A, Siddiqui N, Anurag, Parihar VK. Exploring role of citrus fruits in comorbid neurodegenerative disorders associated with psoriasis. Metab Brain Dis 2024; 40:62. [PMID: 39671136 DOI: 10.1007/s11011-024-01479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/09/2024] [Indexed: 12/14/2024]
Abstract
A neurodegenerative illness is a disorder in which the brain and/or spinal cord's neurons, or nerve cells, gradually deteriorate and disappear. These illnesses often get worse with time and can seriously affect movement, cognition, and other neurological functions. Psoriasis is a long-term autoimmune skin condition marked by fast skin cell growth that results in red, elevated areas coated in silvery-white scales. It can affect several body parts, such as the elbows, knees, scalp, and lower back, and it is not communicable. The build-up of amyloid beta [Aβ] protein is linked to elevated levels of reactive oxygen species (ROS) (Kim et al. 2020). These ROS can trigger multiple pathways, including MAPK, NFkB, JAK/STAT, and interleukin 1 beta (IL-1β), ultimately playing a role in the development of neurodegenerative illnesses like Alzheimer's disease (AD) and psoriasis. People who have psoriasis are more likely to acquire AD, as psoriasis is a chronic inflammatory skin condition that is genetically connected. Because of the antioxidants and anti-inflammatory properties of citrus fruits neurodegenerative and psoriasis disease may be prevented. The neuroprotective action of bioactives in citrus fruits involves the inhibition of inflammation through the control of p38 mitogen-activated protein kinase (MAPK) and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Due to their immunomodulatory and anti-inflammatory qualities, polyphenols may be able to control the immune response in psoriasis. We performed a thorough review in order to investigate for the first time to understand the role of citrus fruits in comorbid neurodegenerative disorders associated with psoriasis. For better understanding into the possible applications of citrus fruits in treating psoriasis and neurodegenerative disease would require additional studies focusing directly on the relationship between citrus fruits consumption in managing neurodegenerative and psoriasis disease.
Collapse
Affiliation(s)
- Adil Ali
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| | - Ankit Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India.
| | - Nazia Siddiqui
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| | - Anurag
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Hajipur, 844102, India
| | - Vipan Kumar Parihar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, 250005, India
| |
Collapse
|
2
|
Nady Ouais G, Kamar SA, Mousa AA, Sonbol MM. The Protective effects of Vitamin E against alterations of rat testis structure induced by deltamethrin; histological, ultrastructure, and biochemical study. Ultrastruct Pathol 2024; 48:108-120. [PMID: 38073084 DOI: 10.1080/01913123.2023.2292563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 02/08/2024]
Abstract
Deltamethrin is a widely used synthetic pyrethroid pesticide. It causes reproductive toxicity. Aim of the work: it evaluates the impact of vitamin E in restoration of the testicular integrity of albino rats after toxicity induced by Deltamethrin. Thirty-six adult male albino rats were included, and they were further sub-divided into four experimental groups; Group A: six rats served as controls. Group B (Model): 10 rats equally divided into two sub-groups (B1): the rats received deltamethrin dissolved in oil in a dose of 0.6 mg/kg/daily by nasogastric gavage for 2 weeks. (B2): the rats received Deltamethrin in the same dose of group B1 for 1 month. Group C (Protected): 10 rats equally divided into two sub-groups (C1): the rats received deltamethrin orally 0.6 mg/kg/day concomitant with Vitamin E dissolved in 1 ml of corn oil in a dose 200 mg/kg/day by nasogastric gavage for 2 weeks. (C2): the rats received deltamethrin concomitant with Vitamin E in the same dose of group C1 for 1 month. Group D (Treatment): 10 rats received deltamethrin for 1 month followed by Vitamin E for another month in the same previously prescribed doses. Significant decreases in serum testosterone level, GSH, catalase activity, and significant increase in MDA in the deltamethrin-treated group were detected. Moreover, histological and ultrastructural examinations of the testis seminiferous tubules showed detrimental alterations in the deltamethrin group which were duration dependent. Vitamin E administration reversed such alterations. Vitamin E ameliorates the testicular dysfunction caused by Deltamethrin.
Collapse
Affiliation(s)
- Ghada Nady Ouais
- Anatomy and Embryology Department, Faculty of Medicine, Cairo University Cairo, Cairo, Egypt
- Anatomy and Embryology Department, Faculty of Medicine, New Giza University, Giza, Egypt
| | - Sherif A Kamar
- Faculty of Dentistry, Al-Ahliyya Amman University (AAU), Amman, Jordan
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ali Ahmed Mousa
- Anatomy and Embryology Department, Faculty of Medicine, Jouf University, Sakaka,AL-Jouf, Kingdom of Saudi Arabia
| | - Mohamed Mostafa Sonbol
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Eggersdorfer M, Schmidt K, Péter S, Richards J, Winklhofer-Roob B, Hahn A, Obermüller-Jevic U. Vitamin E: Not only a single stereoisomer. Free Radic Biol Med 2024; 215:106-111. [PMID: 38401827 DOI: 10.1016/j.freeradbiomed.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
The recent publication by Azzi and colleagues puts forth the argument that only RRR-α-tocopherol should be considered as vitamin E from a physiological point of view. They base their argument primarily on the assertion that only this form has been used to treat stark vitamin E deficiency in humans (known as AVED, or Ataxia with Vitamin E Deficiency). Azzi et al. also argue that other chemically similar molecules, such as tocopherols other than α-tocopherol and tocotrienols do not provide vitamin E activity. Azzi and colleagues are correct on this second point. An investigation into the biological activities of vitamin E, and the mechanisms behind these activities, confirms that physiological vitamin E activity is limited to certain α-tocopherol forms. However, it is also clear that these activities are not restricted only to the RRR-form but include other 2R-forms as well. Indeed, the α-tocopherol transfer protein (α-TTP), which is critical to mediate vitamin E trafficking and biological activity, and genetic defects of which lead to vitamin E deficiency, binds well to all 2R-forms of α-tocopherol. Furthermore, both RRR-α-tocopherol and the other 2R-forms are maintained in human plasma and distributed to tissues and organs, whereas the 2S-stereoisomers are excreted quickly. As such, in recent years the definition of vitamin E including both 2R- and RRR-α-tocopherol has gained both broad scientific and regulatory acceptance. Consistent with this understanding, we provide evidence that AVED has indeed been treated successfully with forms in addition to RRR-α-tocopherol, again arguing against the restriction of the definition to RRR-α-tocopherol only. Finally, we provide evidence against any safety concerns utilizing the currently accepted definition of vitamin E.
Collapse
Affiliation(s)
- M Eggersdorfer
- Department of Internal Medicine, University Medical Center Groningen, Groningen, the Netherlands.
| | - K Schmidt
- Experimental Medicine, University of Tuebingen, Germany
| | - S Péter
- dsm-firmenich, Health, Nutrition & Care, Kaiseraugst, Switzerland
| | - J Richards
- dsm-firmenich, Health, Nutrition & Care, Plainsboro, USA
| | - B Winklhofer-Roob
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - A Hahn
- Institute of Food Science and Human Nutrition, Leibnitz University Hannover, Hannover, Germany
| | | |
Collapse
|
4
|
Ghorbani F, Mazidimoradi A, Biyabani A, Allahqoli L, Salehiniya H. Role of NADPH Quinone Reductase 1 (NQO1) Polymorphism in Prevention, Diagnosis, and Treatment of Gastrointestinal Cancers. Curr Cancer Drug Targets 2024; 24:1213-1221. [PMID: 38318828 DOI: 10.2174/0115680096283149240109094710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 02/07/2024]
Abstract
Most cancer deaths are related to gastrointestinal (GI) cancers. Several environmental and genetic factors are effective in the occurrence of GI cancers, such as esophageal, stomach, colorectal, liver, and pancreatic cancers. In addition to risk factors related to lifestyle, reactive oxygen species (ROS) also play a role in GI cancers, and an increase in the amount of free radicals can lead to oxidative stress and increase the probability of malignancies. NQO1 is part of the body's antioxidant defense system that protects cells against mutagenesis and carcinogenesis. NQO1 is responsible for reducing quinones to hydroquinone and preventing the generation of ROS by catalyzing the reaction. The existence of single nucleotide polymorphisms (SNPs) of NADPH Quinone Reductase 1 (NQO1), such as 609C>T NQO1, leads to a decrease in NQO1 enzyme activity. Some NQO1 polymorphisms may increase the risk of gastrointestinal cancer. So, the C609T polymorphism in the NQO1 gene has been found to be effective in causing gastrointestinal cancers. On the other hand, it is very important to know the role of biomarkers in the prognosis and management of cancer treatment. Therefore, this study investigated the role of NQO1 as a biomarker in the management of gastrointestinal cancers (prevention, diagnosis and treatment).
Collapse
Affiliation(s)
- Fereshte Ghorbani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Allahqoli
- Midwifery Department, Ministry of Health and Medical Education, Tehran, Iran
| | - Hamid Salehiniya
- Department of Epidemiology and Biostatistics, School of Health, Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
5
|
Akman AU, Erisgin Z, Turedi S, Tekelioglu Y. Methotrexate-induced hepatotoxicity in rats and the therapeutic properties of vitamin E: a histopathologic and flowcytometric research. Clin Exp Hepatol 2023; 9:359-367. [PMID: 38774203 PMCID: PMC11103801 DOI: 10.5114/ceh.2023.132251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/11/2023] [Indexed: 05/24/2024] Open
Abstract
Aim of the study Methotrexate (MTX) causes oxidative stress-related liver damage. Our objective was to investigate the protective effects of vitamin E against MTX-induced hepatotoxicity through histopathological methods and flow cytometry. Material and methods The rats were assigned to four groups: Control (2 ml saline for 5 days), MTX (20 mg/kg intraperitoneally (i.p.) only on the initial day of the study), MTX + vitamin E (20 mg/kg MTX (i.p.) only on the first day, and 100 mg/kg vitamin E (i.p.) was applied for 5 days during the study), Vitamin E (100 mg/kg of vitamin E (i.p.) was given for five days). Histopathologic changes and the flow cytometric apoptotic index were evaluated for liver tissue. The Kruskal-Wallis test was used for comparisons between groups. The statistical significance level was accepted as p < 0.05. Results In the histopathological analysis, hepatocyte degeneration, dilatation of sinusoids, mononuclear cell infiltration, hydropic degeneration in hepatocytes, vacuolization, and pycnotic nucleus were observed in the MTX group. In the MTX + vitamin E group, hepatocyte degeneration, pycnotic nuclei, and dilatation in sinusoids were significantly lower compared to the MTX group. In the MTX group, glycogen accumulation in hepatocytes was lower compared to the control group. In the MTX + vitamin E group, glycogen accumulation in hepatocy-tes was higher compared to the MTX group. The flowcytometric apoptotic index (AI) percentage in the MTX group was 34.4% and in the MTX + vitamin E group the value was 9.4%. Conclusions Our results demonstrated that vitamin E ameliorates MTX-induced liver damage. Co-using vitamin E and MTX drugs will be beneficial for the treatment of various diseases.
Collapse
Affiliation(s)
- Ahmet U. Akman
- Department of Histology and Embryology, Faculty of Medicine, Amasya University, Turkey
| | - Zuleyha Erisgin
- Department of Histology and Embryology, Faculty of Medicine, Giresun University, Turkey
| | - Sibel Turedi
- Department of Histology and Embryology, Faculty of Medicine, Harran University, Turkey
| | - Yavuz Tekelioglu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Turkey
| |
Collapse
|
6
|
Wani M, Chakole S, Agrawal S, Gupta A, Chavada J, Pathade AG, Yelne S. Unveiling Skin Manifestations: Exploring Cutaneous Signs of Malnutrition in Eating Disorders. Cureus 2023; 15:e44759. [PMID: 37809242 PMCID: PMC10556793 DOI: 10.7759/cureus.44759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
The intricate interplay between eating disorders, malnutrition, and their cutaneous manifestations is the focal point of this comprehensive review. The review delves into the clinical significance of recognising and understanding these visible signs in the context of eating disorders. It highlights the vital role of nutrition in maintaining healthy skin and addresses the challenges associated with relying solely on cutaneous signs for diagnosis. Emphasising a multidisciplinary approach involving dermatologists, psychiatrists, and nutritionists, the review underscores the holistic nature of the treatment. Addressing psychological aspects alongside nutritional rehabilitation is underscored with a forward-looking perspective on future research avenues. This review is valuable for healthcare professionals by synthesising existing knowledge and identifying research gaps. It aims to improve the diagnosis, treatment, and preventative strategies for individuals dealing with the complex challenges of eating disorders and malnutrition.
Collapse
Affiliation(s)
- Mohit Wani
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swarupa Chakole
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Suyash Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anannya Gupta
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Jay Chavada
- Medical Student, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aniket G Pathade
- Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Seema Yelne
- Nursing, Shalinitai Meghe College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
7
|
Protective Biomolecular Mechanisms of Glutathione Sodium Salt in Ischemia-Reperfusion Injury in Patients with Acute Coronary Syndrome-ST-Elevation Myocardial Infarction. Cells 2022; 11:cells11243964. [PMID: 36552727 PMCID: PMC9777519 DOI: 10.3390/cells11243964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemia-Reperfusion Injury (IRI) is responsible for adverse outcomes in patients with ST-Elevation Myocardial Infarction (STEMI). Oxidative stress, resulting from the production of Reactive Oxygen Species (ROS) and low availability of Glutathione (GSH), are the two main mediators of IRI. The effectiveness of exogenous antioxidant therapy in this scenario is still debated, since the encouraging results obtained in animal models have not been fully reproduced in clinical studies. In this review we focus on the role of GSH, specifically on the biomolecular mechanisms that preserve myocardial cells from damage due to reperfusion. In this regard, we provide an extensive discussion about GSH intrinsic antioxidant properties, its current applications in clinical practice, and the future perspectives.
Collapse
|
8
|
Abstract
Legume proteins have a promising future in the food industry due to their nutritional, environmental, and economic benefits. However, their application is still limited due to the presence of antinutritional and allergenic compounds, their poor technological properties, and their unpleasant sensory characteristics. Fermentation has been traditionally applied to counteract these inconveniences. At present, lactic acid fermentation of legumes is attracting the attention of researchers and industry in relation to the development of healthier, tasty, and technologically adapted products. Hence, we aimed to review the literature to shed light on the effect of lactic acid fermentation on legume protein composition and on their nutritional, functional, technological, and sensorial properties. The antimicrobial activity of lactic acid bacteria during legume fermentation was also considered. The heterogenicity of raw material composition (flour, concentrate, and isolate), the diversity of lactic acid bacteria (nutriment requirements, metabolic pathways, and enzyme production), and the numerous possible fermenting conditions (temperature, time, oxygen, and additional nutrients) offer an impressive range of possibilities with regard to fermented legume products. Systematic studies are required in order to determine the specific roles of the different factors. The optimal selection of these criteria will allow one to obtain high-quality fermented legume products. Fermentation is an attractive technology for the development of legume-based products that are able to satisfy consumers’ expectations from a nutritional, functional, technological, and sensory point of view.
Collapse
|
9
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Geicu OI, Bilteanu L, Serban AI. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur J Med Chem 2022; 232:114175. [PMID: 35151223 PMCID: PMC8813210 DOI: 10.1016/j.ejmech.2022.114175] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
oxidative stress is caused by an abundant generation of reactive oxygen species, associated to a diminished capacity of the endogenous systems of the organism to counteract them. Activation of pro-oxidative pathways and boosting of inflammatory cytokines are always encountered in viral infections, including SARS-CoV-2. So, the importance of counteracting cytokine storm in COVID-19 pathology is highly important, to hamper the immunogenic damage of the endothelium and alveolar membranes. Antioxidants prevent oxidative processes, by impeding radical species generation. It has been proved that vitamin intake lowers oxidative stress markers, alleviates cytokine storm and has a potential role in reducing disease severity, by lowering pro-inflammatory cytokines, hampering hyperinflammation and organ failure. For the approached compounds, direct antiviral roles are also discussed in this review, as these activities encompass secretion of antiviral peptides, modulation of angiotensin-converting enzyme 2 receptor expression and interaction with spike protein, inactivation of furin protease, or inhibition of pathogen replication by nucleic acid impairment induction. Vitamin administration results in beneficial effects. Nevertheless, timing, dosage and mutual influences of these micronutrients should be carefullly regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Liviu Bilteanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Blvd, Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
10
|
Azeez OH. Evaluation of Some Male and Female Rats’ Reproductive Hormones Following Administration of Aspartame With or Without Vitamin C or E. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.30539/ijvm.v45i2.1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Aspartame (ASP) is a sugar substitute. Its use rose because it has been demonstrated to have deleterious effects after being metabolized. In the presence of antioxidant vitamins C or E, the effects of ASP on reproductive hormones of adult male and female Albino Wister rats were investigated. A total of eighty male and female rats were used in this study. The rats were divided into four groups: group 1, received no treatment; group 2, received ASP at 40 mg/kg BW; group 3, received ASP at 40 mg/kg BW with vitamin C at 150 mg/kg BW; and group 4, received ASP at 40 mg/kg BW and vitamin E at 100 mg/kg BW. All treatments were given orally by gavage needle once daily for consecutive 90 days. The levels of estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone hormone (TH) were measured after 90 days in blood plasma. In comparison with the control group, ASP treatment resulted in lower levels of E2, FSH, and LH in male and female rats. When the antioxidants vitamin C or E was given, the effects of ASP were reversed, and the levels of E2, LH, and FSH were increased. The testosterone hormone was likewise significantly increased by ASP, but testosterone hormone concentrations were decreased by vitamin C or E treatments. Long-term ASP consumption caused interfering with testicular and ovarian hormonal activity, while vitamins C and E on the other hand, overcome longstanding consumption ASP's effects.
Collapse
|
11
|
Manjunath V, Badhe RV, McCoy M, Rynne J, Bhatti A, Segu A, Oral E, Jacobs JJ, Chastain P, Bijukumar D, Mathew MT. The role of Vitamin E in hip implant-related corrosion and toxicity: Initial outcome. J Mech Behav Biomed Mater 2021; 123:104769. [PMID: 34412025 PMCID: PMC10559727 DOI: 10.1016/j.jmbbm.2021.104769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/27/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
In orthopedic healthcare, Total Hip Replacement (THR) is a common and effective solution to hip-related bone and joint diseases/fracture; however, corrosion of the hip implant and the release of degradation metal ions/particles can lead to early implant failure and pose potential toxicity risk for the surrounding tissues. The main objective of this work was to investigate the potential role of Vitamin E to minimize corrosion-related concerns from CoCrMo hip implants. The study focused on two questions (i) Can Vitamin E inhibit CoCrMo corrosion? and (ii) Does Vitamin E moderate the toxicity associated with the CoCrMo implant particles? In the study (i) the electrochemical experiments (ASTM G61) with different concentrations of Vitamin E (1, 2, 3 mg/ml against the control) were performed using normal saline and simulated synovial fluid (Bovine calf serum-BCS, 30 g/L protein, pH 7.4) as electrolytes. The polished CoCrMo disc (Ra 50 nm) was the working electrode. The findings suggested that both Vitamin E-Saline (45 ± 0.9%) and Vitamin E-BCS (91 ± 3%) solutions protected against implant corrosion at a Vitamin E concentration of 3 mg/ml, but Vitamin E-BCS showed protection at all Vitamin E (1-3 mg/ml) concentration levels. These results suggested that the Vitamin E and the protein present in the BCS imparted additive effects towards the electrochemical inhibition. In the study (ii) the role of Vitamin E in cytotoxicity inhibition was studied using a mouse neuroblastoma cell line (N2a) for CoCrMo particles and Cr ions separately. The CoCrMo particles were generated from a custom-built hip simulator. The alamarBlue assay results suggested that Vitamin E provides significant protection (85% and 75% proliferation) to N2a cells against CoCrMo particles and Cr ions, respectively at 1 μg/ml concentration, as compared to the control group. However, the results obtained from ROS expression and DNA fiber staining suggest that Vitamin E is only effective against CoCrMo degradation particles and not against Cr ions. In summary, the findings show that Vitamin E can minimize the corrosion processes and play a role in minimizing the potential toxicity associated with implants.
Collapse
Affiliation(s)
- Vikas Manjunath
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Ravindra V Badhe
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Maureen McCoy
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA
| | - Josiah Rynne
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, IL, USA
| | - Aisha Bhatti
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Abhijith Segu
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Ebru Oral
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Joshua J Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Paul Chastain
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Divya Bijukumar
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.
| |
Collapse
|
12
|
Kara H, Orem A, Yulug E, Balaban Yucesan F, Kerimoglu G, Vanizor Kural B, Ozer Yaman S, Bodur A, Turedi S, Alasalvar C. Effects of hazelnut supplemented diet on doxorubicin-induced damage of reproductive system in male rats. J Food Biochem 2021; 45:e13973. [PMID: 34664725 DOI: 10.1111/jfbc.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
The present study was objected to investigate the effect of hazelnut supplemented diet on the levels of oxidative stress and fertility parameters against doxorubicin-induced testicular and epididymal tissue damage of male rats. Rats were randomly divided into four groups (each n = 8), namely control group (CG), doxorubicin group (DG), doxorubicin + hazelnut group (DHG), and doxorubicin + vitamin E group (DEG). This is the first study designed using DHG. Doxorubicin was intraperitoneally injected into all diet groups except CG at a dose of 3 mg/kg body weight on days 1, 7, 14, 21, and 28. In addition, DHG was supplemented with a hazelnut diet at a dose of 3 g/kg body weight/day and vitamin E was added to the drinking water of DEG at a dose of 50 mg/kg body weight/day. DHG reversed the side effects of doxorubicin and positively improved the epididymis sperm quality, testicular and epididymal tissue injury, testosterone level, epididymis oxidative stress index, and lipid peroxidation in male rats. These findings suggest that hazelnut has positive effects against doxorubicin dependent damage on male rats and it may be a promising supplement for amelioration of testicular toxicity. PRACTICAL APPLICATIONS: Hazelnut has numerous positive health effects due to its macronutrients, micronutrients, lipid-soluble compounds and bioactive phenolics. Studies have shown that regular consumption of hazelnut may have a positive effect on lipid parameters, oxidative stress, inflammation markers, and endothelial dysfunction in both healthy people and patients with chronic diseases. Although doxorubicin (Adriamycin, DOX) is an antibiotic that has been widely used in cancer treatment for nearly 30 years, it causes organ toxicity including testicular tissue. Hazelnut may have positive effects on the damage caused by DOX in the reproductive system. However, studies on the effect of hazelnut on male reproductive health are scarce. Therefore, this study provided a basis for the clinical evaluation of the effects of hazelnut on the reproductive system.
Collapse
Affiliation(s)
- Hanife Kara
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Amasya University, Amasya, Turkey.,Graduate School of Health Sciences, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Asım Orem
- Faculty of Medicine, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Esin Yulug
- Faculty of Medicine, Department of Histology and Embryology, Karadeniz Technical University, Trabzon, Turkey
| | - Fulya Balaban Yucesan
- Faculty of Medicine, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Gokcen Kerimoglu
- Faculty of Medicine, Department of Histology and Embryology, Karadeniz Technical University, Trabzon, Turkey
| | - Birgul Vanizor Kural
- Faculty of Medicine, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Serap Ozer Yaman
- Graduate School of Health Sciences, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Akın Bodur
- Graduate School of Health Sciences, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Sibel Turedi
- Faculty of Medicine, Department of Histology and Embryology, Harran University, Sanlıurfa, Turkey
| | | |
Collapse
|
13
|
Rodrigo R, Prieto JC, Aguayo R, Ramos C, Puentes Á, Gajardo A, Panieri E, Rojas-Solé C, Lillo-Moya J, Saso L. Joint Cardioprotective Effect of Vitamin C and Other Antioxidants against Reperfusion Injury in Patients with Acute Myocardial Infarction Undergoing Percutaneous Coronary Intervention. Molecules 2021; 26:molecules26185702. [PMID: 34577176 PMCID: PMC8468345 DOI: 10.3390/molecules26185702] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Percutaneous coronary intervention (PCI) has long remained the gold standard therapy to restore coronary blood flow after acute myocardial infarction (AMI). However, this procedure leads to the development of increased production of reactive oxygen species (ROS) that can exacerbate the damage caused by AMI, particularly during the reperfusion phase. Numerous attempts based on antioxidant treatments, aimed to reduce the oxidative injury of cardiac tissue, have failed in achieving an effective therapy for these patients. Among these studies, results derived from the use of vitamin C (Vit C) have been inconclusive so far, likely due to suboptimal study designs, misinterpretations, and the erroneous conclusions of clinical trials. Nevertheless, recent clinical trials have shown that the intravenous infusion of Vit C prior to PCI-reduced cardiac injury biomarkers, as well as inflammatory biomarkers and ROS production. In addition, improvements of functional parameters, such as left ventricular ejection fraction (LVEF) and telediastolic left ventricular volume, showed a trend but had an inconclusive association with Vit C. Therefore, it seems reasonable that these beneficial effects could be further enhanced by the association with other antioxidant agents. Indeed, the complexity and the multifactorial nature of the mechanism of injury occurring in AMI demands multitarget agents to reach an enhancement of the expected cardioprotection, a paradigm needing to be demonstrated. The present review provides data supporting the view that an intravenous infusion containing combined safe antioxidants could be a suitable strategy to reduce cardiac injury, thus improving the clinical outcome, life quality, and life expectancy of patients subjected to PCI following AMI.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
- Correspondence:
| | - Juan Carlos Prieto
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Rubén Aguayo
- Cardiology Unit, Department of Medicine, Occident Division, San Juan de Dios Hospital, Avenida Portales 3239, Santiago 8500000, Chile; (R.A.); (Á.P.)
| | - Cristóbal Ramos
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Ángel Puentes
- Cardiology Unit, Department of Medicine, Occident Division, San Juan de Dios Hospital, Avenida Portales 3239, Santiago 8500000, Chile; (R.A.); (Á.P.)
| | - Abraham Gajardo
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
| | - José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| |
Collapse
|
14
|
Samad N, Dutta S, Sodunke TE, Fairuz A, Sapkota A, Miftah ZF, Jahan I, Sharma P, Abubakar AR, Rowaiye AB, Oli AN, Charan J, Islam S, Haque M. Fat-Soluble Vitamins and the Current Global Pandemic of COVID-19: Evidence-Based Efficacy from Literature Review. J Inflamm Res 2021; 14:2091-2110. [PMID: 34045883 PMCID: PMC8149275 DOI: 10.2147/jir.s307333] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
The outbreak of pneumonia caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), later named COVID-19 by the World Health Organization (WHO), was initiated at Wuhan, Hubei, China, and there was a rapid spread of novel SARS-CoV-2 and the disease COVID-19 in late 2019. The entire world is now experiencing the challenge of COVID-19 infection. However, still very few evidence-based treatment options are available for the prevention and treatment of COVID-19 disease. The present review aims to summarize the publicly available information to give a comprehensive yet balanced scientific overview of all the fat-soluble vitamins concerning their role in SARS-CoV-2 virus infection. The roles of different fat-soluble vitamins and micronutrients in combating SARS-CoV-2 infection have been recently explored in several studies. There are various hypotheses to suggest their use to minimize the severity of COVID-19 infection. These vitamins are pivotal in the maintenance and modulation of innate and cell-mediated, and antibody-mediated immune responses. The data reported in recent literature demonstrate that deficiency in one or more of these vitamins compromises the patients' immune response and makes them more vulnerable to viral infections and perhaps worse disease prognosis. Vitamins A, D, E, and K boost the body's defense mechanism against COVID-19 infection and specifically prevent its complications such as cytokine storm and other inflammatory processes, leading to increased morbidity and mortality overemphasis. However, more detailed randomized double-blind clinical pieces of evidence are required to define the use of these supplements in preventing or reducing the severity of the COVID-19 infection.
Collapse
Affiliation(s)
- Nandeeta Samad
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Adiba Fairuz
- Department of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Ashmita Sapkota
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Iffat Jahan
- Department of Physiology, Eastern Medical College, Cumilla, Bangladesh
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Adekunle Babajide Rowaiye
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
The effects of vitamin E on colistin-induced nephrotoxicity in treatment of drug-resistant gram-negative bacterial infections: A randomized clinical trial. J Infect Chemother 2021; 27:1181-1185. [PMID: 33863635 DOI: 10.1016/j.jiac.2021.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Nephrotoxicity remains a major long-standing concern for colistin, and it is critical to find agents that can prevent it. The present study aims to investigate the effect of vitamin E on the prevention of colistin-induced nephrotoxicity based on its antioxidant and free radical scavenging properties. METHODS A randomized clinical trial was designed for 52 patients taking colistin. These patients were categorized into two groups of equal size, receiving colistin or colistin plus vitamin E (α-Tocopherol). Vitamin E with doses of 400 units was administrated daily either orally or by a nasogastric tube if needed. The incidence of Acute Kidney Injury (AKI) and its duration was recorded based on RIFLE criteria. RESULTS The Incidence of AKI based on RIFLE criteria was 42.3% and 46.2% in intervention and control groups, respectively. The analysis showed no significant difference in the prevalence of AKI for the two groups (P = 0.78). There was no significant difference in the duration of AKI neither (P = 0.83). CONCLUSION Although vitamin E is a powerful biological antioxidant, the effects of Vitamin E prophylaxis on colistin-induced nephrotoxicity was not taken into consideration in this study.
Collapse
|
16
|
Oxidative Stress and Endoplasmic Reticulum Stress in Rare Respiratory Diseases. J Clin Med 2021; 10:jcm10061268. [PMID: 33803835 PMCID: PMC8003245 DOI: 10.3390/jcm10061268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies have shown that some rare respiratory diseases, such as alpha-1 antitrypsin deficiency (AATD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), and primary ciliary dyskinesia (PCD) present oxidative stress (OS) and endoplasmic reticulum (ER) stress. Their involvement in these pathologies and the use of antioxidants as therapeutic agents to minimize the effects of OS are discussed in this review.
Collapse
|
17
|
Tokoro M, Gotoh K, Kudo Y, Hirashita Y, Iwao M, Arakawa M, Endo M, Oribe J, Masaki T, Honda K, Kakuma T, Seike M, Murakami K, Shibata H. α-Tocopherol suppresses hepatic steatosis by increasing CPT-1 expression in a mouse model of diet-induced nonalcoholic fatty liver disease. Obes Sci Pract 2021; 7:91-99. [PMID: 33680496 PMCID: PMC7909598 DOI: 10.1002/osp4.460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Aim Antioxidant therapy for with vitamin E appears to be effective for the treatment of nonalcoholic fatty liver disease (NAFLD). However, the mechanism of action and optimal therapeutic dosage is unclear. The present study was undertaken to examine whether the effects of α‐tocopherol (α‐Toc) on NAFLD are dose‐dependent in a diet‐induced obese model. Methods Male mice were fed standard chow, high‐fat (HF) diet, HF diet with low‐dose, or with high dose of α‐Toc supplementation. Histological findings, triglyceride content, and the levels of protein expression related to fatty acid synthesis/oxidation such as carnitine palmitoyltransferase I (CPT‐1) of liver were evaluated. In addition, 2‐tetradecylglycidic acid (TDGA), a CPT‐1 inhibitor, was administered to mice fed HF diet with low‐dose of α‐Toc. Finally, HepG2 cells in fat‐loaded environment were treated with 0–50 μM α‐Toc. Results Treatment of low‐dose of α‐Toc decreased HF‐induced hepatic fat accumulation, but this finding was not observed in treatment of high dose of α‐Toc. HF‐induced reduction of CPT‐1 was attenuated with low‐dose of α‐Toc but not with high dose of α‐Toc. TDGA suppressed the improvement of histological findings in liver induced by low‐dose of α‐Toc treatment. CPT‐1 expression in HepG2 cells increased in response to low‐dose of α‐Toc, but not in high dose. Conclusions Dual action of α‐Toc on CPT‐1 protein levels was observed. The effect of vitamin E on NAFLD may be not be dose‐dependent.
Collapse
Affiliation(s)
- Masanori Tokoro
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology Faculty of Medicine Oita University Oita Japan.,Department of Gastroenterology Faculty of Medicine Oita University Oita Japan
| | - Koro Gotoh
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology Faculty of Medicine Oita University Oita Japan
| | - Yoko Kudo
- Department of Gastroenterology Faculty of Medicine Oita University Oita Japan
| | - Yuka Hirashita
- Department of Gastroenterology Faculty of Medicine Oita University Oita Japan
| | - Masao Iwao
- Department of Gastroenterology Faculty of Medicine Oita University Oita Japan
| | - Mie Arakawa
- Department of Gastroenterology Faculty of Medicine Oita University Oita Japan
| | - Mizuki Endo
- Department of Gastroenterology Faculty of Medicine Oita University Oita Japan
| | - Junya Oribe
- Department of Gastroenterology Faculty of Medicine Oita University Oita Japan
| | - Takayuki Masaki
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology Faculty of Medicine Oita University Oita Japan
| | - Koichi Honda
- Department of Gastroenterology Faculty of Medicine Oita University Oita Japan
| | - Tetsuya Kakuma
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology Faculty of Medicine Oita University Oita Japan
| | - Masataka Seike
- Department of Gastroenterology Faculty of Medicine Oita University Oita Japan
| | - Kazunari Murakami
- Department of Gastroenterology Faculty of Medicine Oita University Oita Japan
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology Faculty of Medicine Oita University Oita Japan
| |
Collapse
|
18
|
Siqueira de Andrade MI, Oliveira JS, Leal VS, Cabral PC, de Lira PIC. Independent predictors of insulin resistance in Brazilian adolescents: Results of the study of cardiovascular risk in adolescents-Brazil. PLoS One 2021; 16:e0246445. [PMID: 33561171 PMCID: PMC7872259 DOI: 10.1371/journal.pone.0246445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Considering the current changes in dietary patterns and the increasing prevalence of excess weight throughout the world, several studies have reported insulin resistance, which is a key driver of many chronic diseases, to be an important public health problem in all age groups. Therefore, the aim of the present study was to identify the prevalence and independent predictors of insulin resistance in Brazilian adolescents. A cross-sectional study was conducted with a probabilistic, representative sample of Brazilian adolescents (n = 37,023) who participated in the Study of Cardiovascular Risk in Adolescents. Data were collected on demographic, socioeconomic, lifestyle, anthropometric, and biochemical characteristics as well as antioxidant micronutrient intake (vitamins A, C, E, zinc, and selenium). Insulin resistance was determined using the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and classified based on the 75th percentile of the sample distribution. Insulin resistance was detected in 27% of the adolescents and was more prevalent among those aged 12 to 14 years (PR: 1.26 [95%CI: 1.13;1.41]), those residing in the southern and south-eastern regions of the country (PR: 1.47 [95%CI: 1.27;1.70]), those who were physically inactive (PR: 1.12 [95%CI: 1.02;1.23]), and those did not consume alcohol (PR: 1.50 [95%CI: 1.13;1.99]). The prevalence of insulin resistance was 2.5-fold higher among individuals with severe obesity (PR: 2.49 [95%CI: 2.07;3.00]). Waist circumference indicative of cardiovascular risk and high serum triglyceride levels increased the likelihood of insulin resistance (PR: 1.37 [95%CI: 1.19;1.59] and 1.60 [95%CI: 1.45;1.78], respectively). The prevalence of the outcome was higher among adolescents in the lower quartiles of vitamin E intake (p<0.05). In the present study, the prevalence of insulin resistance was high among Brazilian adolescents and we identified sociodemographic, lifestyle, anthropometric, biochemical, and dietary predictors of this outcome.
Collapse
Affiliation(s)
| | - Juliana Souza Oliveira
- Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Núcleo de Nutrição, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil
| | - Vanessa Sá Leal
- Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Núcleo de Nutrição, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil
| | - Poliana Coelho Cabral
- Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | |
Collapse
|
19
|
Somer S, Levy AP. The Role of Haptoglobin Polymorphism in Cardiovascular Disease in the Setting of Diabetes. Int J Mol Sci 2020; 22:E287. [PMID: 33396615 PMCID: PMC7796233 DOI: 10.3390/ijms22010287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022] Open
Abstract
Atherosclerotic cardiovascular disease (CVD) is the major cause of morbidity and mortality in individuals with diabetes mellitus (DM). Preclinical models have suggested that excessive oxidative stress and hyperglycemia are directly responsible for this pathological association. However, numerous clinical trials involving the administration of high doses of the antioxidant vitamin E or attempts at strict glycemic control have failed to show a significant reduction of CVD in DM patients. We describe here a possible explanation for the failure of these trials, that being their lack of proper patient selection. The haptoglobin (Hp) genotype is a major determinant of the risk of CVD in the setting of DM. Treatment of individuals with the high-risk Hp genotype with antioxidants or aggressive glycemic control has shown benefit in several small studies. These studies suggest a precision medicine-based approach to preventing diabetes complications. This approach would have a profound effect on the costs of diabetes care and could dramatically reduce morbidity from diabetes.
Collapse
Affiliation(s)
| | - Andrew P. Levy
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron st. Bat Galim, Haifa 3525433, Israel;
| |
Collapse
|
20
|
Manosso LM, Camargo A, Dafre AL, Rodrigues ALS. Vitamin E for the management of major depressive disorder: possible role of the anti-inflammatory and antioxidant systems. Nutr Neurosci 2020; 25:1310-1324. [PMID: 33314993 DOI: 10.1080/1028415x.2020.1853417] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Vitamin E has various functions in humans, including antioxidant, anti-inflammatory, anti-cancer, and anti-atherogenic actions, as well as direct effects on enzymatic activities and modulation of gene transcription. In addition to these functions, vitamin E is also important for the central nervous system, and its role in the prevention and/or treatment of some neurological diseases has been suggested. In particular, the role of vitamin E in the modulation of major depressive disorder (MDD) is an issue that has emerged in recent studies. Many factors have been implicated in the pathophysiology of this disorder, including inflammation, oxidative, and nitrosative stress. METHODS This narrative review discusses the involvement of inflammation, oxidative, and nitrosative stress in the pathophysiology of MDD and presents clinical and preclinical studies that correlate vitamin E with this psychiatric disorder. RESULTS We gathered evidence from clinical studies that demonstrated the relationship between low vitamin E status and MDD symptoms. Vitamin E has been reported to exert a beneficial influence on the oxidative and inflammatory status of individuals, factors that may account for the attenuation of depressive symptoms. Preclinical studies have reinforced the antidepressant-like response of vitamin E, and the mechanisms underlying its effect seem to be related to the modulation of oxidative stress and neuroinflammation. CONCLUSION We suggest that vitamin E has potential to be used as an adjuvant for the management of MDD, but more studies are clearly needed to ascertain the efficacy of vitamin E for alleviating depressive symptoms.
Collapse
Affiliation(s)
- Luana M Manosso
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Alcir L Dafre
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
21
|
Synthesis of [ 18F]F-γ-T-3, a Redox-Silent γ-Tocotrienol (γ-T-3) Vitamin E Analogue for Image-Based In Vivo Studies of Vitamin E Biodistribution and Dynamics. Molecules 2020; 25:molecules25235700. [PMID: 33287202 PMCID: PMC7730577 DOI: 10.3390/molecules25235700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/04/2022] Open
Abstract
Vitamin E, a natural antioxidant, is of interest to scientists, health care pundits and faddists; its nutritional and biomedical attributes may be validated, anecdotal or fantasy. Vitamin E is a mixture of tocopherols (TPs) and tocotrienols (T-3s), each class having four substitutional isomers (α-, β-, γ-, δ-). Vitamin E analogues attain only low concentrations in most tissues, necessitating exacting invasive techniques for analytical research. Quantitative positron emission tomography (PET) with an F-18-labeled molecular probe would expedite access to Vitamin E’s biodistributions and pharmacokinetics via non-invasive temporal imaging. (R)-6-(3-[18F]Fluoropropoxy)-2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-chromane ([18F]F-γ-T-3) was prepared for this purpose. [18F]F-γ-T-3 was synthesized from γ-T-3 in two steps: (i) 1,3-di-O-tosylpropane was introduced at C6-O to form TsO-γ-T-3, and (ii) reaction of this tosylate with [18F]fluoride in DMF/K222. Non-radioactive F-γ-T-3 was synthesized by reaction of γ-T-3 with 3-fluoropropyl methanesulfonate. [18F]F-γ-T-3 biodistribution in a murine tumor model was imaged using a small-animal PET scanner. F-γ-T-3 was prepared in 61% chemical yield. [18F]F-γ-T-3 was synthesized in acceptable radiochemical yield (RCY 12%) with high radiochemical purity (>99% RCP) in 45 min. Preliminary F-18 PET images in mice showed upper abdominal accumulation with evidence of renal clearance, only low concentrations in the thorax (lung/heart) and head, and rapid clearance from blood. [18F]F-γ-T-3 shows promise as an F-18 PET tracer for detailed in vivo studies of Vitamin E. The labeling procedure provides acceptable RCY, high RCP and pertinence to all eight Vitamin E analogues.
Collapse
|
22
|
Absalome MA, Massara CC, Alexandre AA, Gervais K, Chantal GGA, Ferdinand D, Rhedoor AJ, Coulibaly I, George TG, Brigitte T, Marion M, Jean-Paul C. Biochemical properties, nutritional values, health benefits and sustainability of palm oil. Biochimie 2020; 178:81-95. [DOI: 10.1016/j.biochi.2020.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
|
23
|
Bordoni L, Gabbianelli R. Mitochondrial DNA and Neurodegeneration: Any Role for Dietary Antioxidants? Antioxidants (Basel) 2020; 9:E764. [PMID: 32824558 PMCID: PMC7466149 DOI: 10.3390/antiox9080764] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
The maintenance of the mitochondrial function is essential in preventing and counteracting neurodegeneration. In particular, mitochondria of neuronal cells play a pivotal role in sustaining the high energetic metabolism of these cells and are especially prone to oxidative damage. Since overproduction of reactive oxygen species (ROS) is involved in the pathogenesis of neurodegeneration, dietary antioxidants have been suggested to counteract the detrimental effects of ROS and to preserve the mitochondrial function, thus slowing the progression and limiting the extent of neuronal cell loss in neurodegenerative disorders. In addition to their role in the redox-system homeostasis, mitochondria are unique organelles in that they contain their own genome (mtDNA), which acts at the interface between environmental exposures and the molecular triggers of neurodegeneration. Indeed, it has been demonstrated that mtDNA (including both genetics and, from recent evidence, epigenetics) might play relevant roles in modulating the risk for neurodegenerative disorders. This mini-review describes the link between the mitochondrial genome and cellular oxidative status, with a particular focus on neurodegeneration; moreover, it provides an overview on potential beneficial effects of antioxidants in preserving mitochondrial functions through the protection of mtDNA.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | | |
Collapse
|
24
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
25
|
Ciebiera M, Ali M, Zgliczyńska M, Skrzypczak M, Al-Hendy A. Vitamins and Uterine Fibroids: Current Data on Pathophysiology and Possible Clinical Relevance. Int J Mol Sci 2020; 21:ijms21155528. [PMID: 32752274 PMCID: PMC7432695 DOI: 10.3390/ijms21155528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/27/2023] Open
Abstract
Uterine fibroid (UF) is the most common benign tumor pathology of the female reproductive organs. UFs constitute the main reason for a hysterectomy and hospitalization due to gynecological conditions. UFs consist of uterine smooth muscle immersed in a large amount of extracellular matrix (ECM). Genetic studies have demonstrated that UFs are monoclonal tumors originating from the myometrial stem cells that have underwent specific molecular changes to tumor initiating stem cells which proliferate and differentiate later under the influence of steroid hormones. There is growing interest in the role of micronutrients, for example, vitamins, in UFs. This article is a comprehensive review of publications regarding the available data concerning the role of vitamins in the biology and management of UFs. In summary, the results showed that some vitamins are important in the biology and pathophysiology of UFs. For example, vitamins A and D deserve particular attention following studies of their influence on the treatment of UF tumors. Vitamins B3, C, and E have not been as widely studied as the abovementioned vitamins. However, more research could reveal their potential role in UF biology.
Collapse
Affiliation(s)
- Michał Ciebiera
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Correspondence: (M.C.); (A.A.-H.); Tel.: +48-225690274 (M.C.); +1-312-996-7006 (A.A.-H.)
| | - Mohamed Ali
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Magdalena Zgliczyńska
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
| | - Maciej Skrzypczak
- Second Department of Gynecology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ayman Al-Hendy
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Correspondence: (M.C.); (A.A.-H.); Tel.: +48-225690274 (M.C.); +1-312-996-7006 (A.A.-H.)
| |
Collapse
|
26
|
A Novel Vitamin E TPGS-Based Formulation Enhances Chlorhexidine Bioavailability in Corneal Layers. Pharmaceutics 2020; 12:pharmaceutics12070642. [PMID: 32650410 PMCID: PMC7407793 DOI: 10.3390/pharmaceutics12070642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Keratitis is a severe condition characterized by inflammation of the cornea following a local trauma. The most common ocular disease is the bacterial one, which requires an antibiotic treatment. The major limitation of this therapy is the resistance of the antibiotic. For this reason, alternative procedures have been developed and consist of antimicrobial molecules. One of the most used is the chlorhexidine gluconate, which has shown activity versus Gram-positive and Gram-negative bacteria and fungi. In addition to its efficiency, chlorhexidine shows low toxicity levels for mammalian cells and is a low-cost molecule. Despite its multiple benefits, chlorhexidine, if used at concentrations higher than 0.02% (w/w), can cause local eye irritation. Additionally, its poor penetrability through the cornea makes necessary frequent instillation of eye drops for a prolonged time. Due to these limitations, alternative drug delivery strategies are required. Here, we report a novel formulation based on the combination of d-alpha-tocopherol polyethylene glycol 1000 succinate with chlorhexidine, which results in higher accumulation of the drug in human corneas measured by liquid chromatography and strong antimicrobial activity. Moreover, this formulation does not cause any toxic effect on human cells and is well tolerated by rabbit eyes. Therefore this novel formulation represents a good candidate for the treatment of keratitis that overcomes the risk of antibiotic resistance.
Collapse
|
27
|
Luo J, Mills K, le Cessie S, Noordam R, van Heemst D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res Rev 2020; 57:100982. [PMID: 31733333 DOI: 10.1016/j.arr.2019.100982] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Among other mechanisms, oxidative stress has been postulated to play an important role in the rate of ageing. Oxidative damage contributes to the hallmarks of ageing and essential components in pathological pathways which are thought to drive multiple age-related diseases. Nonetheless, results from studies testing the hypothesis of oxidative stress in ageing and diseases showed controversial results. While observational studies mainly found detrimental effects of high oxidative stress levels on disease status, randomized clinical trials examining the effect of antioxidant supplementation on disease status generally showed null effects. However, re-evaluations of these counterinitiative observations are required considering the lack of reliability and specificity of traditionally used biomarkers for measuring oxidative stress. To facilitate these re-evaluations, this review summarizes the basic knowledge of oxidative stress and the present findings regarding the role of oxidative damage in ageing and age-related diseases. Meanwhile, two approaches are highlighted, namely proper participants selection, together with the development of reliable biomarkers. We propose that oxidized vitamin E metabolites may be used to accurately monitor individual functional antioxidant level, which might serve as promising key solutions for future elucidating the impact of oxidative stress on ageing and age-related diseases.
Collapse
|
28
|
Sterling SR, Bowen SA. The Potential for Plant-Based Diets to Promote Health Among Blacks Living in the United States. Nutrients 2019; 11:E2915. [PMID: 31810250 PMCID: PMC6949922 DOI: 10.3390/nu11122915] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Plant-based diets are associated with reduced risks of various chronic diseases in the general population. However, it is unclear how these benefits translate to Blacks living in the United States, who are disproportionately burdened with heart disease, cancer, diabetes, obesity, and chronic kidney disease. The objectives of this study were to: (1) review the general evidence of plant-based diets and health outcomes; (2) discuss how this evidence translates to Blacks following a plant-based diet; and (3) provide recommendations and considerations for future studies in this area. Interestingly, although the evidence supporting plant-based diets in the general population is robust, little research has been done on Blacks specifically. However, the available data suggests that following a plant-based diet may reduce the risk of heart disease and possibly cancer in this population. More research is needed on cardiovascular disease risk factors, cancer subtypes, and other chronic diseases. Further, attention must be given to the unique individual, familial, communal, and environmental needs that Blacks who follow plant-based diets may have. Interventions must be culturally appropriate in order to achieve long-term success, and providing low-cost, flavorful, and nutritious options will be important.
Collapse
|
29
|
Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease. Aging Cell 2019; 18:e13031. [PMID: 31432604 PMCID: PMC6826160 DOI: 10.1111/acel.13031] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/05/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease prevalence is rapidly increasing in an aging global population. With this increase comes exponentially rising social and economic costs, emphasizing the immediate need for effective disease‐modifying treatments. Motor dysfunction results from the loss of dopaminergic neurons in the substantia nigra pars compacta and depletion of dopamine in the nigrostriatal pathway. While a specific biochemical mechanism remains elusive, oxidative stress plays an undeniable role in a complex and progressive neurodegenerative cascade. This review will explore the molecular factors that contribute to the high steady‐state of oxidative stress in the healthy substantia nigra during aging, and how this chemical environment renders neurons susceptible to oxidative damage in Parkinson's disease. Contributing factors to oxidative stress during aging and as a pathogenic mechanism for Parkinson's disease will be discussed within the context of how and why therapeutic approaches targeting cellular redox activity in this disorder have, to date, yielded little therapeutic benefit. We present a contemporary perspective on the central biochemical contribution of redox imbalance to Parkinson's disease etiology and argue that improving our ability to accurately measure oxidative stress, dopaminergic neurotransmission and cell death pathways in vivo is crucial for both the development of new therapies and the identification of novel disease biomarkers.
Collapse
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of Pharmacology, Faculty of Medical and Health The University of Sydney Sydney NSW Australia
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Vic. Australia
- Elemental Bio‐imaging Facility University of Technology Sydney Broadway NSW Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of Pharmacology, Faculty of Medical and Health The University of Sydney Sydney NSW Australia
| |
Collapse
|
30
|
Investigation of the curative effects of palm vitamin E tocotrienols on autoimmune arthritis disease in vivo. Sci Rep 2019; 9:16793. [PMID: 31727971 PMCID: PMC6856359 DOI: 10.1038/s41598-019-53424-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
The tocotrienol-rich fraction (TRF) from palm oil contains vitamin E, which possesses potent antioxidant and anti-inflammatory activities. Rheumatoid arthritis (RA) is a chronic joint inflammatory disease characterised by severe joint pain, cartilage destruction, and bone erosion owing to the effects of various pro-inflammatory mediators and cytokines. Here, we investigated the therapeutic effects of TRF in a rat model of collagen-induced arthritis (CIA). Arthritis was induced by a single intradermal injection of collagen type II in Dark Agouti (DA) rats. Rats were then treated with or without TRF by oral gavage from day 28 after the first collagen injection. Arthritic rats supplemented with TRF showed decreased articular index scores, ankle circumferences, paw volumes, and radiographic scores when compared with untreated rats. The untreated arthritic rats showed higher plasma C-reactive protein levels (p < 0.05) and production of pro-inflammatory cytokines than arthritic rats fed TRF. Moreover, there was a marked reduction in the severity of histopathological changes observed in arthritic rats treated with TRF compared with that in untreated arthritic rats. Overall, the results show that TRF had beneficial effects in this rat model of RA.
Collapse
|
31
|
Zheng S, Du Y, Peng Q, Fan X, Li J, Chen M. Trimetazidine Protects Against Atherosclerosis by Changing Energy Charge and Oxidative Stress. Med Sci Monit 2018; 24:8459-8468. [PMID: 30468686 PMCID: PMC6266541 DOI: 10.12659/msm.911317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/24/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This study investigated the effect and the possible mechanism of trimetazidine in atherosclerosis. MATERIAL AND METHODS We established an atherosclerotic rat model by high-fat diet and vitamin D injection. Rats were separated into 3 different groups: control, atherosclerosis, and trimetazidine (n=10). The aortic artery was isolated and its morphological features were examined by hematoxylin and eosin (HE) staining. Serum low-density lipoprotein cholesterol (LDL-c), total cholesterol (TC), and triglycerides (TG) were analyzed using an automatic biochemical analyzer. Human aortic smooth muscle cells (HASMCs) were cultured and divided into 5 groups: no treatment, H₂O₂ treatment only, trimetazidine preincubation before H₂O₂ treatment, oxidized low-density lipoprotein (oxLDL) treatment only, and trimetazidine preincubation before oxLDL treatment. HASMCs proliferation was tested using the Cell Counting Kit-8. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels, superoxide dismutase (SOD) activity of the aortic artery, and HASMCs were measured using commercially available kits. RESULTS HE staining assay showed that trimetazidine suppressed the progression of atherosclerosis and reduced foam cell formation in the aortic artery without affecting serum lipid levels. HASMCs proliferation assay revealed that trimetazidine alleviated the inhibitory effect of H₂O₂ on HASMCs proliferation and inhibited oxLDL-induced proliferation of HASMCs. Moreover, trimetazidine ameliorated ROS up-regulation elicited by H₂O₂ or oxLDL in HASMCs. Additionally, trimetazidine restored SOD activity and reduced MDA content of HASMCs. CONCLUSIONS Trimetazidine suppressed the progression of atherosclerosis by enhancing energy value, decreasing ROS level of aortic artery, modulating HASMCs proliferation, and reducing oxidative stress in HASMCs.
Collapse
Affiliation(s)
- Shuzhan Zheng
- West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yanfei Du
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Qiqi Peng
- Nanxin Community Health Center, Gaoxin District, Chengdu, Sichuan, P.R. China
| | - Xinrong Fan
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jiafu Li
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Mao Chen
- West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
32
|
Ali HM. Mitigative role of garlic and vitamin E against cytotoxic, genotoxic, and apoptotic effects of lead acetate and mercury chloride on WI-38 cells. Pharmacol Rep 2018; 70:804-811. [DOI: 10.1016/j.pharep.2018.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/15/2018] [Accepted: 02/02/2018] [Indexed: 02/07/2023]
|
33
|
Lu Y, Li H, Geng Y. Analysis of the Effects of δ-Tocopherol on RAW264.7 and K562 Cells Based on 1H NMR Metabonomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1039-1046. [PMID: 29313349 DOI: 10.1021/acs.jafc.7b04667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
δ-Tocopherol (δ-TOH) is a form of vitamin E with higher bioactivity. In this study, we studied the bioactivity of δ-TOH using the IC50 of δ-TOH on RAW264.7 (80 μM) and K562 (110 μM) cells. We compared the differential metabolites from the cell lines with and without δ-TOH treatment by 1H NMR metabonomics analysis. It was found that δ-TOH affected the protein biosynthesis, betaine metabolism, and urea cycle in various ways in both cell lines. Metabolic levels of the cell lines were changed after treatment with δ-TOH as differential metabolites were produced. The betaine level in RAW264.7 cells was reduced significantly, while the l-lactic acid level in K562 cells was significantly enhanced. The metabolic changes might contribute to the switch of the respiration pattern from aerobic respiration to anaerobic respiration in K562 cells. These results are helpful in further understanding the subtoxicity of δ-TOH.
Collapse
Affiliation(s)
- Yang Lu
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University , Jinan 250014, China
| | - Hui Li
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University , Jinan 250014, China
| | - Yue Geng
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University , Jinan 250014, China
| |
Collapse
|
34
|
Kleniewska P, Pawliczak R. The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomed Pharmacother 2017; 94:100-108. [PMID: 28756367 DOI: 10.1016/j.biopha.2017.07.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species are produced during oxygen reduction and are characterized by high reactivity. They participate in many important physiological processes, but if produced in high concentrations they lead to oxidative stress development and disturb pro-oxidative/anti-oxidative balance towards the oxidation reaction - leading to damage of lipids, proteins, carbohydrates or nucleic acids. Asthma is a chronic inflammatory disease of the airways of various pathogenesis and clinical symptoms, prevalence in recent years has increased significantly. Recently published literature point out the involvement of reactive oxygen species in the pathogenesis of asthma. Changes in the protein and lipid oxidation lead, among others, to pathological changes in the respiratory epithelial cells, an increase in vascular permeability, mucus overproduction, smooth muscle contraction or airway hyperresponsiveness (AHR). The aim of this study is to present the current state of knowledge on the influence of oxidative stress parameters on asthma development.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego St, bldg 2 Rm 122, 90-752 Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego St, bldg 2 Rm 122, 90-752 Lodz, Poland.
| |
Collapse
|
35
|
Jia CH, Shin JA, Kim YM, Lee KT. Effect of processing on composition changes of selected spices. PLoS One 2017; 12:e0176037. [PMID: 28459863 PMCID: PMC5411073 DOI: 10.1371/journal.pone.0176037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/04/2017] [Indexed: 01/16/2023] Open
Abstract
The present investigation was conducted to study the true retentions of α-tocopherol, tocotrienols and β-carotene in crown daisy, unripe hot pepper, onion, garlic, and red pepper as affected by various domestic cooking methods, those were, boiling, baking, stir-frying, deep-frying, steaming, roasting, and microwaving. Fatty acid compositions were determined by GC, and HPLC were used for quantification of α-tocopherol, tocotrienols, and β-carotene. True retentions of α-tocopherol in cooked foods were as follows: boiling (77.74–242.73%), baking (85.99–212.39%), stir-frying (83.12–957.08%), deep-frying (162.48–4214.53%), steaming (45.97–179.57%), roasting (49.65–253.69%), and microwaving (44.67–230.13%). Similarly for true retention of β-carotene were: boiling (65.69–313.75%), baking (71.46–330.16%), stir-frying (89.62–362.46%), deep-frying (178.22–529.16%), steaming (50.39–240.92%), roasting (73.54–361.47%), and microwaving (78.60–339.87%).
Collapse
Affiliation(s)
- Cai-Hua Jia
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Jung-Ah Shin
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Min Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Teak Lee
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
36
|
Shaikh SAM, Barik A, Singh BG, Modukuri RV, Balaji NV, Subbaraju GV, Naik DB, Priyadarsini KI. Free radical reactions of isoxazole and pyrazole derivatives of hispolon: kinetics correlated with molecular descriptors. Free Radic Res 2016; 50:1361-1373. [DOI: 10.1080/10715762.2016.1247955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shaukat Ali M. Shaikh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Atanu Barik
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Beena G. Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | | | | - Devidas B. Naik
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - K. Indira Priyadarsini
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
37
|
Bacci C, Vanzo V, Frigo AC, Stellini E, Sbricoli L, Valente M. Topical tocopherol for treatment of reticular oral lichen planus: a randomized, double-blind, crossover study. Oral Dis 2016; 23:62-68. [DOI: 10.1111/odi.12573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/19/2016] [Accepted: 07/27/2016] [Indexed: 01/16/2023]
Affiliation(s)
- C Bacci
- Department of Neurosciences; Section of Clinical Dentistry; University of Padova; Padova Italy
| | - V Vanzo
- Department of Neurosciences; Section of Clinical Dentistry; University of Padova; Padova Italy
| | - AC Frigo
- Department of Neurosciences; Section of Clinical Dentistry; University of Padova; Padova Italy
| | - E Stellini
- Department of Neurosciences; Section of Clinical Dentistry; University of Padova; Padova Italy
| | - L Sbricoli
- Department of Neurosciences; Section of Clinical Dentistry; University of Padova; Padova Italy
| | - M Valente
- Department of Neurosciences; Section of Clinical Dentistry; University of Padova; Padova Italy
- Department of Cardiac; Thoracic and Vascular Sciences; University of Padova; Padova Italy
| |
Collapse
|
38
|
El-Faras AA, Sadek IA, Ali YE, Khalil MIM, Mussa EB. Protective effects of Vitamin E on CCl4-induced testicular toxicity in male rats. ACTA ACUST UNITED AC 2016. [DOI: 10.1556/036.103.2016.2.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- AA El-Faras
- Department of Physiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - IA Sadek
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - YE Ali
- Department of Physiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - MIM Khalil
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - EB Mussa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Abstract
The pathophysiology of psoriasis is complex and dynamic. Recently, the involvement of oxidative stress in the pathogenesis of psoriasis has been proposed. Oxidative stress is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control and/or molecular damage. In this article, the published studies on the role of oxidative stress in psoriasis pathogenesis are reviewed, focusing on the impacts of oxidative stress on dendritic cells, T lymphocytes, and keratinocytes, on angiogenesis and on inflammatory signaling (mitogen-activated protein kinase, nuclear factor-κB, and Janus kinase/signal transducer and activator of transcription). As there is compelling evidence that oxidative stress is involved in the pathogenesis of psoriasis, the possibility of using this information to develop novel strategies for treatment of patients with psoriasis is of considerable interest. In this article, we also review the published studies on treating psoriasis with antioxidants and drugs with antioxidant activity.
Collapse
Affiliation(s)
- Xiran Lin
- a Department of Dermatology , The First Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Tian Huang
- b Department of Dermatology , The Second Affiliated Hospital of Dalian Medical University , Dalian , China
| |
Collapse
|
40
|
Oxidative Stress in Children with Chronic Spontaneous Urticaria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3831071. [PMID: 27127547 PMCID: PMC4834172 DOI: 10.1155/2016/3831071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
The pathogenesis of chronic spontaneous urticaria (CSU) has not been fully understood; nevertheless, significant progress has been achieved in recent years. The aim of this study was to investigate the possible role of reactive oxygen species (ROS) in the pathogenesis of CSU. Sixty-two children with CSU and 41 healthy control subjects were enrolled in the study. An extensive evaluation of demographic and clinical features was done, and serum oxidative stress was evaluated by plasma total oxidant status (TOS) and total antioxidant status (TAS) measurements. The median value of plasma TOS was found to be 10.49 μmol H2O2 equiv./L (interquartile range, 7.29–17.65) in CSU patients and 7.68 μmol H2O2 equiv./L (5.95–10.39) in the control group. The difference between the groups was statistically significant (p = 0.003). Likewise, the median plasma TAS level in the CSU group was decreased significantly compared to that of the control group (2.64 [2.30–2.74] versus 2.76 [2.65–2.86] mmol Trolox equiv./L, resp., p = 0,001). Our results indicated that plasma oxidative stress is increased in children with CSU when compared to healthy subjects, and plasma oxidative stress markers are positively correlated with disease activity.
Collapse
|