1
|
Vafadar A, Tajbakhsh A, Hosseinpour-Soleimani F, Savardshtaki A, Hashempur MH. Phytochemical-mediated efferocytosis and autophagy in inflammation control. Cell Death Discov 2024; 10:493. [PMID: 39695119 DOI: 10.1038/s41420-024-02254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Efferocytosis, the clearance of apoptotic cells, is a critical process that maintains tissue homeostasis and immune regulation. Defective efferocytosis is linked to the development of chronic inflammatory conditions, including atherosclerosis, neurological disorders, and autoimmune diseases. Moreover, the interplay between autophagy and efferocytosis is crucial for inflammation control, as autophagy enhances the ability of phagocytic cells. Efficient efferocytosis, in turn, regulates autophagic pathways, fostering a balanced cellular environment. Dysregulation of this balance can contribute to the pathogenesis of various disorders. Phytochemicals, bioactive compounds found in plants, have emerged as promising therapeutic agents owing to their diverse pharmacological properties, including antioxidant, anti-inflammatory, and immunomodulatory effects. This review aims to highlight the pivotal role of phytochemicals in enhancing efferocytosis and autophagy and explore their potential in the prevention and treatment of related disorders. This study examines how phytochemicals influence key aspects of efferocytosis, including phagocytic cell activation, macrophage polarization, and autophagy induction. The therapeutic potential of phytochemicals in atherosclerosis and neurological diseases is highlighted, emphasizing their ability to enhance efferocytosis and autophagy and reduce inflammation. This review also discusses innovative approaches, such as nanoformulations and combination therapies to improve the targeting and bioavailability of phytochemicals. Ultimately, this study inspires further research and clinical applications in phytochemical-mediated efferocytosis enhancement for managing chronic inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardshtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Liu X, Yu Y, Garcia LA, Au ML, Tran M, Zhang J, Lou A, Liu Y, Wu H. A grape-supplemented diet prevented ultraviolet (UV) radiation-induced cataract by regulating Nrf2 and XIAP pathways. J Nutr Biochem 2024; 129:109636. [PMID: 38561079 PMCID: PMC11107911 DOI: 10.1016/j.jnutbio.2024.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The purpose of this study is to investigate if grape consumption, in the form of grape powder (GP), could protect against ultraviolet (UV)-induced cataract. Mice were fed with the regular diet, sugar placebo diet, or a grape diet (regular diet supplemented with 5%, 10%, and 15% GP) for 3 months. The mice were then exposed to UV radiation to induce cataract. The results showed that the GP diet dose-dependently inhibited UV-induced cataract and preserved glutathione pools. Interestingly, UV-induced Nrf2 activation was abolished in the groups on the GP diet, suggesting GP consumption may improve redox homeostasis in the lens, making Nrf2 activation unnecessary. For molecular target prediction, a total of 471 proteins regulated by GP were identified using Agilent Literature Search (ALS) software. Among these targets, the X-linked inhibitor of apoptosis (XIAP) was correlated with all of the main active ingredients of GP, including resveratrol, catechin, quercetin, and anthocyanins. Our data confirmed that GP prevented UV-induced suppression of XIAP, indicating that XIAP might be one of the critical molecular targets of GP. In conclusion, this study demonstrated that GP protected the lens from UV-induced cataract development in mice. The protective effects of GP may be attributed to its ability to improve redox homeostasis and activate the XIAP-mediated antiapoptotic pathway.
Collapse
Affiliation(s)
- Xiaobin Liu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Yu Yu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Luís Aguilera Garcia
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - My-Lien Au
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Myhoa Tran
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Jinmin Zhang
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Alexander Lou
- The Village School, Houston, Texas, USA; Loyola University Chicago, Chicago, Illinois, USA
| | - Yang Liu
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA.
| |
Collapse
|
3
|
Ajami M, Sotoudeheian M, Houshiar-Rad A, Esmaili M, Naeini F, Mohammadi Nasrabadi F, Doaei S, Milani-Bonab A. Quercetin may reduce the risk of developing the symptoms of COVID-19. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:189-201. [PMID: 38966631 PMCID: PMC11221767 DOI: 10.22038/ajp.2023.22920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 07/06/2024]
Abstract
Objective Recent evidence reported that some dietary compounds like quercetin and apigenin as the most well-known flavonoids with anti-inflammatory effects may inhibit SARS-CoV-2 main protease. The hypothesis of the promising effects and possible mechanisms of action of quercetin against COVID-19 were assessed in this article. Materials and Methods Related papers on the inhibitory effects of quercetin against COVID-19 were collected using the following search strategy: "corona or coronavirus or COVID or COVID-19 or viral or virus" AND "nutrient or flavonoid or Quercetin". Results The findings indicated that quercetin can be considered an effective agent against COVID-19 because of its SARS-CoV-2 main protease and RNA-dependent RNA polymerase inhibitory effects. In addition, quercetin may attenuate angiotensin-converting enzyme-2 (ACE-2) receptors leading to a reduction of SARS-CoV-2 ability to enter host cells. Moreover, the antiviral, anti-inflammatory, and immunomodulatory activities of quercetin have been frequently reported. Conclusion Quercetin may be an effective agent for managing the complications of COVID-19. Further longitudinal human studies are warranted.
Collapse
Affiliation(s)
- Marjan Ajami
- Department of Food and Nutrition Policy and Planning Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Anahita Houshiar-Rad
- Department of Nutrition Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Esmaili
- Department of Nutrition Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran university of Medical Science, Tehran, Iran
| | - Fatemeh Mohammadi Nasrabadi
- Department of Food and Nutrition Policy and Planning Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saied Doaei
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Milani-Bonab
- Department of Food and Nutrition Policy and Planning Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Singh M, Lo SH, Dubey R, Kumar S, Chaubey KK, Kumar S. Plant-Derived Natural Compounds as an Emerging Antiviral in Combating COVID-19. Indian J Microbiol 2023; 63:429-446. [PMID: 38031604 PMCID: PMC10682353 DOI: 10.1007/s12088-023-01121-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human virus that burst at Wuhan in China and spread quickly over the world, leading to millions of deaths globally. The journey of this deadly virus to different mutant strains is still ongoing. The plethora of drugs and vaccines have been tested to cope up this pandemic. The herbal plants and different spices have received great attention during pandemic, because of their anti-inflammatory, and immunomodulatory properties in treating viruses and their symptoms. Also, it has been shown that nano-formulation of phytochemicals has potential therapeutic effect against COVID-19. Furthermore, the plant derived compound nano-formulation specifically increases its antiviral property by enhancing its bioavailability, solubility, and target-specific delivery system. This review highlights the potentiality of herbal plants and their phytochemical against SARS-CoV-2 utilizing different mechanisms such as blocking the ACE-2 receptors, inhibiting the main proteases, binding spike proteins and reducing the cytokine storms.
Collapse
Affiliation(s)
- Mansi Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406 India
| | - Shih-Hsiu Lo
- Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, No. 252, Wuxing Street, Taipei, 11031 Taiwan
| | - Sudhashekhar Kumar
- Department of Physiology, School of Medical Sciences and Research, Sharda University, Greater Noida, UP 201310 India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand 248007 India
- School of Basic and Applied Sciences, Sanskriti University, Mathura, UP 281401 India
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, UP 201310 India
| |
Collapse
|
5
|
Halma MTJ, Plothe C, Marik P, Lawrie TA. Strategies for the Management of Spike Protein-Related Pathology. Microorganisms 2023; 11:1308. [PMID: 37317282 PMCID: PMC10222799 DOI: 10.3390/microorganisms11051308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
In the wake of the COVID-19 crisis, a need has arisen to prevent and treat two related conditions, COVID-19 vaccine injury and long COVID-19, both of which can trace at least part of their aetiology to the spike protein, which can cause harm through several mechanisms. One significant mechanism of harm is vascular, and it is mediated by the spike protein, a common element of the COVID-19 illness, and it is related to receiving a COVID-19 vaccine. Given the significant number of people experiencing these two related conditions, it is imperative to develop treatment protocols, as well as to consider the diversity of people experiencing long COVID-19 and vaccine injury. This review summarizes the known treatment options for long COVID-19 and vaccine injury, their mechanisms, and their evidentiary basis.
Collapse
Affiliation(s)
| | - Christof Plothe
- Center for Biophysical Osteopathy, Am Wegweiser 27, 55232 Alzey, Germany
| | - Paul Marik
- Front Line COVID-19 Critical Care Alliance (FLCCC), 2001 L St. NW Suite 500, Washington, DC 20036, USA;
| | | |
Collapse
|
6
|
Kakhar Umar A, Zothantluanga JH, Luckanagul JA, Limpikirati P, Sriwidodo S. Structure-based computational screening of 470 natural quercetin derivatives for identification of SARS-CoV-2 M pro inhibitor. PeerJ 2023; 11:e14915. [PMID: 36935912 PMCID: PMC10022500 DOI: 10.7717/peerj.14915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic infecting the respiratory system through a notorious virus known as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to viral mutations and the risk of drug resistance, it is crucial to identify new molecules having potential prophylactic or therapeutic effect against SARS-CoV-2 infection. In the present study, we aimed to identify a potential inhibitor of SARS-CoV-2 through virtual screening of a compound library of 470 quercetin derivatives by targeting the main protease-Mpro (PDB ID: 6LU7). The study was carried out with computational techniques such as molecular docking simulation studies (MDSS), molecular dynamics (MD) simulations, and molecular mechanics generalized Born surface area (MMGBSA) techniques. Among the natural derivatives, compound 382 (PubChem CID 65604) showed the best binding affinity to Mpro (-11.1 kcal/mol). Compound 382 interacted with LYS5, TYR126, GLN127, LYS137, ASP289, PHE291, ARG131, SER139, GLU288, and GLU290 of the Mpro protein. The SARS-CoV-2 Mpro-382 complex showed acceptable stability during the 100 ns MD simulations. The SARS-CoV-2 Mpro-382 complex also showed an MM-GBSA binding free energy value of -54.0 kcal/mol. The binding affinity, stability, and free energy results for 382 and Mpro were better than those of the native ligand and the standard inhibitors ledipasvir and cobicistat. The conclusion of our study was that compound 382 has the potential to inhibit SARS-Cov-2 Mpro. However, further investigations such as in-vitro assays are recommended to confirm its in-silico potency.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang, Jawa barat, Indonesia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Chulalongkorn University, Bangkok, Thailand
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Dibrugarh University, Assam, India
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Chulalongkorn University, Bangkok, Thailand
| | - Patanachai Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmacy, Chulalongkorn University, Bangkok, Thailand
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang, Jawa barat, Indonesia
| |
Collapse
|
7
|
Cherian S, Hacisayidli KM, Kurian R, Mathews A. Therapeutically important bioactive compounds of the genus Polygonum L. and their possible interventions in clinical medicine. J Pharm Pharmacol 2023; 75:301-327. [PMID: 36757388 DOI: 10.1093/jpp/rgac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/26/2022] [Indexed: 02/10/2023]
Abstract
OBJECTIVES Increasing literature data have suggested that the genus Polygonum L. possesses pharmacologically important plant secondary metabolites. These bioactive compounds are implicated as effective agents in preclinical and clinical practice due to their pharmacological effects such as anti-inflammatory, anticancer, antidiabetic, antiaging, neuroprotective or immunomodulatory properties among many others. However, elaborate pharmacological and clinical data concerning the bioavailability, tissue distribution pattern, dosage and pharmacokinetic profiles of these compounds are still scanty. KEY FINDINGS The major bioactive compounds implicated in the therapeutic effects of Polygonum genus include phenolic and flavonoid compounds, anthraquinones and stilbenes, such as quercetin, resveratrol, polydatin and others, and could serve as potential drug leads or as adjuvant agents. Data from in-silico network pharmacology and computational molecular docking studies are also highly helpful in identifying the possible drug target of pathogens or host cell machinery. SUMMARY We provide an up-to-date overview of the data from pharmacodynamic, pharmacokinetic profiles and preclinical (in-vitro and in-vivo) investigations and the available clinical data on some of the therapeutically important compounds of genus Polygonum L. and their medical interventions, including combating the outbreak of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sam Cherian
- Indian Society for Plant Physiology, New Delhi, India
| | - Kushvar Mammadova Hacisayidli
- Department of Hygiene and Food Safety, Veterinary Medicine Faculty, Azerbaijan State Agricultural University, Ganja City, Azerbaijan
| | - Renju Kurian
- Department of Pathology, Manipal University College, Melaka, Malaysia
| | - Allan Mathews
- Faculty of Pharmacy, Quest International University Perak, Ipoh, Malaysia
| |
Collapse
|
8
|
Quintal Martínez JP, Segura Campos MR. Flavonoids as a therapeutical option for the treatment of thrombotic complications associated with COVID-19. Phytother Res 2023; 37:1092-1114. [PMID: 36480428 PMCID: PMC9878134 DOI: 10.1002/ptr.7700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/18/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 outbreak has been one of the largest public health crises globally, while thrombotic complications have emerged as an important factor contributing to mortality. Therefore, compounds that regulate the processes involved in thrombosis could represent a dietary strategy to prevent thrombotic complications involved in COVID-19. In August 2022, various databases were consulted using the keywords "flavonoids", "antiplatelet", "anticoagulant", "fibrinolytic", and "nitric oxide". Studies conducted between 2019 and 2022 were chosen. Flavonoids, at concentrations mainly between 2 and 300 μM, are capable of regulating platelet aggregation, blood coagulation, fibrinolysis, and nitric oxide production due to their action on multiple receptors and enzymes. Most of the studies have been carried out through in vitro and in silico models, and limited studies have reported the in vivo and clinical effect of flavonoids. Currently, quercetin has been the only flavonoid evaluated clinically in patients with COVID-19 for its effect on D-dimer levels. Therefore, clinical studies in COVID-19 patients analyzing the effect on platelet, coagulant, fibrinolytic, and nitric oxide parameters are required. In addition, further high-quality studies that consider cytotoxic safety and bioavailability are required to firmly propose flavonoids as a treatment for the thrombotic complications implicated in COVID-19.
Collapse
|
9
|
K. Hussein R, Marashdeh M, El-Khayatt AM. Molecular docking analysis of novel quercetin derivatives for combating SARS-CoV-2. Bioinformation 2023; 19:178-183. [PMID: 37814680 PMCID: PMC10560307 DOI: 10.6026/97320630019178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 10/11/2023] Open
Abstract
Quercetin belongs to the flavonoid family, which is one of the most frequent types of plant phenolics. This flavonoid compound is a natural substance having a number of pharmacological effects, including anticancer and antioxidant capabilities, as well as being a strong inhibitor of various toxicologically important enzymes. We discuss the potential of newly recently synthesized quercetin-based derivatives to inhibit SARS-CoV-2 protein. ADMET analysis indicated that all of the studied compounds had low toxicities and good absorption and solubility properties. The molecular docking results revealed that the propensity for binding to SARS-CoV-2 main protease is extraordinary. The results are remarkable not only for the binding energy values, which outperform several compounds in prior studies, but also for the number of hydrogen bonds formed. Compound 7a was capable of forming 10 strong hydrogen bonds as well as interact to the protein receptor with a binding energy of -7.79 kcal/mol. Therefore, these compounds should be highlighted in further experimental studies in the context of treating SARS-CoV-2 infection and its effects.
Collapse
Affiliation(s)
- Rageh K. Hussein
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammad Marashdeh
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Ahmed M El-Khayatt
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Ujjan ID, Khan S, Nigar R, Ahmed H, Ahmad S, Khan A. The possible therapeutic role of curcumin and quercetin in the early-stage of COVID-19-Results from a pragmatic randomized clinical trial. Front Nutr 2023; 9:1023997. [PMID: 36742008 PMCID: PMC9889936 DOI: 10.3389/fnut.2022.1023997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Background Curcumin (CUR) and quercetin (QUE), two natural polyphenols, possess diverse biological activities including broad-spectrum antiviral, antioxidant, and immunomodulatory effects. Both CUR and QUE have shown inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in in vitro assays. Objective In the present study we aimed to assess the possible treatment benefits of a combined curcumin and quercetin (CUR-QUE) oral supplement, alongside standard of care (SOC), in the early-stage COVID-19 infection. Methods This was an exploratory, pragmatic, open-label, randomized controlled clinical trial, conducted at the Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, PK. The study compared the treatment effect of an oral CUR-QUE supplement plus SOC vs. SOC alone, in the early-stage/mild to moderately symptomatic COVID-19 outpatients. Patients were randomized in a 1:1 ratio to CUR-QUE (n = 25) and control (n = 25) treatment groups. The CUR-QUE supplementation consisted of a daily intake of 168 mg curcumin and 260 mg quercetin, as two soft capsules, to be taken twice a day at home for 14 days. Results After one-week of treatment, most of the patients in the CUR-QUE group showed an expedited clearance of the viral infection i.e., 18 (72.0%) vs. 6 (24.0%) patients in the control group tested negative for SARS-CoV-2 in the nasal-oropharyngeal swab reverse transcription-polymerase chain reaction (RT-PCR) analysis (p = 0.0002). In addition, COVID-19-associated acute symptoms were also speedily resolved in the CUR-QUE treated patients, i.e., 10 (40.0%) vs. 4 (16.0%) patients in the control group (p = 0.061). The CUR-QUE supplementation therapy was well-tolerated by all 25 patients and no treatment-emergent effects or serious adverse events were reported. Conclusion The results revealed in this exploratory study suggest a possible therapeutic role of curcumin and quercetin in the early-stage of COVID-19. It is proposed that the two agents possibly acting in synergy, interfere the SARS-CoV-2 replication, and thus help a speedy recovery in the early-stage of COVID-19. Further research is highly encouraged. Clinical trial registration Clinicaltrials.gov, Identifier NCT04603690.
Collapse
Affiliation(s)
- Ikram Din Ujjan
- Department of Pathology, Liaquat University of Medical and Health Sciences (LUMHS), Jamshoro, Pakistan
| | - Saeed Khan
- Department of Molecular Pathology, Dow University of Health Sciences, Karachi, Pakistan
| | - Roohi Nigar
- Department of Obstetrics & Gynecology, Bilawal Medical College, LUMHS, Jamshoro, Pakistan
| | | | - Sagheer Ahmad
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Amjad Khan
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom,*Correspondence: Amjad Khan,
| |
Collapse
|
11
|
Di Pierro F, Khan A, Iqtadar S, Mumtaz SU, Chaudhry MNA, Bertuccioli A, Derosa G, Maffioli P, Togni S, Riva A, Allegrini P, Recchia M, Zerbinati N. Quercetin as a possible complementary agent for early-stage COVID-19: Concluding results of a randomized clinical trial. Front Pharmacol 2023; 13:1096853. [PMID: 36712674 PMCID: PMC9880293 DOI: 10.3389/fphar.2022.1096853] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Background: Quercetin, a natural polyphenol with demonstrated broad-spectrum antiviral, anti-inflammatory, and antioxidant properties, has been proposed as an adjuvant for early-stage coronavirus disease 2019 (COVID-19) infection. Objective: To explore the possible therapeutic effect of quercetin in outpatients with early-stage mild to moderate symptoms of COVID-19. Methods: This was an open-label randomized controlled clinical trial conducted at the department of medicine, King Edward Medical University, Lahore, PK. Patients were randomized to receive either standard of care (SC) plus an oral quercetin supplement (500 mg Quercetin Phytosome®, 1st week, TDS: 2nd week, BDS) (n = 50, quercetin group) or SC alone (n = 50, control group). Results: After one week of treatment, patients in the quercetin group showed a speedy recovery from COVID-19 as compared to the control group, i.e., 34 patients (vs. 12 in the control group) tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (p = 0.0004), and 26 patients (vs. 12 in the control group) had their COVID-19-associated acute symptoms resolved (p = 0.0051). Patients in the quercetin group also showed a significant fall in the serum lactate dehydrogenase (LDH) mean values i.e., from 406.56 ± 183.92 to 257.74 ± 110.73 U/L, p = 0.0001. Quercetin was well-tolerated by all the 50 patients, and no side effects were reported. Conclusion: Our results, suggest the possible therapeutic role of quercetin in early-stage COVID-19, including speedy clearance of SARS-CoV-2, early resolution of the acute symptoms and modulation of the host's hyperinflammatory response. Clinical Trial Registration: clinicaltrials.gov, identifier NCT04861298.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Scientific and Research Department, Velleja Research, Milan, Italy,Digestive Endoscopy, Fondazione Poliambulanza, Brescia, Italy,*Correspondence: Francesco Di Pierro, ; Amjad Khan,
| | - Amjad Khan
- INEOS Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom,*Correspondence: Francesco Di Pierro, ; Amjad Khan,
| | - Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Sami Ullah Mumtaz
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | | | | | - Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy,R&D Department, Indena S.p.A, Milan, Italy
| | | | | | | | | | | | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
12
|
COVID-19: Reducing the risk via diet and lifestyle. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:1-16. [PMID: 36333177 PMCID: PMC9550279 DOI: 10.1016/j.joim.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/15/2022] [Indexed: 01/17/2023]
Abstract
This review shows that relatively simple changes to diet and lifestyle can significantly, and rapidly, reduce the risks associated with coronavirus disease 2019 (COVID-19) in terms of infection risk, severity of disease, and even disease-related mortality. A wide range of interventions including regular exercise, adequate sleep, plant-based diets, maintenance of healthy weight, dietary supplementation, and time in nature have each been shown to have beneficial effects for supporting more positive health outcomes with COVID-19, in addition to promoting better overall health. This paper brings together literature from these areas and presents the argument that non-pharmaceutical approaches should not be overlooked in our response to COVID-19. It is noted that, in several cases, interventions discussed result in risk reductions equivalent to, or even greater than, those associated with currently available vaccines. Where the balance of evidence suggests benefits, and the risk is minimal to none, it is suggested that communicating the power of individual actions to the public becomes morally imperative. Further, many lives could be saved, and many harms from the vaccine mandates avoided, if we were willing to embrace this lifestyle-centred approach in our efforts to deal with COVID-19.
Collapse
|
13
|
Raghav A, Giri R, Agarwal S, Kala S, Jeong GB. Protective role of engineered extracellular vesicles loaded quercetin nanoparticles as anti-viral therapy against SARS-CoV-2 infection: A prospective review. Front Immunol 2022; 13:1040027. [PMID: 36569877 PMCID: PMC9773252 DOI: 10.3389/fimmu.2022.1040027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Quercetin (QCT) is a naturally occurring phenolic flavonoid compound with inbuilt characteristics of antioxidant, anti-inflammatory, and immune protection. Several recent studies have shown that QCT and QCTits nanoparticles have therapeutic potential against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Novel therapeutics also include the implication of extracellular vesicles (EVs) to protect from SARS-CoV-2 viral infection. This article highlighted the therapeutic/prophylactic potential of engineered EVs loaded with QCT against SARS-CoV-2 infection. Several biotechnological engineering approaches are available to deliver EVs loaded with QCT nanoparticles. Among these biotechnological advances, a specific approach with significantly higher efficiency and yield has to be opted to fabricate such drug delivery of nano molecules, especially to combat SARS-CoV-2 infection. The current treatment regime protects the human body from virus infection but has some limitations including drugs and long-term steroid side effects. However, the vaccine strategy is somehow effective in inhibiting the spread of coronavirus disease-19 (COVID-19) infection. Moreover, the proposed exosomal therapy met the current need to repair the damaged tissue along with inhibition of COVID-19-associated complications at the tissue level. These scientific findings expand the possibilities and predictability of developing a novel and cost-effective therapeutic approach that combines the dual molecule, EVs and QCT nanoparticles, to treat SARS-CoV-2 infection. Therefore, the most suitable engineering method to fabricate such a drug delivery system should be better understood before developing novel therapeutics for clinical purposes.
Collapse
Affiliation(s)
- Alok Raghav
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, South Korea,Multidisciplinary Research Unit, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Richa Giri
- Kailashpat Singhania (KPS), Institute of Medicine, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Saurabh Agarwal
- Kailashpat Singhania (KPS), Institute of Medicine, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Sanjay Kala
- Department of Surgery, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Goo-Bo- Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, South Korea,*Correspondence: Goo-Bo- Jeong,
| |
Collapse
|
14
|
Panfoli I, Esposito A. Beneficial effect of polyphenols in COVID-19 and the ectopic F 1 F O -ATP synthase: Is there a link? J Cell Biochem 2022; 123:1281-1284. [PMID: 35838055 PMCID: PMC9349505 DOI: 10.1002/jcb.30306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/19/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
Abstract
COVID-19 has been proposed to be an endothelial disease, as endothelial damage and oxidative stress contribute to its systemic inflammatory and thrombotic events. Polyphenols, natural antioxidant compounds appear as promising agents to prevent and treat COVID-19. Polyphenols bind and inhibit the F1 Fo -ATP synthase rotary catalysis. An early target of polyphenols may be the ectopic F1 Fo -ATP synthase expressed on the endothelial plasma membrane. Among the pleiotropic beneficial action of polyphenols in COVID-19, modulation of the ecto-F1 Fo -ATP synthase, lowering the oxidative stress produced by the electron transfer chain coupled to it, would not be negligible.
Collapse
Affiliation(s)
- Isabella Panfoli
- Dipartimento di Farmacia (DIFAR), Università di Genova, Genoa, Italy
| | - Alfonso Esposito
- Computational Biology Unit, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| |
Collapse
|
15
|
Khan A, Iqtadar S, Mumtaz SU, Heinrich M, Pascual-Figal DA, Livingstone S, Abaidullah S. Oral Co-Supplementation of Curcumin, Quercetin, and Vitamin D3 as an Adjuvant Therapy for Mild to Moderate Symptoms of COVID-19—Results From a Pilot Open-Label, Randomized Controlled Trial. Front Pharmacol 2022; 13:898062. [PMID: 35747751 PMCID: PMC9211374 DOI: 10.3389/fphar.2022.898062] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Curcumin, quercetin, and vitamin D3 (cholecalciferol) are common natural ingredients of human nutrition and reportedly exhibit promising anti-inflammatory, immunomodulatory, broad-spectrum antiviral, and antioxidant activities. Objective: The present study aimed to investigate the possible therapeutic benefits of a single oral formulation containing supplements curcumin, quercetin, and cholecalciferol (combinedly referred to here as CQC) as an adjuvant therapy for early-stage of symptomatic coronavirus disease 2019 (COVID-19) in a pilot open-label, randomized controlled trial conducted at Mayo Hospital, King Edward Medical University, Lahore, Pakistan. Methods: Reverse transcriptase polymerase chain reaction (RT-PCR) confirmed, mild to moderate symptomatic COVID-19 outpatients were randomized to receive either the standard of care (SOC) (n = 25) (control arm) or a daily oral co-supplementation of 168 mg curcumin, 260 mg quercetin, and 9 µg (360 IU) of cholecalciferol, as two oral soft capsules b.i.d. as an add-on to the SOC (n = 25) (CQC arm) for 14 days. The SOC includes paracetamol with or without antibiotic (azithromycin). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RT-PCR test, acute symptoms, and biochemistry including C-reactive protein (CRP), D-dimer, lactate dehydrogenase, ferritin, and complete blood count were evaluated at baseline and follow-up day seven. Results: Patients who received the CQC adjuvant therapy showed expedited negativization of the SARS-CoV-2 RT-PCR test, i.e., 15 (60.0%) vs. five (20.0%) of the control arm, p = 0.009. COVID-19- associated acute symptoms were rapidly resolved in the CQC arm, i.e., 15 (60.0%) vs. 10 (40.0%) of the control arm, p = 0.154. Patients in the CQC arm experienced a greater fall in serum CRP levels, i.e., from (median (IQR) 34.0 (21.0, 45.0) to 11.0 (5.0, 16.0) mg/dl as compared to the control arm, i.e., from 36.0 (28.0, 47.0) to 22.0 (15.0, 25.0) mg/dl, p = 0.006. The adjuvant therapy of co-supplementation of CQC was safe and well-tolerated by all 25 patients and no treatment-emergent effects, complications, side effects, or serious adverse events were reported. Conclusion: The co-supplementation of CQC may possibly have a therapeutic role in the early stage of COVID-19 infection including speedy negativization of the SARS-CoV-2 RT-PCR test, resolution of acute symptoms, and modulation of the hyperinflammatory response. In combination with routine care, the adjuvant co-supplementation of CQC may possibly help in the speedy recovery from early-stage mild to moderate symptoms of COVID-19. Further research is warranted. Clinical Trial Registration:Clinicaltrials.gov, identifier NCT05130671
Collapse
Affiliation(s)
- Amjad Khan
- INEOS Oxford Institute for AMR Research, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
- *Correspondence: Amjad Khan,
| | - Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Sami Ullah Mumtaz
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Michael Heinrich
- UCL School of Pharmacy, University of London, London, United Kingdom
| | - Domingo A. Pascual-Figal
- Department of Cardiology, University of Murcia Hospital Universitario Virgen de la Arrixaca Murcia, Murcia, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Sajid Abaidullah
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| |
Collapse
|
16
|
The Therapeutic and Prophylactic Potential of Quercetin against COVID-19: An Outlook on the Clinical Studies, Inventive Compositions, and Patent Literature. Antioxidants (Basel) 2022; 11:antiox11050876. [PMID: 35624740 PMCID: PMC9137692 DOI: 10.3390/antiox11050876] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
Quercetin is a phenolic flavonol compound with established antioxidant, anti-inflammatory, and immuno-stimulant properties. Recent studies demonstrate the potential of quercetin against COVID-19. This article highlighted the prophylactic/therapeutic potential of quercetin against COVID-19 in view of its clinical studies, inventions, and patents. The literature for the subject matter was collected utilizing different databases, including PubMed, Sci-Finder, Espacenet, Patentscope, and USPTO. Clinical studies expose the potential of quercetin monotherapy, and also its combination therapy with other compounds, including zinc, vitamin C, curcumin, vitamin D3, masitinib, hydroxychloroquine, azithromycin, and ivermectin. The patent literature also examines claims that quercetin containing nutraceuticals, pharmaceuticals, and dietary supplements, alone or in combination with other drugs/compounds, including favipiravir, remdesivir, molnupiravir, navitoclax, dasatinib, disulfiram, rucaparib, tamarixin, iota-carrageenan, and various herbal extracts (aloe, poria, rosemary, and sphagnum) has potential for use against COVID-19. The literature reveals that quercetin exhibits anti-COVID-19 activity because of its inhibitory effect on the expression of the human ACE2 receptors and the enzymes of SARS-CoV-2 (MPro, PLPro, and RdRp). The USFDA designated quercetin as a “Generally Recognized as Safe” substance for use in the food and beverage industries. It is also an inexpensive and readily available compound. These facts increase the possibility and foreseeability of making novel and economical drug combinations containing quercetin to prevent/treat COVID-19. Quercetin is an acidic compound and shows metabolic interaction with some antivirals, antibiotics, and anti-inflammatory agents. Therefore, the physicochemical and metabolic drug interactions between quercetin and the combined drugs/compounds must be better understood before developing new compositions.
Collapse
|
17
|
Yao J, Zhang Y, Wang XZ, Zhao J, Yang ZJ, Lin YP, Sun L, Lu QY, Fan GJ. Flavonoids for Treating Viral Acute Respiratory Tract Infections: A Systematic Review and Meta-Analysis of 30 Randomized Controlled Trials. Front Public Health 2022; 10:814669. [PMID: 35252093 PMCID: PMC8888526 DOI: 10.3389/fpubh.2022.814669] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND This meta-analysis aimed to investigate the efficacy and safety of flavonoids in treating viral acute respiratory tract infections (ARTIs). METHODS Randomized controlled trials (RCTs) were entered into meta-analyses performed separately for each indication. Efficacy analyses were based on changes in disease-specific symptom scores. Safety was analyzed based on the pooled data from all eligible trials, by comparing the incidence of adverse events between flavonoids and the control. RESULTS In this study, thirty RCTs (n = 5,166) were included. In common cold, results showed that the flavonoids group decreased total cold intensity score (CIS), the sum of sum of symptom intensity differences (SSID) of CIS, and duration of inability to work vs. the control group. In influenza, the flavonoids group improved the visual analog scores for symptoms. In COVID-19, the flavonoids group decreased the time taken for alleviation of symptoms, time taken for SARS-CoV-2 RT-PCR clearance, the RT-PCR positive subjects at day 7, time to achievement of the normal status of symptoms, patients needed oxygen, patients hospitalized and requiring mechanical ventilation, patients in ICU, days of hospitalization, and mortality vs. the control group. In acute non-streptococcal tonsillopharyngitis, the flavonoids group decreased the tonsillitis severity score (TSS) on day 7. In acute rhinosinusitis, the flavonoids group decreased the sinusitis severity score (SSS) on day 7, days off work, and duration of illness. In acute bronchitis, the flavonoids group decreased the bronchitis severity score (BSS) on day 7, days off work, and duration of illness. In bronchial pneumonia, the flavonoids group decreased the time to symptoms disappearance, the level of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α). In upper respiratory tract infections, the flavonoids group decreased total CIS on day 7 and increased the improvement rate of symptoms. Furthermore, the results of the incidence of adverse reactions did not differ between the flavonoids and the control group. CONCLUSION Results from this systematic review and meta-analysis suggested that flavonoids were efficacious and safe in treating viral ARTIs including the common cold, influenza, COVID-19, acute non-streptococcal tonsillopharyngitis, acute rhinosinusitis, acute bronchitis, bronchial pneumonia, and upper respiratory tract infections. However, uncertainty remains because there were few RCTs per type of ARTI and many of the RCTs were small and of low quality with a substantial risk of bias. Given the limitations, we suggest that the conclusions need to be confirmed on a larger scale with more detailed instructions in future studies.Systematic Review Registration: inplasy.com/inplasy-2021-8-0107/, identifier: INPLASY20218010.
Collapse
Affiliation(s)
- Jia Yao
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yuan Zhang
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xian-Zhe Wang
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Zhao
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao-Jun Yang
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Ping Lin
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lu Sun
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qi-Yun Lu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guan-Jie Fan
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
18
|
Shohan M, Nashibi R, Mahmoudian-Sani MR, Abolnezhadian F, Ghafourian M, Alavi SM, Sharhani A, Khodadadi A. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: A randomized controlled trial. Eur J Pharmacol 2022; 914:174615. [PMID: 34863994 PMCID: PMC8638148 DOI: 10.1016/j.ejphar.2021.174615] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
In this study, the therapeutic efficacy of quercetin in combination with remdesivir and favipiravir, were evaluated in severe hospitalized COVID-19 patients. Our main objective was to assess the ability of quercetin for preventing the progression of the disease into critical phase, and reducing the levels of inflammatory markers related to SARS-Cov-2 pathogenesis. Through an open-label clinical trial, 60 severe cases were randomly divided into control and intervention groups. During a 7-day period, patients in the control group received antivirals, i.e., remdesivir or favipiravir, while the intervention group was treated with 1000 mg of quercetin daily in addition to the antiviral drugs. According to the results, taking quercetin was significantly associated with partial earlier discharge and reduced serum levels of ALP, q-CRP, and LDH in the intervention group. Furthermore, although the values were in normal range, the statistical outputs showed significant increase in hemoglobin level and respiratory rate in patients who were taking quercetin. Based on our observations, quercetin is safe and effective in lowering the serum levels of ALP, q-CRP, and LDH as critical markers involved in COVID-19 severity. However, according to the non-significant borderline results in comparing the mortality, the ICU-admission rate, and the duration of ICU-admission, further studies can be helpful to compensate the limitations of our study and clarify the therapeutic potential of quercetin in COVID-19 treatments.
Collapse
Affiliation(s)
- Mojtaba Shohan
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roohangiz Nashibi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhad Abolnezhadian
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehri Ghafourian
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mohammad Alavi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asaad Sharhani
- Department of Epidemiology and Biostatistics, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
19
|
Gjorgieva A, Maksimova V, Smilkov K. Plant bioactive compounds affecting biomarkers and final outcome of COVID-19. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-36150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Herbal medicinal products are known for their widespread use toward various viral infections and ease of disease symptoms. Therefore, the sudden appearance of the Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2) and COVID-19 disease was no exception. Bioactive compounds from natural plant origin could act on several disease levels: through essential immunological pathways, affecting COVID-19 biomarkers, or by halting or modulating SARS-CoV-2. In this paper, we review the recently published data regarding the use of plant bioactive compounds in the prevention/treatment of COVID-19. The mode of actions responsible for these effects is discussed, including the inhibition of attachment, penetration and release of the virus, actions affecting RNA, protein synthesis and viral proteases, as well as other mechanisms. The reviewed information suggests that plant bioactive compounds can be used alone or in combinations, but upcoming, extensive and global studies on several factors involved are needed to recognize indicative characteristics and various patterns of bioactive compounds use, related with an array of biomarkers connected to different elements of inflammatory and immune-related processes of COVID-19 disease.
Collapse
|