1
|
Ali MS, Lee EB, Quah Y, Sayem SAJ, Abbas MA, Suk K, Lee SJ, Park SC. Modulating effects of heat-killed and live Limosilactobacillus reuteri PSC102 on the immune response and gut microbiota of cyclophosphamide-treated rats. Vet Q 2024; 44:1-18. [PMID: 38682319 PMCID: PMC11060015 DOI: 10.1080/01652176.2024.2344765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/13/2024] [Indexed: 05/01/2024] Open
Abstract
In the present study, we investigated the potential immunomodulatory effects of heat-killed (hLR) and live Limosilactobacillus reuteri PSC102 (LR; formerly Lactobacillus reuteri PSC102) in RAW264.7 macrophage cells and Sprague-Dawley rats. RAW264.7 murine macrophage cells were stimulated with hLR and LR for 24 h. Cyclophosphamide (CTX)-induced immunosuppressed Sprague-Dawley rats were orally administered with three doses of hLR (L-Low, M-Medium, and H-High) and LR for 3 weeks. The phagocytic capacity, production of nitric oxide (NO), and expression of cytokines in RAW264.7 cells were measured, and the different parameters of immunity in rats were determined. hLR and LR treatments promoted phagocytic activity and induced the production of NO and the expression of iNOS, TNF-α, IL-1β, IL-6, and Cox-2 in macrophage cells. In the in vivo experiment, hLR and LR treatments significantly increased the immune organ indices, alleviated the spleen injury, and ameliorated the number of white blood cells, granulocytes, lymphocytes, and mid-range absolute counts in immunosuppressive rats. hLR and LR increased neutrophil migration and phagocytosis, splenocyte proliferation, and T lymphocyte subsets (CD4+, CD8+, CD45RA+, and CD28+). The levels of immune factors (IL-2, IL-4, IL-6, IL-10, IL-12A, TNF-α, and IFN-γ) in the hLR and LR groups were upregulated compared with those in the CTX-treatment group. hLR and LR treatments could also modulate the gut microbiota composition, thereby increasing the relative abundance of Bacteroidetes and Firmicutes but decreasing the level of Proteobacteria. hLR and LR protected against CTX-induced adverse reactions by modulating the immune response and gut microbiota composition. Therefore, they could be used as potential immunomodulatory agents.
Collapse
Affiliation(s)
- Md. Sekendar Ali
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Yixian Quah
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Syed Al Jawad Sayem
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
2
|
Qin T, Yu T, Liu Y, Wu J, Jiang Y, Zhang G. Roseicella aerolata GB24 T from bioaerosol attenuates Streptococcus pneumoniae-introduced inflammation through regulation of gut microbiota and acetic acid. Front Microbiol 2023; 14:1225548. [PMID: 37547684 PMCID: PMC10397393 DOI: 10.3389/fmicb.2023.1225548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is the most common respiratory pathogen causing community-acquired pneumonia. Probiotics represent a new intervention target for Spn infection. Hence, the discovery and development of new potential probiotic strains are urgently needed. This study was designed to investigate the beneficial effect and mechanism of a new bacterium named Roseicella aerolata GB24T that antagonizes Spn at cellular and animal levels. The results revealed that GB24T strain inhibited the growth of Spn on sheep blood agar plates, forming inhibition circles with a diameter of 20 mm. In cultured bronchial epithelium transformed with Ad 12-SV40 2B (BEAS-2B) cells, Spn infection induced an elevation in the expression levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α to 4.289 ± 0.709, 5.587 ± 2.670, and 5.212 ± 0.772 folds compared to healthy controls, respectively. Moreover, pre-infection with GB24T for 1.5 h almost eliminated the cellular inflammation caused by Spn infection. Additionally, male Sprague-Dawley rats infected with Spn were randomly allocated into two groups: GB24T pre-infection and Spn infection groups, with healthy rats as control. GB24T significantly alleviated inflammatory lung injury caused by Spn infection, which was associated with obvious changes in the abundance of gut microbiota and a trend toward enhanced secretion of short-chain fatty acids, especially acetic acid. Acetic acid was validated to be effective in alleviating inflammation due to Spn infection in cellular assays. Together, these findings highlight that GB24T strain is an important protective feature in the respiratory tract.
Collapse
Affiliation(s)
- Tian Qin
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Ting Yu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Yuqi Liu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Jiguo Wu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yunxia Jiang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guoxia Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| |
Collapse
|
3
|
Ali MS, Lee EB, Hsu WH, Suk K, Sayem SAJ, Ullah HMA, Lee SJ, Park SC. Probiotics and Postbiotics as an Alternative to Antibiotics: An Emphasis on Pigs. Pathogens 2023; 12:874. [PMID: 37513721 PMCID: PMC10383198 DOI: 10.3390/pathogens12070874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Probiotics are being used as feed/food supplements as an alternative to antibiotics. It has been demonstrated that probiotics provide several health benefits, including preventing diarrhea, irritable bowel syndrome, and immunomodulation. Alongside probiotic bacteria-fermented foods, the different structural components, such as lipoteichoic acids, teichoic acids, peptidoglycans, and surface-layer proteins, offer several advantages. Probiotics can produce different antimicrobial components, enzymes, peptides, vitamins, and exopolysaccharides. Besides live probiotics, there has been growing interest in consuming inactivated probiotics in farm animals, including pigs. Several reports have shown that live and killed probiotics can boost immunity, modulate intestinal microbiota, improve feed efficiency and growth performance, and decrease the incidence of diarrhea, positioning them as an interesting strategy as a potential feed supplement for pigs. Therefore, effective selection and approach to the use of probiotics might provide essential features of using probiotics as an important functional feed for pigs. This review aimed to systematically investigate the potential effects of lactic acid bacteria in their live and inactivated forms on pigs.
Collapse
Affiliation(s)
- Md Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Walter H Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50014, USA
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Syed Al Jawad Sayem
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - H M Arif Ullah
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Seung-Jin Lee
- Development and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Antagonistic activity and mechanism of Lactobacillus rhamnosus SQ511 against Salmonella enteritidis. 3 Biotech 2022; 12:126. [PMID: 35573802 DOI: 10.1007/s13205-022-03176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/26/2022] [Indexed: 11/01/2022] Open
Abstract
Salmonella enteritidis is an important food-borne pathogen. The use of antibiotics is a serious threat to animal and human health, owing to the existence of resistant strains and drug residues. Lactic acid bacteria, as a new alternative to antibiotics, has attracted much attention. In this study, we investigated the antibacterial potential and underlying mechanism of Lactobacillus rhamnosus SQ511 against S. enteritidis ATCC13076. The results revealed that L. rhamnosus SQ511 significantly inhibited S. enteritidis ATCC13076 growth or even caused death. Laser confocal microscopic imaging revealed that the cell-free supernatant (CFS) of L. rhamnosus SQ511 elevated the reactive oxygen species level and bacterial membrane depolarization in S. enteritidis ATCC13076, leading to cell death. Furthermore, L. rhamnosus SQ511 CFS had severely deleterious effects on S. enteritidis ATCC13076, causing membrane destruction and the release of cellular materials. In addition, L. rhamnosus SQ511 CFS significantly reduced the expression of virulence, motility, adhesion, and invasion genes in S. enteritidis ATCC13076 (P < 0.05), and considerably inhibited motility and biofilm formation capacity (P < 0.05). Thus, antimicrobial compounds produced by L. rhamnosus SQ511 strongly inhibited S. enteritidis growth, mobility, biofilm formation, membrane disruption, and reactive oxygen species generation, and regulated virulence-related gene expressions, presenting promising applications as a probiotic agent.
Collapse
|
5
|
Akhmedov VA. Correction of intestinal microbial composition disturbances as a potential link in complex therapy of patients with COVID-19. TERAPEVT ARKH 2022; 94:277-282. [DOI: 10.26442/00403660.2022.02.201388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022]
Abstract
The article reflects the potential for correcting intestinal microbiota disorders in the complex therapy of patients with COVID-19. It has been noted that the inclusion of dietary fiber in the diet contributes to protection against disruption of the integrity of the intestinal barrier and may limit bacterial translocation into the systemic circulation. The possibility of using psyllium (Mucofalk) is reflected, the action of which is realized both through its sorption, cytoprotective and anti-inflammatory properties in viral lesions of the gastrointestinal tract, and through stimulation of the own beneficial intestinal microbiota. The paper presents studies of the prospects for the use of probiotics, synbiotics in the complex therapy of patients with COVID-19. Detailed data are provided on the mechanisms of the positive effect of short-chain fatty acid preparations on reducing the severity of the disease in patients with COVID-19. It was noted that taking the drug Zacofalk leads to a significant increase in its own butyrate-producing microbiota (Faecalibacterium prausnitzii) and suppression of the growth of opportunistic flora with pro-inflammatory activity. The results of a recent study are presented showing that in patients with a mild course of COVID infection with respiratory and intestinal symptoms, the administration of Zakofalk for 30 days (3 tablets per day) led to significantly faster stool normalization (by day 7), persistent normalization of the frequency and consistency of stools by the 21st day and a significantly more pronounced regression of bloating and abdominal pain, as well as a decrease in the risk of developing post-infectious irritable bowel syndrome.
Collapse
|
6
|
Lv L, Peng L, Shi D, Shao L, Jiang H, Yan R. Probiotic Combination CBLEB Alleviates Streptococcus pneumoniae Infection Through Immune Regulation in Immunocompromised Rats. J Inflamm Res 2022; 15:987-1004. [PMID: 35210807 PMCID: PMC8857997 DOI: 10.2147/jir.s348047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Streptococcus pneumoniae (SP) is the most common cause of bacterial pneumonia, especially for people with immature or compromised immune systems. In addition to vaccination and antibiotics, immune regulation through microbial intervention has emerged in recent anti-SP infection research. This study investigated the therapeutic effect of a combination of live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus (CBLEB), a widely used probiotic drug, on SP infection in rats. Methods An immunocompromised SP-infection rat model was established by intraperitoneal injection of cyclophosphamide and nasal administration of SP strain ATCC49619. Samples from SP-infected, SP-infected and CBLEB-treated, and healthy rats were collected to determine blood indicators, serum cytokines, gut microbiota, faecal and serum metabolomes, lung- and colon-gene transcriptions, and histopathological features. Results CBLEB treatment alleviated weight loss, inflammation, organ damage, increase in basophil percentage, red cell distribution width, and RANTES levels and decrease in total protein and albumin levels of immunocompromised SP-infection rats. Furthermore, CBLEB treatment alleviated dysbiosis in gut microbiota, including altered microbial composition and the aberrant abundance of opportunistic pathogenic bacterial taxa such as Eggerthellaceae, and disorders in gut and serum metabolism, including altered metabolomic profiles and differentially enriched metabolites such as 2,4-di-tert-butylphenol in faeces and L-tyrosine in serum. The transcriptome analysis results indicated that the underlying mechanism by which CBLEB fights SP infection is mainly attributed to its regulation of immune-related pathways such as TLR and NLR signalling in the lungs and infection-, inflammation- or metabolism-related pathways such as TCR signalling in the colon. Conclusion The present study shows a potential value of CBLEB in the treatment of SP infection.
Collapse
Affiliation(s)
- Longxian Lv
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Ding Shi
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Li Shao
- Institute of Translational Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
| | - Huiyong Jiang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- Correspondence: Huiyong Jiang; Ren Yan, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People’s Republic Of China, Tel/Fax +86-571-87236453, Email ;
| | - Ren Yan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
7
|
CAMPOS-ESPINOZA F, CASTAÑO-AGUDELO J, RODRIGUEZ-LLAMAZARES S. Polysaccharides systems for probiotic bacteria microencapsulation: mini review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.95121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Lau HCH, Ng SC, Yu J. Targeting the Gut Microbiota in Coronavirus Disease 2019: Hype or Hope? Gastroenterology 2022; 162:9-16. [PMID: 34508775 PMCID: PMC8425294 DOI: 10.1053/j.gastro.2021.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Affiliation(s)
| | - Siew C Ng
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Narendrakumar L, Ray A. Respiratory tract microbiome and pneumonia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:97-124. [DOI: 10.1016/bs.pmbts.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Cruz CS, Ricci MF, Vieira AT. Gut Microbiota Modulation as a Potential Target for the Treatment of Lung Infections. Front Pharmacol 2021; 12:724033. [PMID: 34557097 PMCID: PMC8453009 DOI: 10.3389/fphar.2021.724033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal and respiratory systems are colonized by a complex ecosystem of microorganisms called the microbiota. These microorganisms co-evolved over millions of years with the host, creating a symbiotic relationship that is fundamental for promoting host homeostasis by producing bioactive metabolites and antimicrobial molecules, and regulating the immune and inflammatory responses. Imbalance in the abundance, diversity, and function of the gut microbiota (known as dysbiosis) have been shown to increase host susceptibility to infections in the lungs, suggesting crosstalk between these organs. This crosstalk is now referred to as the gut-lung axis. Hence, the use of probiotics, prebiotics, and synbiotics for modulation of gut microbiota has been studied based on their effectiveness in reducing the duration and severity of respiratory tract infections, mainly owing to their effects on preventing pathogen colonization and modulating the immune system. This review discusses the role and responses of probiotics, prebiotics, and synbiotics in the gut-lung axis in the face of lung infections.
Collapse
Affiliation(s)
- Clênio Silva Cruz
- Laboratory of Microbiota and Immunomodulation (LMI), Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mayra Fernanda Ricci
- Laboratory of Microbiota and Immunomodulation (LMI), Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Angélica Thomaz Vieira
- Laboratory of Microbiota and Immunomodulation (LMI), Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Salva S, Kolling Y, Ivir M, Gutiérrez F, Alvarez S. The Role of Immunobiotics and Postbiotics in the Recovery of Immune Cell Populations From Respiratory Mucosa of Malnourished Hosts: Effect on the Resistance Against Respiratory Infections. Front Nutr 2021; 8:704868. [PMID: 34458307 PMCID: PMC8387655 DOI: 10.3389/fnut.2021.704868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Malnutrition is associated with a state of secondary immunodeficiency, which is characterized by a worsening of the immune response against infectious agents. Despite important advances in vaccines and antibiotic therapies, the respiratory infections are among the leading causes of increased morbidity and mortality, especially in immunosuppressed hosts. In this review, we examine the interactions between immunobiotics-postbiotics and the immune cell populations of the respiratory mucosa. In addition, we discuss how this cross talk affects the maintenance of a normal generation of immune cells, that is crucial for the establishment of protective innate and adaptive immune responses. Particular attention will be given to the alterations in the development of phagocytic cells, T and B lymphocytes in bone marrow, spleen and thymus in immunosuppression state by protein deprivation. Furthermore, we describe our research that demonstrated that the effectiveness of immunobiotics nasal administration in accelerating the recovery of the respiratory immune response in malnourished hosts. Finally, we propose the peptidoglycan from the immunobiotic Lactobacillus rhamnosus CRL1505 as the key cellular component for the effects on mucosal immunity, which are unique and cannot be extrapolated to other L. rhamnosus or probiotic strains. In this way, we provide the scientific bases for its application as a mucosal adjuvant in health plans, mainly aimed to improve the immune response of immunocompromised hosts. The search for safe vaccine adjuvants that increase their effectiveness at the mucosal level is a problem of great scientific relevance today.
Collapse
Affiliation(s)
- Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina
| | - Yanina Kolling
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina
| | - Maximiliano Ivir
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina
| | - Florencia Gutiérrez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina
| | - Susana Alvarez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina.,Clinical Biochemistry I, Institute of Applied Biochemistry, National University of Tucuman, San Miguel de Tucuman, Argentina
| |
Collapse
|
12
|
Lactobacillus rhamnosus postbiotic-induced immunomodulation as safer alternative to the use of live bacteria. Cytokine 2021; 146:155631. [PMID: 34252871 DOI: 10.1016/j.cyto.2021.155631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/14/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022]
Abstract
Many attempts have been made to search for safer immunomodulatory agents that enhance the immune response and reduce the number and severity of infections in at-risk populations. The use of postbiotics, non-viable microbial cells or cell fractions that confer a health benefit to the consumer, represents a safe and attractive way to modulate and enhance the immune function in order to improve human health. Therefore, the aim of this work is to evaluate the immunoregulatory effect of Lactobacillus rhamnosus CRL1505 postbiotics in a complex culture system using human intestinal epithelial cells (IECs) and dendritic cells (DCs) differentiated from peripheral blood mononuclear cells. First, we demonstrated that L. rhamnosus CRL1505 differentially modulate human IECs and DCs after the challenge with the TLR4 agonist LPS. The CRL1505 strain down-regulated CD40, CD80 and CD86 expression in DCs, and increased their production of TNF-α, IL-1β, IL-6 and IL-10. Interestingly, the non-viable strain was able to modulate the immune response of both types of human cells. Then, we showed that cell wall (CW1505) and peptidoglycan (PG1505) from L. rhamnosus CRL1505 modulated TLR4-triggered immune response in IECs and DCs. Of interest, CW1505 showed a strong stimulatory effect while the PG1505 presented immune characteristics that were more similar to viable and non-viable CRL1505. To date, several molecules of immunobiotics were identified, that can be connected to specific host-responses. We hereby demonstrated that peptidoglycan of L. rhamnosus CRL1505 is a key molecule for the immunobiotic properties of this strain in human IECs and DCs. Likewise, the result of these studies could provide predictive tools for the in vivo efficacy of postbiotics and the scientific basis for their future applications in immunocompromised patients.
Collapse
|
13
|
Barbieri N, Salva S, Herrera M, Villena J, Alvarez S. Nasal Priming with Lactobacillus rhamnosus CRL1505 Stimulates Mononuclear Phagocytes of Immunocompromised Malnourished Mice: Improvement of Respiratory Immune Response. Probiotics Antimicrob Proteins 2021; 12:494-504. [PMID: 31030404 DOI: 10.1007/s12602-019-09551-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The effect of Lactobacillus rhamnosus CRL1505 (Lr) on macrophages (Ma) and dendritic cells (DC) in the orchestration of anti-pneumococcal immunity was studied using malnutrition and pneumococcal infection mouse models. Monocytes (Mo), Ma, and DC in two groups of malnourished mice fed with balanced diet (BCD) were studied through flow cytometry; one group was nasally administered with Lr (BCD+Lr group), and the other group was not (BCD group). Well-nourished (WNC) and malnourished (MNC) mice were used as controls.Malnutrition affected the number of respiratory and splenic mononuclear phagocytes. The BCD+Lr treatment, unlike BCD, was able to increase and normalize lung Mo and Ma. The BCD+Lr mice were also able to upregulate the expression of the activation marker MHC II in lung DC and to improve this population showing a more significant effect on CD11b+ DC subpopulation. At post-infection, lung Mo values were higher in BCD+Lr mice than in BCD mice and similar to those obtained in WNC group. Although both repletion treatments showed similar values of lung Ma post-infection, the Ma activation state in BCD+Lr mice was higher than that in BCD mice. Furthermore, BCD+Lr treatment was able to normalize the number and activation of splenic Ma and DC after the challenge.Lr administration stimulates respiratory and systemic mononuclear phagocytes. Stimulation of Ma and DC populations would increase the microbicide activity and improve the adaptive immunity through its antigen-presenting capacity. Thus, Lr contributes to improved outcomes of pneumococcal infection in immunocompromised hosts.
Collapse
Affiliation(s)
- Natalia Barbieri
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina.,Departamento de Ciencias Básicas y Tecnológicas, Universidad Nacional de Chilecito (UNdeC), CONICET, 9 de Julio 22, F5360CKB, Chilecito, La Rioja, Argentina
| | - Susana Salva
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina
| | - Matías Herrera
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina.,Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, T4001MVB, San Miguel deTucumán, Tucumán, Argentina
| | - Julio Villena
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina
| | - Susana Alvarez
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina. .,Instituto de Bioquímica Aplicada, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Balcarce 747, 4000, San Miguel deTucumán, Tucumán, Argentina.
| |
Collapse
|
14
|
Arce LP, Raya Tonetti MF, Raimondo MP, Müller MF, Salva S, Álvarez S, Baiker A, Villena J, Vizoso Pinto MG. Oral Vaccination with Hepatitis E Virus Capsid Protein and Immunobiotic Bacterium-Like Particles Induce Intestinal and Systemic Immunity in Mice. Probiotics Antimicrob Proteins 2021; 12:961-972. [PMID: 31630331 DOI: 10.1007/s12602-019-09598-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The hepatitis E virus (HEV) genotype 3 (GT3) is an emergent pathogen in industrialized countries. It is transmitted zoonotically and may lead to chronic hepatitis in immunocompromised individuals. We evaluated if the major antigen of HEV, the capsid protein, can be used in combination with immunobiotic bacterium-like particles (IBLP) for oral vaccination in a mouse model. We have cloned and expressed the RGS-His5-tagged HEV GT3 capsid protein (ORF2) in E. coli and purified it by NiNTA. IBLP were obtained from two immunobiotic Lactobacillus rhamnosus strains acid- and heat-treated. ORF2 and the IBLP were orally administered to Balb/c mice. After three oral immunizations (14-day intervals), blood, intestinal fluid, Peyer´s patches, and spleen samples were drawn. IgA- and IgG-specific antibodies were determined by ELISA. Mononuclear cell populations from Peyer's patches and spleen were analyzed by flow cytometry, and the cytokine profiles were determined by ELISA to study cellular immunity. Orally administered recombinant ORF2 and IBLP from two L. rhamnosus strains (CRL1505 and IBL027) induced both antigen-specific humoral and cellular immune responses in mice. IBLP027 was more effective in inducing specific secretory IgA in the gut. IFN-γ, TNF-α, and IL-4 were produced by Peyer's plaques lymphocytes stimulated with ORF2 ex vivo suggesting a mixed Th1/Th2-type adaptive immune response in immunized mice. Oral vaccines are not invasive, do not need to be administered by specialized personal, and elicit both systemic and local immune responses at the port of entry. Here, we present an experimental oral vaccine for HEV GT3, which could be further developed for human and/or veterinary use.
Collapse
Affiliation(s)
- L P Arce
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Facultad de Medicina, UNT, Av. Kirchner 2100, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Laboratorio de Ciencias Básicas. OR. Genética. Facultad de Medicina de la Universidad Nacional de Tucumán, Tucumán, Argentina
| | - M F Raya Tonetti
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Facultad de Medicina, UNT, Av. Kirchner 2100, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Laboratorio de Ciencias Básicas. OR. Genética. Facultad de Medicina de la Universidad Nacional de Tucumán, Tucumán, Argentina
| | - M P Raimondo
- Laboratorio de Ciencias Básicas. OR. Genética. Facultad de Medicina de la Universidad Nacional de Tucumán, Tucumán, Argentina
| | - M F Müller
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Facultad de Medicina, UNT, Av. Kirchner 2100, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Laboratorio de Ciencias Básicas. OR. Genética. Facultad de Medicina de la Universidad Nacional de Tucumán, Tucumán, Argentina
| | - S Salva
- Laboratorio de Inmunobiotecnología, CERELA (CONICET), Chacabuco 145, (4000) San Miguel de Tucumán, Tucumán, Argentina
| | - S Álvarez
- Laboratorio de Inmunobiotecnología, CERELA (CONICET), Chacabuco 145, (4000) San Miguel de Tucumán, Tucumán, Argentina
| | - A Baiker
- LGL, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - J Villena
- Laboratorio de Inmunobiotecnología, CERELA (CONICET), Chacabuco 145, (4000) San Miguel de Tucumán, Tucumán, Argentina.
| | - M G Vizoso Pinto
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Facultad de Medicina, UNT, Av. Kirchner 2100, (4000) San Miguel de Tucumán, Tucumán, Argentina. .,Laboratorio de Ciencias Básicas. OR. Genética. Facultad de Medicina de la Universidad Nacional de Tucumán, Tucumán, Argentina.
| |
Collapse
|
15
|
Gramajo Lopez A, Gutiérrez F, Saavedra L, Hebert EM, Alvarez S, Salva S. Improvement of Myelopoiesis in Cyclophosphamide-Immunosuppressed Mice by Oral Administration of Viable or Non-Viable Lactobacillus Strains. Front Immunol 2021; 12:647049. [PMID: 33912172 PMCID: PMC8072128 DOI: 10.3389/fimmu.2021.647049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/22/2021] [Indexed: 01/24/2023] Open
Abstract
Myelosuppression is the major dose-limiting toxicity of cancer chemotherapy. There have been many attempts to find new strategies that reduce myelosuppression. The dietary supplementation with lactic acid bacteria (LAB) improved respiratory innate immune response and the resistance against respiratory pathogens in immunosupressed hosts. Although LAB viability is an important factor in achieving optimal protective effects, non-viable LAB are capable of stimulating immunity. In this work, we studied the ability of oral preventive administration of viable and non-viable Lactobacillus rhamnosus CRL1505 or L. plantarum CRL1506 (Lr05, Lr05NV, Lp06V or Lp06NV, respectively) to minimize myelosuppressive and immunosuppressive effects derived from chemotherapy. Cyclophosphamide (Cy) impaired steady-state myelopoiesis in lactobacilli-treated and untreated control mice. Lr05V, Lr05NV and Lp06V treatments were the most effective to induce the early recovery of bone marrow (BM) tissue architecture, leukocytes, myeloid, pool mitotic and post-mitotic, peroxidase positive, and Gr-1Low/High cells in BM. We selected the CRL1505 strain for being the one capable of maintaining its myelopoiesis-enhancing properties in its non-viable form. Although the CRL1505 treatments do not modify the Cy ability to induce apoptosis, both increased the incorporation of BrdU in BM cells. Consequently, Lr05NV and Lr05V treatments were able to promote early recovery of LSK cells (Lin-Sca-1+c-Kit+ cells), multipotent progenitors (Lin-Sca-1+c-Kit+CD34+ cells), and myeloid cells (Gr-1+Ly6G+Ly6C- cells) with respect to the untreated Cy control. In addition, these treatments were able to increase the frequency of IL17A-producing innate lymphoid cells in the intestinal lamina propria (IL-17A+RORγt+CD4-NKp46+ cells) after Cy injection. These results were correlated with an increase in the IL-17A serum levels, a GM-CSF high expression and a CXCL12 lower expression in BM. Therefore, both Lr05V and Lr05NV treatments are able to activate beneficially the IL-17A/GM-CSF axis and accelerate the recovery of Cy-induced immunosuppression by increasing BM myeloid precursors. We demonstrated for the first time the beneficial effect of CRL1505 strain on myelopoiesis affected by a chemotherapeutic drug. Furthermore, Lr05NV could be a good and safe resource for reducing chemotherapy-induced leukopenia. The results are a starting point for future research and open up broad prospects for future applications of the immunobiotics.
Collapse
Affiliation(s)
- Andrés Gramajo Lopez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Florencia Gutiérrez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Lucila Saavedra
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Elvira Maria Hebert
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Susana Alvarez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Institute of Applied Biochemistry, Tucumán University, San Miguel de Tucumán, Argentina
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
16
|
Oriano M, Zorzetto L, Guagliano G, Bertoglio F, van Uden S, Visai L, Petrini P. The Open Challenge of in vitro Modeling Complex and Multi-Microbial Communities in Three-Dimensional Niches. Front Bioeng Biotechnol 2020; 8:539319. [PMID: 33195112 PMCID: PMC7606986 DOI: 10.3389/fbioe.2020.539319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/28/2020] [Indexed: 12/03/2022] Open
Abstract
The comprehension of the underlying mechanisms of the interactions within microbial communities represents a major challenge to be faced to control their outcome. Joint efforts of in vitro, in vivo and ecological models are crucial to controlling human health, including chronic infections. In a broader perspective, considering that polymicrobial communities are ubiquitous in nature, the understanding of these mechanisms is the groundwork to control and modulate bacterial response to any environmental condition. The reduction of the complex nature of communities of microorganisms to a single bacterial strain could not suffice to recapitulate the in vivo situation observed in mammals. Furthermore, some bacteria can adapt to various physiological or arduous environments embedding themselves in three-dimensional matrices, secluding from the external environment. Considering the increasing awareness that dynamic complex and dynamic population of microorganisms (microbiota), inhabiting different apparatuses, regulate different health states and protect against pathogen infections in a fragile and dynamic equilibrium, we underline the need to produce models to mimic the three-dimensional niches in which bacteria, and microorganisms in general, self-organize within a microbial consortium, strive and compete. This review mainly focuses, as a case study, to lung pathology-related dysbiosis and life-threatening diseases such as cystic fibrosis and bronchiectasis, where the co-presence of different bacteria and the altered 3D-environment, can be considered as worst-cases for chronic polymicrobial infections. We illustrate the state-of-art strategies used to study biofilms and bacterial niches in chronic infections, and multispecies ecological competition. Although far from the rendering of the 3D-environments and the polymicrobial nature of the infections, they represent the starting point to face their complexity. The increase of knowledge respect to the above aspects could positively affect the actual healthcare scenario. Indeed, infections are becoming a serious threat, due to the increasing bacterial resistance and the slow release of novel antibiotics on the market.
Collapse
Affiliation(s)
- Martina Oriano
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Zorzetto
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Giuseppe Guagliano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” and UdR INSTM Politecnico di Milano, Milan, Italy
| | - Federico Bertoglio
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatic, Department of Biotechnology, Braunschweig, Germany
| | - Sebastião van Uden
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” and UdR INSTM Politecnico di Milano, Milan, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy
- Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici (ICS) Maugeri, IRCCS, Pavia, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” and UdR INSTM Politecnico di Milano, Milan, Italy
| |
Collapse
|
17
|
Clark SE. Commensal bacteria in the upper respiratory tract regulate susceptibility to infection. Curr Opin Immunol 2020; 66:42-49. [PMID: 32416468 PMCID: PMC7665980 DOI: 10.1016/j.coi.2020.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
The human body is host to several distinct microbial communities. Disruption of these communities increases susceptibility to a wide range of diseases, including respiratory tract infections. While commensal bacteria in the gut contribute to this effect, recent studies point to a role for commensals occupying the upper respiratory tract through direct pathogen killing and by modifying nasal and lung immune homeostasis. Clinical trials exploring 'probiotic' respiratory tract commensals are an exciting development in this area. Upper respiratory tract microbiome sequencing has revealed that destabilization of this community precedes infection, indicating that microbiome profiling of individuals has predictive value. Further investigation of respiratory tract commensal-host interactions will be critical to translate bacterial-mediated protection toward new therapeutic approaches for respiratory tract disease.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, United States.
| |
Collapse
|
18
|
Sundararaman A, Ray M, Ravindra PV, Halami PM. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl Microbiol Biotechnol 2020; 104:8089-8104. [PMID: 32813065 PMCID: PMC7434852 DOI: 10.1007/s00253-020-10832-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Interspecies transmissions of viruses between animals and humans may result in unpredictable pathogenic potential and new transmissible diseases. This mechanism has recently been exemplified by the discovery of new pathogenic viruses, such as the novel severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) pandemic, Middle-East respiratory syndrome-coronavirus epidemic in Saudi Arabia, and the deadly outbreak of Ebola in West Africa. The. SARS-CoV-2 causes coronavirus disease-19 (COVID-19), which is having a massive global impact in terms of economic disruption, and, above all, human health. The disease is characterized by dry cough, fever, fatigue, myalgia, and dyspnea. Other symptoms include headache, sore throat, rhinorrhea, and gastrointestinal disorders. Pneumonia appears to be the most common and severe manifestation of the infection. Currently, there is no vaccine or specific drug for COVID-19. Further, the development of new antiviral requires a considerable length of time and effort for drug design and validation. Therefore, repurposing the use of natural compounds can provide alternatives and can support therapy against COVID-19. In this review, we comprehensively discuss the prophylactic and supportive therapeutic role of probiotics for the management of COVID-19. In addition, the unique role of probiotics to modulate the gut microbe and assert gut homeostasis and production of interferon as an antiviral mechanism is described. Further, the regulatory role of probiotics on gut-lung axis and mucosal immune system for the potential antiviral mechanisms is reviewed and discussed.Key points• Gut microbiota role in antiviral diseases• Factors influencing the antiviral mechanism• Probiotics and Covid-19.
Collapse
Affiliation(s)
- Aravind Sundararaman
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Mousumi Ray
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - P V Ravindra
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Prakash M Halami
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India.
| |
Collapse
|
19
|
Abstract
Coronavirus disease 2019 (COVID-19) has become pandemic very rapidly at the beginning of 2020. In the rush to possible therapeutic options, probiotics administration has been proposed mainly based on indirect observation. Some evidence of COVID-19 effects on intestinal microbiota dysbiosis has been shown and probiotics have been considered for their efficacy in the management of respiratory tract viral infections. These observations could be reinforced by the more and more evident existence of a lung-gut axis, suggesting the modulation of gut microbiota among the approaches to the COVID-19 prevention and treatment. As different possible roles of probiotics in this extremely severe illness have been contemplated, the aim of this work is to collect all the currently available information related to this topic, providing a starting point for future studies focussing on it.
Collapse
Affiliation(s)
| | | | - Erasmo Neviani
- Department of food and drug, University of Parma, Parma, Italy
| |
Collapse
|
20
|
Affiliation(s)
| | | | - Erasmo Neviani
- Department of food and drug, University of Parma, Parma, Italy
| |
Collapse
|
21
|
Huang D, Yang B, Chen Y, Stanton C, Ross RP, Zhao J, Zhang H, Chen W. Comparative genomic analyses of Lactobacillus rhamnosus isolated from Chinese subjects. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Are the immunomodulatory properties of Lactobacillus rhamnosus CRL1505 peptidoglycan common for all Lactobacilli during respiratory infection in malnourished mice? PLoS One 2018. [PMID: 29518131 PMCID: PMC5843338 DOI: 10.1371/journal.pone.0194034] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Previously, we reported that Lactobacillus rhamnosus CRL1505 peptidoglycan (PG05) improves the innate immune response in immunocompromised-malnourished mice after Streptococcus pneumoniae infection. This study extends those previous findings by demonstrating that the dietary recovery of malnourished mice with nasal administration of PG05 improves not only the innate immune response but the respiratory and systemic adaptive humoral response as well. PG05 enhanced the Th2 response, the recovery of B cells, and the concentration and opsonophagocytic activity of anti-pneumococcal antibodies. In addition, by performing comparative studies with the peptidoglycans from lactobacilli of the same species (L. rhamnosus CRL534) or with similar immunomodulatory properties (L. plantarum CRL1506), we demonstrated here that PG05 has unique immunomodulatory properties that cannot be extended to peptidoglycans from other probiotic strains. However, the knowledge of the molecular characteristics of PG05 is indispensable to understand immunomodulatory abilities of L. rhamnosus CRL1505.
Collapse
|
23
|
Shonyela SM, Wang G, Yang W, Yang G, Wang C. New Progress regarding the Use of Lactic Acid Bacteria as Live Delivery Vectors, Treatment of Diseases and Induction of Immune Responses in Different Host Species Focusing on <i>Lactobacillus</i> Species. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/wjv.2017.74004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|