1
|
Palacıoğlu G. Chitosan, Methyl Jasmonate, and Silicon Induce Resistance to Angular Leaf Spot in Common Bean, Caused by Pseudocercospora griseola, with Expression of Defense-Related Genes and Enzyme Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2915. [PMID: 39458862 PMCID: PMC11511326 DOI: 10.3390/plants13202915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
This study assessed the efficacy of chitosan, methyl jasmonate, and silicon in the reduction of disease severity and the induction of defense responses in common bean plants against angular leaf spot caused by Pseudocercospora griseola. The expression level of several pathogenesis-related (PR) proteins, PR1, PR2 (β-1,3-glucanase), and PR3 (chitinase), and defense-related enzymes, phenylalanine ammonia-lyase, peroxidase, and lipoxygenase, was analyzed at different time points in common bean plants after different treatments. Elicitor treatments significantly reduced disease severity 21 days after inoculation, with silicon at a 2 mM concentration proving most effective with 38.93% disease control, followed by 1 mM MeJA and 2% chitosan, respectively. Treatments with chitosan, methyl jasmonate, and silicon, regardless of pathogen infection, significantly elevated PR1, PR2, and PR3 gene expressions at 48 h after inoculation (hpi). PAL and POD activities were similarly increased following elicitor treatments and pathogen infection, especially at 48 hpi. Chemical elicitors applied post-inoculation induced PR proteins, PAL, and POD enzyme activities at 48 hpi, while LOX activity exhibited a variable fluctuation with treatments. These findings suggested that chemical elicitors, especially silicon, were effective in reducing ALS disease severity in common beans, with improved resistance associated with the expression of pathogen-responsive genes. This study is the first to analyze the expression profiles of defense-related genes in common beans treated with chemical elicitors prior to P. griseola infection.
Collapse
Affiliation(s)
- Gülsüm Palacıoğlu
- Department of Plant Protection, Fethiye Faculty of Agriculture, Muğla Sıtkı Koçman University, 48300 Muğla, Türkiye
| |
Collapse
|
2
|
Wasule DL, Shingote PR, Saxena S. Exploitation of functionalized green nanomaterials for plant disease management. DISCOVER NANO 2024; 19:118. [PMID: 39023655 PMCID: PMC11258113 DOI: 10.1186/s11671-024-04063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
A crucial determining factor in agricultural productivity is biotic stress. In addition, supply of quality food to the ever-increasing world's population has raised the food demand tremendously. Therefore, enhanced agricultural crop productivity is the only option to mitigate these concerns. It ultimately demanded the often and indiscriminate use of synthetic agrochemicals such as chemical fertilizers, pesticides, insecticides, herbicides, etc. for the management of various biotic stresses including a variety of plant pathogens. However, the food chain and biosphere are severely impacted due to the use of such harmful agrochemicals and their byproducts. Hence, it is need of hour to search for novel, effective and ecofriendly approaches for the management of biotic stresses in crop plants. Particularly, in plant disease management, efforts are being made to take advantage of newly emerged science i.e. nanotechnology for the creation of inorganic nanoparticles (NPs) such as metallic, oxide, sulphide, etc. through different routes and their application in plant disease management. Among these, green nanomaterials which are synthesized using environmentally friendly methods and materials reported to possess unique properties (such as high surface area, adjustable size and shape, and specific functionalities) making them ideal candidates for targeted disease control. Nanotechnology can stop crop losses by managing specific diseases from soil, plants, and hydroponic systems. This review mainly focuses on the application of biologically produced green NPs in the treatment of plant diseases caused due to bacteria, viruses, and fungi. The utilization of green synthesis of NPs in the creation of intelligent targeted pesticide and biomolecule control delivery systems, for disease management is considered environmentally friendly due to its pursuit of less hazardous, sustainable, and environmentally friendly methods.
Collapse
Affiliation(s)
- Dhiraj L Wasule
- Vasantrao Naik College of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104, India
| | - Prashant R Shingote
- Vasantrao Naik College of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104, India.
| | - Shreshtha Saxena
- Vasantrao Naik College of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104, India
| |
Collapse
|
3
|
Nizamani MM, Hughes AC, Zhang HL, Wang Y. Revolutionizing agriculture with nanotechnology: Innovative approaches in fungal disease management and plant health monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172473. [PMID: 38615773 DOI: 10.1016/j.scitotenv.2024.172473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Nanotechnology has emerged as a transformative force in modern agriculture, offering innovative solutions to address challenges related to fungal plant diseases and overall agricultural productivity. Specifically, the antifungal activities of metal, metal oxide, bio-nanoparticles, and polymer nanoparticles were examined, highlighting their unique mechanisms of action against fungal pathogens. Nanoparticles can be used as carriers for fungicides, offering advantages in controlled release, targeted delivery, and reduced environmental toxicity. Nano-pesticides and nano-fertilizers can enhance nutrient uptake, plant health, and disease resistance were explored. The development of nanosensors, especially those utilizing quantum dots and plasmonic nanoparticles, promises early and accurate detection of fungal pathogens, a crucial step in timely disease management. However, concerns about their potential toxic effects on non-target organisms, environmental impacts, and regulatory hurdles underscore the importance of rigorous research and impact assessments. The review concludes by emphasizing the significant prospects of nanotechnology in reshaping the future of agriculture but advocates for a balanced approach that prioritizes safety, sustainability, and environmental stewardship.
Collapse
Affiliation(s)
- Mir Muhammad Nizamani
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, China
| | - Hai-Li Zhang
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Saberi Riseh R, Gholizadeh Vazvani M, Vatankhah M, Kennedy JF. Chitin-induced disease resistance in plants: A review. Int J Biol Macromol 2024; 266:131105. [PMID: 38531527 DOI: 10.1016/j.ijbiomac.2024.131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Chitin is composed of N-acetylglucosamine units. Chitin a polysaccharide found in the cell walls of fungi and exoskeletons of insects and crustaceans, can elicit a potent defense response in plants. Through the activation of defense genes, stimulation of defensive compound production, and reinforcement of physical barriers, chitin enhances the plant's ability to defend against pathogens. Chitin-based treatments have shown efficacy against various plant diseases caused by fungal, bacterial, viral, and nematode pathogens, and have been integrated into sustainable agricultural practices. Furthermore, chitin treatments have demonstrated additional benefits, such as promoting plant growth and improving tolerance to abiotic stresses. Further research is necessary to optimize treatment parameters, explore chitin derivatives, and conduct long-term field studies. Continued efforts in these areas will contribute to the development of innovative and sustainable strategies for disease management in agriculture, ultimately leading to improved crop productivity and reduced reliance on chemical pesticides.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
5
|
Cao Z, Ma X, Lv D, Wang J, Shen Y, Peng S, Yang S, Huang J, Sun X. Synthesis of chitin nanocrystals supported Zn 2+ with high activity against tobacco mosaic virus. Int J Biol Macromol 2023; 250:126168. [PMID: 37553033 DOI: 10.1016/j.ijbiomac.2023.126168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Chitin is a kind of natural nitrogenous organic polysaccharide. It contains antibacterial and antiviral properties, and it can induce plant disease resistance and promote plant growth. However, its application is constrained due to its insolubility and intricate molecular structure. Tobacco mosaic disease is caused by tobacco mosaic virus (TMV) infection, which seriously harms tobacco production. Zinc-containing chemical agents are commonly used to control tobacco mosaic disease, but overuse of chemical agents will cause serious environmental pollution. In this study, a novel nanomaterial (ChNC@Zn) was prepared by using chitin nanocrystals loaded with Zn2+, which has the function of inducing disease resistance to plants and reducing virus activity. When the Zn2+ concentration of ChNC@Zn is 105.6 μg/mL, it shows higher resistance to TMV than Lentinan (LNT). ChNC@Zn can improve the enzymes activities of peroxidase (POD) and catalase (CAT) in tobacco, and reduce the damage of reactive oxygen species (ROS) caused by TMV infection, thereby inducing resistance to TMV in tobacco. Besides, it can promote the growth of tobacco. As a result, ChNC@Zn can exhibit strong antiviral activity at low Zn2+ concentration and minimize the pollution of Zn2+ to the environment, which has high potential application value in the control of virus disease.
Collapse
Affiliation(s)
- Zhe Cao
- College of Plant Protection, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Dashu Lv
- Technology Center, China Tobacco Guizhou Industrial Co., Ltd., Guiyang 550000, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yang Shen
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Shiqi Peng
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shenggang Yang
- Technology Center, China Tobacco Guizhou Industrial Co., Ltd., Guiyang 550000, China
| | - Jin Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
El-Ganainy SM, Soliman AM, Ismail AM, Sattar MN, Farroh KY, Shafie RM. Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites against Alfalfa Mosaic Virus. Polymers (Basel) 2023; 15:2961. [PMID: 37447606 DOI: 10.3390/polym15132961] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Plant viruses are a global concern for sustainable crop production. Among the currently available antiviral approaches, nanotechnology has been overwhelmingly playing an effective role in circumventing plant viruses. Alfalfa mosaic virus (AMV) was isolated and identified from symptomatic pepper plants in Egypt using symptomatology, serological tests using the direct ELISA technique, differential hosts and electron microscopy. The virus was biologically purified from a single local lesion that developed on Chenopodium amaranticolor. The AMV infection was further confirmed using an AMV coat protein-specific primer RT-PCR. We further evaluated the antiviral potential of chitosan nanoparticles (CS-NPs) and chitosan silver nanocomposites (CS-Ag NC) in different concentrations against AMV infections in pepper plants. All tested concentrations of CS-NPs and CS-Ag NC induced the inhibition of AMV systemically infected pepper plants when applied 24 h after virus inoculation. The foliar application of 400 ppm CS-NPs or 200 ppm CS-Ag NC produced the highest AMV inhibitory effect (90 and 91%) when applied 24 h after virus inoculation. Treatment with CS-NPs and CS-Ag NC considerably increased the phenol, proline and capsaicin contents compared to the infected plants. Moreover, the agronomic metrics (plant height, fresh and dry pod weights and number of pods per plant) were also significantly improved. According to our results, the potential applications of CS-NPs and CS-Ag NC may provide an effective therapeutic measure for better AMV and other related plant virus management.
Collapse
Affiliation(s)
- Sherif Mohamed El-Ganainy
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ahmed M Soliman
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ahmed Mahmoud Ismail
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | | | - Khaled Yehia Farroh
- Nanotechnology and Advanced Materials Central Lab., Regional Center for Food and Feed, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Radwa M Shafie
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| |
Collapse
|
7
|
Román-Doval R, Torres-Arellanes SP, Tenorio-Barajas AY, Gómez-Sánchez A, Valencia-Lazcano AA. Chitosan: Properties and Its Application in Agriculture in Context of Molecular Weight. Polymers (Basel) 2023; 15:2867. [PMID: 37447512 DOI: 10.3390/polym15132867] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Chitosan is a naturally occurring compound that can be obtained from deacetylated chitin, which is obtained from various sources such as fungi, crustaceans, and insects. Commercially, chitosan is produced from crustaceans. Based on the range of its molecular weight, chitosan can be classified into three different types, namely, high molecular weight chitosan (HMWC, >700 kDa), medium molecular weight chitosan (MMWC, 150-700 kDa), and low molecular weight chitosan (LMWC, less than 150 kDa). Chitosan shows several properties that can be applied in horticultural crops, such as plant root growth enhancer, antimicrobial, antifungal, and antiviral activities. Nevertheless, these properties depend on its molecular weight (MW) and acetylation degree (DD). Therefore, this article seeks to extensively review the properties of chitosan applied in the agricultural sector, classifying them in relation to chitosan's MW, and its use as a material for sustainable agriculture.
Collapse
Affiliation(s)
- Ramón Román-Doval
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Oaxaca 68230, Mexico
| | | | - Aldo Y Tenorio-Barajas
- Faculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla, Puebla 72570, Mexico
| | - Alejandro Gómez-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Oaxaca 68230, Mexico
| | | |
Collapse
|
8
|
A comprehensive review of chitosan applications in paper science and technologies. Carbohydr Polym 2023; 309:120665. [PMID: 36906368 DOI: 10.1016/j.carbpol.2023.120665] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Using environmentally friendly biomaterials in different aspects of human life has been considered extensively. In this respect, different biomaterials have been identified and different applications have been found for them. Currently, chitosan, the well-known derivative of the second most abundant polysaccharide in the nature (i.e., chitin), has been receiving a lot of attention. This unique biomaterial can be defined as a renewable, high cationic charge density, antibacterial, biodegradable, biocompatible, non-toxic biomaterial with high compatibility with cellulose structure, where it can be used in different applications. This review takes a deep and comprehensive look at chitosan and its derivative applications in different aspects of papermaking.
Collapse
|
9
|
Giri VP, Pandey S, Srivastava S, Shukla P, Kumar N, Kumari M, Katiyar R, Singh S, Mishra A. Chitosan fabricated biogenic silver nanoparticles (Ch@BSNP) protectively modulate the defense mechanism of tomato during bacterial leaf spot (BLS) disease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107637. [PMID: 36933507 DOI: 10.1016/j.plaphy.2023.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Herein, the impact of chitosan fabricated biogenic silver nanoparticles (Ch@BSNP) has been evaluated for the protective management of bacterial leaf spot (BLS) disease in tomatoes caused by Xanthomonas campestris (NCIM5028). The Ch@BSNP originated by the Trichoderma viride (MTCC5661) derived extracellular compounds and subsequent chitosan hybridization. Spherical-shaped Ch@BSNP (30-35 nm) treated diseased plants were able to combat the biotic stress, as evidenced by the decreased elevated response of stress markers viz; anthocyanin (34.02%), proline (45.00%), flavonoids (20.26%), lipid peroxidation (10.00%), guaiacol peroxidase (36.58%), ascorbate peroxidase (41.50%), polyphenol oxidase (25.34%) and phenylalanine ammonia-lyase (2.10 fold) as compared to untreated diseased plants. Increased biochemical content specifically sugar (15.43%), phenolics (49.10%), chlorophyll, and carotenoids were measured in Ch@BSNP-treated diseased plants compared to untreated X. campestris-infested plants. The Ch@BSNP considerably reduced stress by increasing net photosynthetic rate and water use efficiency along with decreased transpiration rate and stomatal conductance in comparison to infected plants. Additionally, the expression of defense-regulatory genes viz; growth responsive (AUX, GH3, SAUR), early defense responsive (WRKYTF22, WRKY33, NOS1), defense responsive (PR1, NHO1, NPR1), hypersensitivity responsive (Pti, RbohD, OXI1) and stress hormones responsive (MYC2, JAR1, ERF1) were found to be upregulated in diseased plants while being significantly downregulated in Ch@BSNP-treated diseased plants. Furthermore, fruits obtained from pathogen-compromised plants treated with Ch@BSNP had higher levels of health-promoting compounds including lycopene and beta-carotene than infected plant fruits. This nano-enabled and environmentally safer crop protection strategy may encourage a sustainable agri-system towards the world's growing food demand and promote food security.
Collapse
Affiliation(s)
- Ved Prakash Giri
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Department of Botany, Lucknow University, Hasanganj, Lucknow, 226007, India
| | - Shipra Pandey
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonal Srivastava
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pallavi Shukla
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Navinit Kumar
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Madhuree Kumari
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Ratna Katiyar
- Department of Botany, Lucknow University, Hasanganj, Lucknow, 226007, India
| | - Shiv Singh
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR- National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Fouad FA, Youssef DG, Shahat FM, Abd El-Ghany MN. Role of Microorganisms in Biodegradation of Pollutants. HANDBOOK OF BIODEGRADABLE MATERIALS 2023:221-260. [DOI: 10.1007/978-3-031-09710-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Ji H, Wang J, Chen F, Fan N, Wang X, Xiao Z, Wang Z. Meta-analysis of chitosan-mediated effects on plant defense against oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158212. [PMID: 36028025 DOI: 10.1016/j.scitotenv.2022.158212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Chitosan, as a natural non-toxic biomaterial, has been demonstrated to enhance plant defense against oxidative stress. However, the general pattern and mechanism of how chitosan application modifies the amelioration of oxidative stress in plants have not been elucidated yet. Herein, we performed a meta-analysis of 58 published articles up to January 2022 to fill this knowledge gap, and found that chitosan application significantly increased the antioxidant enzyme activity (by 40.6 %), antioxidant metabolites content (by 24.6 %), defense enzyme activity (by 77.9 %), defense-related genes expression (by 103.2 %), phytohormones (by 26.9 %), and osmotic regulators (by 23.2 %) under stress conditions, which in turn notably reduced oxidative stress (by 32.2 %), and increased plant biomass (by 28.1 %) and yield (by 15.7 %). Moreover, chitosan-mediated effects on the amelioration of oxidative stress depended on the properties and application methods of chitosan. Our findings provide a comprehensive understanding of the mechanism of chitosan-alleviated oxidative stress, which would promote the application of chitosan in plant protection in agriculture.
Collapse
Affiliation(s)
- Haihua Ji
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Jinghong Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Ningke Fan
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Xie Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Tang C, Zhai Y, Wang Z, Zhao X, Yang C, Zhao Y, Zeng LB, Zhang DY. Metabolomics and transcriptomics reveal the effect of hetero-chitooligosaccharides in promoting growth of Brassica napus. Sci Rep 2022; 12:21197. [PMID: 36482110 PMCID: PMC9731942 DOI: 10.1038/s41598-022-25850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The hetero-chitooligosaccharide (HTCOS) is a naturally occurring biopolymer in the exoskeleton of crustaceans and insects. Although some studies have been carried out on HTCOS in inducing plant resistance and promoting growth, the molecular mechanism of HTCOS in plants is not clear. In this study, an integrated analysis of metabolomics and transcriptomics was performed to analyze the response of Brassica napus to hetero-chitooligosaccharides treatment. The levels of 26 metabolites in B. napus were significantly changed under the HTCOS treatment. Amongst these metabolites, 9 metabolites were significantly up-regulated, including pentonic acid, indole-3-acetate, and γ-aminobutyric acid. Transcriptome data showed that there were 817 significantly up-regulated genes and 1064 significantly down-regulated genes in B. napus under the HTCOS treatment. Interestingly, the indole-3-acetate (IAA) content under the HTCOS treatment was about five times higher than that under the control condition. Moreover, four genes related to plant hormone signal transduction, three AUX/IAA genes, and one ARF gene, were significantly up-regulated under the HTCOS treatment. Furthermore, the plant height, branching number, and biomass of B. napus under the HTCOS treatment were significantly increased compared to that in the control condition. This evidence indicated that the HTCOS treatment contributed to accumulating the content of plant hormone IAA in the B. napus, up-regulating the expression of key genes in the signaling pathway of plant growth and improving the agronomic traits of B. napus.
Collapse
Affiliation(s)
- Chao Tang
- grid.257160.70000 0004 1761 0331College of Plant Protection, Hunan Agricultural University, No. 1, Nongda Road, Furong District, Changsha City, 410208 Hunan Province China ,grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - Yang Zhai
- grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - Zhuo Wang
- grid.9227.e0000000119573309State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Xin Zhao
- grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - Chen Yang
- grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - Yong Zhao
- ZhongkeRunxin (Suzhou) Biotechnology Co., Ltd., Suzhou, 215152 Jiangsu China
| | - Liang-bin Zeng
- grid.410727.70000 0001 0526 1937Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348, Xianjiahu West Road, Yuelu District, Changsha, 410205 Hunan Province China
| | - De-yong Zhang
- grid.257160.70000 0004 1761 0331College of Plant Protection, Hunan Agricultural University, No. 1, Nongda Road, Furong District, Changsha City, 410208 Hunan Province China
| |
Collapse
|
13
|
Abd-Ellatif S, Ibrahim AA, Safhi FA, Abdel Razik ES, Kabeil SSA, Aloufi S, Alyamani AA, Basuoni MM, ALshamrani SM, Elshafie HS. Green Synthesized of Thymus vulgaris Chitosan Nanoparticles Induce Relative WRKY-Genes Expression in Solanum lycopersicum against Fusarium solani, the Causal Agent of Root Rot Disease. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223129. [PMID: 36432858 PMCID: PMC9695361 DOI: 10.3390/plants11223129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 05/30/2023]
Abstract
Fusarium solani is a plant pathogenic fungus that causes tomato root rot disease and yield losses in tomato production. The current study's main goal is testing the antibacterial efficacy of chitosan nanoparticles loaded with Thyme vulgaris essential oil (ThE-CsNPs) against F. solani in vitro and in vivo. GC-MS analysis was used to determine the chemical constituents of thyme EO. ThE-CsNPs were investigated using transmission electron microscopy before being physicochemically characterized using FT-IR. ThE-CsNPs were tested for antifungal activity against F. solani mycelial growth in vitro. A pot trial was conducted to determine the most effective dose of ThE-CsNPs on the morph/physiological characteristics of Solanum lycopersicum, as well as the severity of fusarium root rot. The relative gene expression of WRKY transcript factors and defense-associated genes were quantified in root tissues under all treatment conditions. In vitro results revealed that ThE-CsNPs (1%) had potent antifungal efficacy against F. solani radial mycelium growth. The expression of three WRKY transcription factors and three tomato defense-related genes was upregulated. Total phenolic, flavonoid content, and antioxidant enzyme activity were all increased. The outfindings of this study strongly suggested the use of ThE-CsNPs in controlling fusarium root rot on tomatoes; however, other experiments remain necessary before they are recommended.
Collapse
Affiliation(s)
- Sawsan Abd-Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, Alexandria 21934, Egypt
| | - Amira A. Ibrahim
- Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Elsayed S. Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technology Applications, Alexandria 21934, Egypt
| | - Sanaa S. A. Kabeil
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, Alexandria 21934, Egypt
| | - Salman Aloufi
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Amal A. Alyamani
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mostafa M. Basuoni
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | | | - Hazem S. Elshafie
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
14
|
Debnath D, Samal I, Mohapatra C, Routray S, Kesawat MS, Labanya R. Chitosan: An Autocidal Molecule of Plant Pathogenic Fungus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111908. [PMID: 36431043 PMCID: PMC9694207 DOI: 10.3390/life12111908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
The rise in the world's food demand with the increasing population threatens the existence of civilization with two equally valuable concerns: increase in global food production and sustainability in the ecosystem. Furthermore, biotic and abiotic stresses are adversely affecting agricultural production. Among them, losses caused by insect pests and pathogens have been shown to be more destructive to agricultural production. However, for winning the battle against the abundance of insect pests and pathogens and their nature of resistance development, the team of researchers is searching for an alternative way to minimize losses caused by them. Chitosan, a natural biopolymer, coupled with a proper application method and effective dose could be an integral part of sustainable alternatives in the safer agricultural sector. In this review, we have integrated the insight knowledge of chitin-chitosan interaction, successful and efficient use of chitosan, recommended and practical methods of use with well-defined doses, and last but not least the dual but contrast mode of action of the chitosan in hosts and as well as in pathogens.
Collapse
Affiliation(s)
- Debanjana Debnath
- Department of Plant Pathology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Ipsita Samal
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Chinmayee Mohapatra
- Department of Plant Pathology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Snehasish Routray
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Rini Labanya
- Department of Soil Science & Agricultural Chemistry, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
- Correspondence:
| |
Collapse
|
15
|
Ye M, Feng H, Hu J, Yu Q, Liu S. Managingtomato bacterial wilt by suppressing Ralstonia solanacearum population in soil and enhancing host resistance through fungus-derived furoic acid compound. FRONTIERS IN PLANT SCIENCE 2022; 13:1064797. [PMID: 36452092 PMCID: PMC9703000 DOI: 10.3389/fpls.2022.1064797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Synthetic chemical pesticides are primarily used to manage plant pests and diseases, but their widespread and unregulated use has resulted in major health and environmental hazards. Using biocontrol microbes and their bioactive compounds is a safe and sustainable approach in plant protection. In this study, a furoic acid (FA) compound having strong antibacterial activity against soil-borne phytopathogenic bacterium Ralstonia solanacearum [causal agent of bacterial wilt (BW) disease] was isolated from Aspergillus niger and identified as 5-(hydroxymethyl)-2-furoic acid compound through spectroscopic analyses (liquid chromatography-mass spectrometry (MS), electron ionization MS, and NMR). The SEM study of bacterial cells indicated the severe morphological destructions by the FA compound. The FA was further evaluated to check its potential in enhancing host resistance and managing tomato BW disease in a greenhouse experiment and field tests. The results showed that FA significantly enhanced the expression of resistance-related genes (PAL, LOX, PR1, and PR2) in tomato and caused a significant reduction (11.2 log10 colony-forming units/g) of the R. solanacearum population in soil, resulting in the reduction of bacterial wilt disease severity on tomato plants and increase in plant length (58 ± 2.7 cm), plant biomass (28 ± 1.7 g), and root length (13 ± 1.2 cm). The findings of this study suggested that the fungus-derived FA compound can be a potential natural compound of biological source for the soil-borne BW disease in tomato.
Collapse
|
16
|
Riseh RS, Hassanisaadi M, Vatankhah M, Babaki SA, Barka EA. Chitosan as a potential natural compound to manage plant diseases. Int J Biol Macromol 2022; 220:998-1009. [PMID: 35988725 DOI: 10.1016/j.ijbiomac.2022.08.109] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/05/2022]
Abstract
The necessity for non-chemical approaches has grown as awareness of the dangers posed by pesticides has spread. Chitosan, due to its biocompatibility, biodegradability, and bioactivity is one the effective choice in phytopathology. Chitosan is a biopolymer that reduces plant diseases through two main mechanisms: (1) Direct antimicrobial function against pathogens, including plasma membrane damage mechanisms, interactions with DNA and RNA (electrostatic interactions), metal chelating capacity, and deposition onto the microbial surface, (2) Induction of plant defense responses resulting from downstream signalling, transcription factor activation, gene transcription and finally cellular activation after recognition and binding of chitin and chitosan by cell surface receptors. This biopolymer have potential with capability to combating fungi, bacteria, and viruses phythopathogens. Chitosan is synthesized by deacetylating chitin. The degree of deacetylation and molecular weight of chitosan are variable and have been mentioned as important structural parameters in chitosan's biological properties. Chitosan with a higher degree of deacetylation (>70 %) has better biological properties. Many crops able to withstand pre- and post-harvest illnesses better after receiving chitosan as a seed treatment, soil amendment, or foliar spray. This review discussed the properties and use of chitosan and focuses on its application as a plant resistance inducer against pathogens.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Somayeh Abdani Babaki
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Essaid Ait Barka
- Induced Resistance and Plant BioProtection Research Unit, UFR Sciences, UPRES EA 4707-USC INRAeE1488, University of Reims Champagne-Ardenne, 51687 Reims, France.
| |
Collapse
|
17
|
Chitosan and chitosan-derived nanoparticles modulate enhanced immune response in tomato against bacterial wilt disease. Int J Biol Macromol 2022; 220:223-237. [PMID: 35970370 DOI: 10.1016/j.ijbiomac.2022.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022]
Abstract
The present study evaluated the priming efficacy of chitosan and chitosan-derived nanoparticles (CNPs) against bacterial wilt of tomato. In the current study, seed-treated CNPs plus pathogen-inoculated tomato seedlings recorded significant protection of 62 % against pathogen-induced wilt disease and subsequently better growth. The induced resistance was witnessed by a prominent increase in lignin, callose and H2O2 deposition, followed by superoxide radical accumulation in leaves. Additionally, chitosan and CNPs-treated tomato plants recorded a remarkable increase in the upregulation of phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), catalase (CAT) and β-1, 3 glucanase (GLU) in comparison with untreated plants. The chitosan and CNPs-induced antioxidant enzymes were positively correlated with the stimulation of corresponding gene expression in CNPs treated plants related to pathogen-inoculated ones. The results of this study describe that how the application of chitosan and CNPs elicit defense responses at the cellular, biochemical and gene expression in tomato plants against bacterial wilt disease, thereby improve growth and yield.
Collapse
|
18
|
Chitosan and Nano-Chitosan for Management of Harpophora maydis: Approaches for Investigating Antifungal Activity, Pathogenicity, Maize-Resistant Lines, and Molecular Diagnosis of Plant Infection. J Fungi (Basel) 2022; 8:jof8050509. [PMID: 35628764 PMCID: PMC9144709 DOI: 10.3390/jof8050509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
The rapid spread of late wilt disease among maize cultivations has resulted in serious economic losses in many countries. Harpophora maydis is the main cause of this destructive vascular disease. Here we evaluate the fungicidal activity of chitosan and nano-chitosan against six aggressive isolates of H. maydis collected from different Egyptian governorates. Pathogenicity tests for these isolates show that the highest disease severity was found for the Giza isolate. The isolates were tested for their response to the fungicide Permis, chitosan, and nano-chitosan treatments in vitro and in vivo. Nano-chitosan treatments fully inhibited the radial growth of H. maydis isolates at concentrations of 5 and 10 mM, compared to the full control growth (9 cm in diameter). On the other hand, in vitro, in vivo, and molecular diagnosis results showed high antifungal activity of chitosan and nano-chitosan compared to the Permis fungicide. Chitosan at the nano and normal scales proved a potent ability to enhance plant resistance in response to H. maydis. Disease severity (DS%) was extremely decreased among the tested cultivars by using nano-chitosan; the highest percentage was obtained on Giza 178 cv, where the DS% was 21.7% compared to 42.3% for the control. Meanwhile, the lowest percentage was obtained on Giza 180 cv with DS% 31.2 and the control with 41.3%. The plants treated with nano-chitosan showed the highest growth parameters for all cultivars. Such natural treatments could reduce the impact on the environment as they are non-pollutant natural compounds, protect the plants by reducing fungal activity, and induce plant resistance.
Collapse
|
19
|
Khairy AM, Tohamy MRA, Zayed MA, Mahmoud SF, El-Tahan AM, El-Saadony MT, Mesiha PK. Eco-friendly application of nano-chitosan for controlling potato and tomato bacterial wilt. Saudi J Biol Sci 2022; 29:2199-2209. [PMID: 35531227 PMCID: PMC9073058 DOI: 10.1016/j.sjbs.2021.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023] Open
Abstract
Bacterial wilt is one of the main diseases of Solanum spp., which caused by Ralstonia solanacearum (RS), formerly known as Pseudomonas solanacearum. Different concentrations of chitosan nanoparticles have been evaluated as one of the alternative methods of disease management in vitro and in vivo to reduce the risks of pesticide residues. Results in vitro experiment indicated that RS5 isolate was the most virulence one compared to RS1 and RS3. Increasing concentration of nano-chitosan, lead to increase inhibition zone, and this was observed at higher concentrations (100 and 200 µg/ml). In vivo results showed the highest concentration of spraying chitosan nanoparticles increase percentage reduction of disease incidence and severity, in effected potato and tomato plants. Recorded data of disease incidence and severity in treated potato plants were 78.93% and 71.85%, while on tomato plants were 81.64% and 77.63%, respectively compared to untreated infected potato plants were recorded 15.38%, 20.87%, and tomato plants were 20.98% and 28.64%. Results also revealed that 100 µg/ml of chitosan nanoparticles the lowest treatments used as soil amended curative treatments led to incease percentage reduction of disease incidence and severity, respectively on potato and tomato plants, but less than preventive treatment. The results registered that on potato plant were 54.93% and 52.65%, whilst recorded on tomato plants were 59.93% and 56.74%. Transmission electron microscopy (TEM) micrpgraphs illustrated that morphological of healthy R. solanacearum cells were undesirably stained with uranyl. The electron-dense uranyl acetate dye was limited to the cell surface slightly than the cytoplasm, which designated the integrity of the cell film of healthy cells. While bacterial cells treated with nano-chitosan, showed modification in the external shape, such as lysis of the cell wall and loss of cell flagella. Also, the result of using Random amplified polymorphic DNA (RAPD)-PCR observed that differences in treated Ralstonia solanancearum genotype by nano-chitosan compared to the genotype of the same untreated isolate.
Collapse
Affiliation(s)
- Ahmed M Khairy
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed R A Tohamy
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed A Zayed
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samy F Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Phelimon K Mesiha
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
20
|
Protective, Biostimulating, and Eliciting Effects of Chitosan and Its Derivatives on Crop Plants. Molecules 2022; 27:molecules27092801. [PMID: 35566152 PMCID: PMC9101998 DOI: 10.3390/molecules27092801] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chitosan is a biodegradable and biocompatible polysaccharide obtained by partial deacetylation of chitin. This polymer has been gaining increasing popularity due to its natural origin, favorable physicochemical properties, and multidirectional bioactivity. In agriculture, the greatest hopes are raised by the possibility of using chitosan as a biostimulant, a plant protection product, an elicitor, or an agent to increase the storage stability of plant raw materials. The most important properties of chitosan include induction of plant defense mechanisms and regulation of metabolic processes. Additionally, it has antifungal, antibacterial, antiviral, and antioxidant activity. The effectiveness of chitosan interactions is determined by its origin, deacetylation degree and acetylation pattern, molecular weight, type of chemical modifications, pH, concentration, and solubility. There is a need to conduct research on alternative sources of chitosan, extraction methods, optimization of physicochemical properties, and commercial implementation of scientific progress outcomes in this field. Moreover, studies are necessary to assess the bioactivity and toxicity of chitosan nanoparticles and chitosan conjugates with other substances and to evaluate the consequences of the large-scale use thereof. This review presents the unique properties of chitosan and its derivatives that have the greatest importance for plant production and yield quality as well as the benefits and limitations of their application.
Collapse
|
21
|
Elsharkawy MM, Omara RI, Mostafa YS, Alamri SA, Hashem M, Alrumman SA, Ahmad AA. Mechanism of Wheat Leaf Rust Control Using Chitosan Nanoparticles and Salicylic Acid. J Fungi (Basel) 2022; 8:jof8030304. [PMID: 35330306 PMCID: PMC8950986 DOI: 10.3390/jof8030304] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
Wheat leaf rust is one of the world’s most widespread rusts. The progress of the disease was monitored using two treatments: chitosan nanoparticles and salicylic acid (SA), as well as three application methods; spraying before or after the inoculation by 24 h, and spraying both before and after the inoculation by 24 h. Urediniospore germination was significantly different between the two treatments. Wheat plants tested for latent and incubation periods, pustule size and receptivity and infection type showed significantly reduced leaf rust when compared to untreated plants. Pucciniatriticina urediniospores showed abnormalities, collapse, lysis, and shrinkage as a result of chitosan nanoparticles treatment. The enzymes, peroxidase and catalase, were increased in the activities. In both treatments, superoxide (O2−) and hydrogen peroxide (H2O2), were apparent as purple and brown discolorations. Chitosan nanoparticles and SA treatments resulted in much more discoloration and quantitative measurements than untreated plants. In anatomical examinations, chitosan nanoparticles enhanced thickness of blade (µ), thickness of mesophyll tissue, thickness of the lower and upper epidermis and bundle length and width in the midrib compared to the control. In the control treatment’s top epidermis, several sori and a large number of urediniospores were found. Most anatomical characters of flag leaves in control plants were reduced by biotic stress with P. triticina. Transcription levels of PR1-PR5 and PR10 genes were activated in chitosan nanoparticles treated plants at 0, 1 and 2 days after inoculation. In light of the data, we suggest that the prospective use of chitosan nanoparticles might be an eco-friendly strategy to improve growth and control of leaf rust disease.
Collapse
Affiliation(s)
- Mohsen Mohamed Elsharkawy
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt
- Correspondence: ; Tel.: +20-106-577-2170
| | - Reda Ibrahim Omara
- Wheat Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Yasser Sabry Mostafa
- Department of Biology, College of Science, King Khalid University, Abha 62529, Saudi Arabia; (Y.S.M.); (S.A.A.); (M.H.); (S.A.A.)
| | - Saad Abdulrahman Alamri
- Department of Biology, College of Science, King Khalid University, Abha 62529, Saudi Arabia; (Y.S.M.); (S.A.A.); (M.H.); (S.A.A.)
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha 62529, Saudi Arabia; (Y.S.M.); (S.A.A.); (M.H.); (S.A.A.)
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Sulaiman A. Alrumman
- Department of Biology, College of Science, King Khalid University, Abha 62529, Saudi Arabia; (Y.S.M.); (S.A.A.); (M.H.); (S.A.A.)
| | - Abdelmonim Ali Ahmad
- Department of Plant Pathology, Faculty of Agriculture, Minia University, El Minia 61519, Egypt;
| |
Collapse
|
22
|
Kappel L, Kosa N, Gruber S. The Multilateral Efficacy of Chitosan and Trichoderma on Sugar Beet. J Fungi (Basel) 2022; 8:137. [PMID: 35205892 PMCID: PMC8879458 DOI: 10.3390/jof8020137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
The majority of all fungal formulations contain Trichoderma spp., making them effective biological control agents for agriculture. Chitosan, one of the most effective natural biopolymers, was also reported as a plant resistance enhancer and as a biocide against a variety of plant pathogens. An in vitro three-way interaction assay of T. atroviride, chitosan, and important plant pathogens (such as Cercospora beticola and Fusarium oxysporum) revealed a synergistic effect on fungistasis. Furthermore, chitosan coating on Beta vulgaris ssp. vulgaris seeds positively affected the onset and efficiency of germination. We show that priming with T. atroviride spores or chitosan leads to the induced expression of a pathogenesis-related gene (PR-3), but only supplementation of chitosan led to significant upregulation of phytoalexin synthesis (PAL) and oxidative stress-related genes (GST) as a defense response. Repeated foliar application of either agent promoted growth, triggered defense reactions, and reduced incidence of Cercospora leaf spot (CLS) disease in B. vulgaris. Our data suggest that both agents are excellent candidates to replace or assist common fungicides in use. Chitosan triggered the systemic resistance and had a biocidal effect, while T. atroviride mainly induced stress-related defense genes in B. vulgaris. We assume that both agents act synergistically across different signaling pathways, which could be of high relevance for their combinatorial and thus beneficial application on field.
Collapse
Affiliation(s)
- Lisa Kappel
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria;
- Department of Bioengineering, FH Campus Wien, University of Applied Sciences, 1190 Vienna, Austria;
| | - Nicole Kosa
- Department of Bioengineering, FH Campus Wien, University of Applied Sciences, 1190 Vienna, Austria;
| | - Sabine Gruber
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria;
- Department of Bioengineering, FH Campus Wien, University of Applied Sciences, 1190 Vienna, Austria;
| |
Collapse
|
23
|
Kemboi VJ, Kipkoech C, Njire M, Were S, Lagat MK, Ndwiga F, Wesonga JM, Tanga CM. Biocontrol Potential of Chitin and Chitosan Extracted from Black Soldier Fly Pupal Exuviae against Bacterial Wilt of Tomato. Microorganisms 2022; 10:microorganisms10010165. [PMID: 35056613 PMCID: PMC8780822 DOI: 10.3390/microorganisms10010165] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 12/29/2022] Open
Abstract
Globally, Ralstonia solanacearum (Smith) is ranked one of the most destructive bacterial pathogens inducing rapid and fatal wilting symptoms on tomatoes. Yield losses on tomatoes vary from 0 to 91% and most control measures are unaffordable to resource-poor farmers. This study investigated the antimicrobial activities of chitin and chitosan extracted from black soldier fly (BSF) pupal exuviae against R. solanacearum. Morphological, biochemical, and molecular techniques were used to isolate and characterize R. solanacearum for in vitro pathogenicity test using disc diffusion technique. Our results revealed that BSF chitosan significantly inhibited the growth of R. solanacearum when compared to treatments without chitosan. However, there was no significant difference in the antibacterial activities between BSF and commercial chitosan against R. solanacearum. Soil amended with BSF-chitin and chitosan demonstrated a reduction in bacterial wilt disease incidence by 30.31% and 34.95%, respectively. Whereas, disease severity was reduced by 22.57% and 23.66%, when inoculated tomato plants were subjected to soil amended with BSF chitin and chitosan, respectively. These findings have demonstrated that BSF pupal shells are an attractive renewable raw material for the recovery of valuable products (chitin and chitosan) with promising ability as a new type of eco-friendly control measure against bacterial wilt caused by R. solanacearum. Further studies should explore integrated pest management options that integrate multiple components including insect-based chitin and chitosan to manage bacterial wilt diseases, contributing significantly to increased tomato production worldwide.
Collapse
Affiliation(s)
- Violah Jepkogei Kemboi
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - Carolyne Kipkoech
- Department of Food and Nutritional Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya
- Correspondence:
| | - Moses Njire
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - Samuel Were
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - Mevin Kiprotich Lagat
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - Francis Ndwiga
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - John Mwibanda Wesonga
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya;
| | - Chrysantus Mbi Tanga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya;
| |
Collapse
|
24
|
Fouad FA, Youssef DG, Shahat FM, Abd El-Ghany MN. Role of Microorganisms in Biodegradation of Pollutants. HANDBOOK OF BIODEGRADABLE MATERIALS 2022:1-40. [DOI: 10.1007/978-3-030-83783-9_11-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/13/2022] [Indexed: 09/01/2023]
|
25
|
Abdelkhalek A, Qari SH, Abu-Saied MAAR, Khalil AM, Younes HA, Nehela Y, Behiry SI. Chitosan Nanoparticles Inactivate Alfalfa Mosaic Virus Replication and Boost Innate Immunity in Nicotiana glutinosa Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2701. [PMID: 34961172 PMCID: PMC8703458 DOI: 10.3390/plants10122701] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 06/01/2023]
Abstract
Plant viral infection is one of the most severe issues in food security globally, resulting in considerable crop production losses. Chitosan is a well-known biocontrol agent against a variety of plant infections. However, research on combatting viral infections is still in its early stages. The current study investigated the antiviral activities (protective, curative, and inactivation) of the prepared chitosan/dextran nanoparticles (CDNPs, 100 µg mL-1) on Nicotiana glutinosa plants. Scanning electron microscope (SEM) and dynamic light scattering analysis revealed that the synthesized CDNPs had a uniform, regular sphere shapes ranging from 20 to 160 nm in diameter, with an average diameter of 91.68 nm. The inactivation treatment was the most effective treatment, which resulted in a 100% reduction in the alfalfa mosaic virus (AMV, Acc# OK413670) accumulation level. On the other hand, the foliar application of CDNPs decreased disease severity and significantly reduced viral accumulation levels by 70.43% and 61.65% in protective and curative treatments, respectively, under greenhouse conditions. Additionally, the induction of systemic acquired resistance, increasing total carbohydrates and total phenolic contents, as well as triggering the transcriptional levels of peroxidase, pathogen-related protein-1, and phenylalanine ammonia-lyase were observed. In light of the results, we propose that the potential application of CDNPs could be an eco-friendly approach to enhance yield and a more effective therapeutic elicitor for disease management in plants upon induction of defense systems.
Collapse
Affiliation(s)
- Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El-Arab City 21934, Alexandria, Egypt
| | - Sameer H. Qari
- Biology Department, Al-Jumum University College, Umm Al-Qura University, Mecca 25376, Saudi Arabia;
| | - Mohamed Abd Al-Raheem Abu-Saied
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt;
| | - Abdallah Mohamed Khalil
- Plant Botany Department, Faculty of Science, Omar Al-Mukhtar University, Al Bayda 00218-84, Libya;
| | - Hosny A. Younes
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt;
- Citrus Research and Education Center, Department of Plant Pathology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| |
Collapse
|
26
|
Gangireddygari VSR, Chung BN, Cho IS, Yoon JY. Inhibitory Effect of Chitosan and Phosphate Cross-linked Chitosan against Cucumber Mosaic Virus and Pepper Mild Mottle Virus. THE PLANT PATHOLOGY JOURNAL 2021; 37:632-640. [PMID: 34897254 PMCID: PMC8666249 DOI: 10.5423/ppj.oa.10.2021.0155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Cucumber mosaic virus (CMV) and Pepper mild mottle virus (PMMoV) causes severe economic loss in crop productivity of both agriculture and horticulture crops in Korea. The previous surveys showed that naturally available biopolymer material - chitosan (CS), which is from shrimp cells, reduced CMV accumulation on pepper. To improve the antiviral activity of CS, it was synthesized to form phosphate cross-linked chitosan (PCS) and compared with the original CS. Initially, the activity of CS and PCS (0.01%, 0.05%, and 0.1% concentration) compound against PMMoV infection and replication was tested using a half-leaf assay on Nicotiana glutinosa leaves. The total number of local lesions represented on a leaf of N. glutinosa were counted and analyzed with phosphate buffer treated leaves as a negative control. The leaves treated with a 0.1% concentration of CS or PCS compounds exhibited an inhibition effect by 40-75% compared with the control leaves. The same treatment significantly reduced about 40% CMV accumulation measured by double antibody sandwich enzyme-linked immunosorbent assay and increased the relative expression levels of the NPR1, PR-1, cysteine protease inhibitor gene, LOX, PAL, SRC2, CRF3 and ERF4 genes analyzed by quantitative reverse transcriptase-polymerase chain reaction, in chili pepper plants.
Collapse
Affiliation(s)
- Venkata Subba Reddy Gangireddygari
- Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Bong Nam Chung
- Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - In-Sook Cho
- Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Ju-Yeon Yoon
- Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
- Graduate School on Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
27
|
Panichikkal J, Jose A, Sreekumaran S, Ashokan AK, Baby CS, Krishnankutty RE. Biofilm and Biocontrol Modulation of Paenibacillus sp. CCB36 by Supplementation with Zinc Oxide Nanoparticles and Chitosan Nanoparticles. Appl Biochem Biotechnol 2021; 194:1606-1620. [PMID: 34822058 DOI: 10.1007/s12010-021-03710-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
Endophytic bacteria with multi-trait plant beneficial features have applications to enhance agricultural productivity by supporting the plant growth, yield, and disease resistance. In this study, Paenibacillus sp. CCB36 was isolated from the rhizome of Curcuma caesia Roxb., and its biofilm formation and antifungal properties have been evaluated in the presence of nanoparticles. Chitosan nanoparticles (CNPs) were synthesized and characterized by UV-visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, high-resolution-transmission electron microscopic (HR-TEM) analysis, scanning electron microscopic (SEM) analysis, and dynamic light scattering (DLS). The effect of zinc oxide nanoparticles (ZnONPs) and CNPs on biofilm formation of Paenibacillus sp. CCB36 was evaluated by tissue culture plate assay. ZnONPs reduced its biofilm formation and was found to get modulated in the presence of CNPs as revealed by atomic force microscopy (AFM). Hence, CNPs were selected for further studies. Interestingly, biocontrol property of Paenibacillus sp. CCB36 against Rhizoctonia solani was also found to get enhanced when supplemented with chitosan nanoparticles. The results of the study indicate application of nanoparticles to improve colonization and active functioning of endophytic bacteria which can have significant application in agriculture.
Collapse
Affiliation(s)
- Jishma Panichikkal
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, India, 686 560
| | - Ashitha Jose
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, India, 686 560
| | - Sreejith Sreekumaran
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, India, 686 560
| | | | - Cimmiya Susan Baby
- Department of Biosciences, M.E.S. College, Marampally (PO), Aluva, Kerala, India, 683 107
| | | |
Collapse
|
28
|
Chaves-Gómez JL, Chávez-Arias CC, Prado AMC, Gómez-Caro S, Restrepo-Díaz H. Mixtures of Biological Control Agents and Organic Additives Improve Physiological Behavior in Cape Gooseberry Plants under Vascular Wilt Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:2059. [PMID: 34685868 PMCID: PMC8537006 DOI: 10.3390/plants10102059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to assess the soil application of mixtures of biological control agents (BCAs) (Trichoderma virens and Bacillus velezensis) and organic additives (chitosan and burnt rice husk) on the physiological and biochemical behavior of cape gooseberry plants exposed to Fusarium oxysporum f. sp. physali (Foph) inoculum. The treatments with inoculated and non-inoculated plants were: (i) T. virens + B. velezensis (Mix), (ii) T. virens + B. velezensis + burnt rice husk (MixRh), (iii) T. virens + B. velezensis + chitosan (MixChi), and (iv) controls (plants without any mixtures). Plants inoculated and treated with Mix or MixChi reduced the area under the disease progress curve (AUDPC) (57.1) and disease severity index (DSI) (2.97) compared to inoculated plants without any treatment (69.3 for AUDPC and 3.2 for DSI). Additionally, these groups of plants (Mix or MixChi) obtained greater leaf water potential (~-0.5 Mpa) and a lower MDA production (~12.5 µmol g-2 FW) than plants with Foph and without mixtures (-0.61 Mpa and 18.2 µmol g-2 FW, respectively). The results suggest that MixChi treatments may be a promising alternative for vascular wilt management in cape gooseberry crops affected by this disease.
Collapse
Affiliation(s)
- José Luis Chaves-Gómez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111321, Colombia; (J.L.C.-G.); (C.C.C.-A.); (S.G.-C.)
| | - Cristian Camilo Chávez-Arias
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111321, Colombia; (J.L.C.-G.); (C.C.C.-A.); (S.G.-C.)
| | - Alba Marina Cotes Prado
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Centro de Investigación Tibaitatá, Km 14 vía Bogotá a Mosquera, Mosquera 250047, Colombia;
| | - Sandra Gómez-Caro
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111321, Colombia; (J.L.C.-G.); (C.C.C.-A.); (S.G.-C.)
| | - Hermann Restrepo-Díaz
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111321, Colombia; (J.L.C.-G.); (C.C.C.-A.); (S.G.-C.)
| |
Collapse
|
29
|
Schiavi D, Balbi R, Giovagnoli S, Camaioni E, Botticella E, Sestili F, Balestra GM. A Green Nanostructured Pesticide to Control Tomato Bacterial Speck Disease. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1852. [PMID: 34361238 PMCID: PMC8308196 DOI: 10.3390/nano11071852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Bacterial speck disease, caused by Pseudomonas syringae pv. tomato (Pst), is one of the most pervasive biological adversities in tomato cultivation, in both industrial and in table varieties. In this work synthesis, biochemical and antibacterial properties of a novel organic nanostructured pesticide composed of chitosan hydrochloride (CH) as active ingredient, cellulose nanocrystals (CNC) as nanocarriers and starch as excipient were evaluated. In order to study the possibility of delivering CH, the effects of two different types of starches, extracted from a high amylose bread wheat (high amylose starch-HA Starch) and from a control genotype (standard starch-St Starch), were investigated. Nanostructured microparticles (NMP) were obtained through the spray-drying technique, revealing a CH loading capacity proximal to 50%, with a CH release of 30% for CH-CNC-St Starch NMP and 50% for CH-CNC-HA Starch NMP after 24 h. Both NMP were able to inhibit bacterial growth in vitro when used at 1% w/v. Moreover, no negative effects on vegetative growth were recorded when NMP were foliar applied on tomato plants. Proposed nanostructured pesticides showed the capability of diminishing Pst epiphytical survival during time, decreasing disease incidence and severity (from 45% to 49%), with results comparable to one of the most used cupric salt (hydroxide), pointing out the potential use of CH-CNC-Starch NMP as a sustainable and innovative ally in Pst control strategies.
Collapse
Affiliation(s)
- Daniele Schiavi
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (E.B.); (F.S.)
| | - Rosa Balbi
- Department of Pharmaceutical Sciences (DSF), University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (R.B.); (S.G.); (E.C.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences (DSF), University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (R.B.); (S.G.); (E.C.)
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences (DSF), University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (R.B.); (S.G.); (E.C.)
| | - Ermelinda Botticella
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (E.B.); (F.S.)
- CNR-Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Francesco Sestili
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (E.B.); (F.S.)
| | - Giorgio Mariano Balestra
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (E.B.); (F.S.)
| |
Collapse
|
30
|
Ghule MR, Ramteke PK, Ramteke SD, Kodre PS, Langote A, Gaikwad AV, Holkar SK, Jambhekar H. Impact of chitosan seed treatment of fenugreek for management of root rot disease caused by Fusarium solani under in vitro and in vivo conditions. 3 Biotech 2021; 11:290. [PMID: 34109093 DOI: 10.1007/s13205-021-02843-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022] Open
Abstract
The use of chitosan as an alternative for fungicides has received more attention worldwide. Hence, this study aimed to evaluate in vitro and in vivo antifungal activity of chitosan against Fusarium solani causing root rot in fenugreek. Chitosan treatments ranged from 0.1 to 2gL-1 were tested against F. solani on to potato dextrose agar and in potato dextrose broth. The results revealed that increase in concentrations of chitosan significantly reduced growth, dried biomass, sporulation and spore germination of F. solani. The hyphal swellings and distortion of F. solani mycelia were induced by chitosan. Fenugreek seeds treated with chitosan at 2 gL-1 and 0.5 gL-1 showed reduced F. solani infection and increased seed germination, respectively. In pot and field studies, fenugreek seeds treated with chitosan at 2.0 gL-1 greatly reduced root rot disease severity and also enhanced yield parameters. The activity of defence enzymes, such as chitinase, β-1, 3-glucanase and total phenol were increased in chitosan treated in fenugreek plants. This increased activity offered protection to fenugreek plants against F. solani to a greater extent. The results showed that chitosan could be used as inducer of defense response and has the potential of controlling fenugreek root rot disease.
Collapse
|
31
|
Lipid-Based Natural Food Extracts for Effective Control of Botrytis Bunch Rot and Powdery Mildew on Field-Grown Winegrapes in New Zealand. PLANTS 2021; 10:plants10030423. [PMID: 33668230 PMCID: PMC7996311 DOI: 10.3390/plants10030423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
Synthetic controls of crop pathogens are increasingly associated with harm to the environment and human health, and pathogen resistance. Pesticide residues in crops can also act as non-tariff trade barriers. There is therefore a strong imperative to develop biologically based and natural product (NP) biofungicides as more sustainable alternatives for crop pathogen control. We demonstrate the field efficacy, over multiple seasons, of NP biofungicides, NP1 (based on anhydrous milk fat) and NP2 (based on soybean oil), on two major diseases of winegrapes-Botrytis bunch rot (Botrytis) and powdery mildew (PM). The NPs were integrated into a season-long integrated disease management programme that has produced chemical-residue-free wines. Efficacies for Botrytis control on three different varieties were: 63-97% on Chardonnay, 0-96% for Sauvignon Blanc and 46-58% on Riesling; with 65-98% PM control on Chardonnay and Riesling. NP2 exhibited the significant control of Botrytis latent infections, making it a viable alternative to mid-season synthetic fungicides. Disease control was significantly better than the untreated control and usually as efficacious as the synthetic fungicide treatment(s). Yields and wine quality in NP-treated crops were normally equivalent to those in the synthetic fungicide treatments. The results indicate that NP-mediated disease control of Botrytis and powdery mildew can be obtained in the vineyard, without synthetic fungicide input.
Collapse
|
32
|
Chemical Proprieties of Biopolymers (Chitin/Chitosan) and Their Synergic Effects with Endophytic Bacillus Species: Unlimited Applications in Agriculture. Molecules 2021; 26:molecules26041117. [PMID: 33672446 PMCID: PMC7923285 DOI: 10.3390/molecules26041117] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022] Open
Abstract
Over the past decade, reckless usage of synthetic pesticides and fertilizers in agriculture has made the environment and human health progressively vulnerable. This setting leads to the pursuit of other environmentally friendly interventions. Amongst the suggested solutions, the use of chitin and chitosan came about, whether alone or in combination with endophytic bacterial strains. In the framework of this research, we reported an assortment of studies on the physico-chemical properties and potential applications in the agricultural field of two biopolymers extracted from shrimp shells (chitin and chitosan), in addition to their uses as biofertilizers and biostimulators in combination with bacterial strains of the genus Bacillus sp. (having biochemical and enzymatic properties).
Collapse
|
33
|
Malar CG, Seenuvasan M, Kumar KS, Kumar MA. Synthesis and applications of Chitosan: A contemporary macromolecule. MICROBIAL AND NATURAL MACROMOLECULES 2021:73-86. [DOI: 10.1016/b978-0-12-820084-1.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
34
|
Abdel-Sattar M, Haikal AM, Hammad SE. Meloidogyne incognita population control and nutritional status and productivity of Thompson seedless grapevines managed with different treatments. PLoS One 2020; 15:e0239993. [PMID: 33022025 PMCID: PMC7537898 DOI: 10.1371/journal.pone.0239993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/16/2020] [Indexed: 11/25/2022] Open
Abstract
A two-year field trial was conducted in a vineyard (northern Egypt)cultivated with Thompson seedless grapevines to evaluate the effectiveness of four “alternative” (biological/chemical) treatments, Bacillus megaterium, boric acid, calcium nitrate and chitosan, against the root-knot nematode Meloidogyne incognita (Mi), compared to that of the nematicide oxamyl. The influence of these treatments on plant nutritional status and fruit yield and quality was also assessed. All treatments significantly inhibited Mi reproduction parameters in both seasons, decreasing the numbers of nematode galls and egg masses (roots) and of second-stage juveniles (soil). Oxamyl application resulted in the highest reductions in Mi-reproduction parameters, followed by boric acid, which also showed the highest relative nematicidal efficacy (respect to oxamyl). In the 1st season, the highest fruit yield (10.34 kg/grapevine) was recorded from boric acid-treated plants, followed by that from oxamyl-treated plants (7.50 kg/grapevine); in the subsequent season (2019), oxamyl use led to the highest yield, followed by boric acid + chitosan use (10.04 and 8.62 kg/grapevine, respectively). In both seasons, application of boric acid alone and combined with chitosan enhanced the total soluble solids (TSS)/total acidity ratio in grape juice. All treatments led to higher nutrient contents (leaf petioles) and chlorophyll levels (leaves) as well as enhanced fruit size and weight. We conclude that the tested treatments can be safely applied for nematode management in Thompson seedless grapevines, with positive effects on fruit yield and quality.
Collapse
Affiliation(s)
- Mahmoud Abdel-Sattar
- Department of Plant Production, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Pomology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
- * E-mail:
| | - Amr M. Haikal
- Horticulture Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Sandy E. Hammad
- Department of Plant Nematology Research, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
35
|
Taha SH, El-Sherbiny IM, Salem AS, Abdel-Hamid M, Hamed AH, Ahmed GA. Antiviral Activity of Curcumin Loaded Milk Proteins Nanoparticles on Potato Virus Y. Pak J Biol Sci 2020; 22:614-622. [PMID: 31930861 DOI: 10.3923/pjbs.2019.614.622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Potato is one of the world's leading vegetable crops. Potato viral diseases cause adversely effects on the agricultural sector. Recently there is a growing interest to control plant viruses using spices and herbs (including curcumin). Poor solubility of curcumin in water limited its applications. Therefore, the main objective of the present study was to evaluate the effect of antiviral activity of curcumin-milk proteins nanoparticles against potato virus Y (PVY). MATERIALS AND METHODS Curcumin-milk proteins nanoparticles were prepared via ionic gelation method. The antiviral activity of the resultant nanoparticles against PVY was evaluated at different concentrations (500, 1000 and 1500 mg/100 mL). Chlorophyll content as well as the activity of peroxidase (POX) and polyphenol oxidase (PPO) was examined. RESULTS Curcumin-milk proteins nanoparticles showed inhibitory effect on PVY in a concentration dependent manner. CONCLUSION Curcumin-milk proteins nanoparticles displayed a successful tool to control the PVY under green house conditions.
Collapse
|
36
|
Lin YC, Chung KR, Huang JW. A Synergistic Effect of Chitosan and Lactic Acid Bacteria on the Control of Cruciferous Vegetable Diseases. THE PLANT PATHOLOGY JOURNAL 2020; 36:157-169. [PMID: 32296295 PMCID: PMC7143521 DOI: 10.5423/ppj.oa.01.2020.0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Two lactic acid bacteria (LAB) designated J02 and J13 were recovered from fermented vegetables based on their ability to suppress soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) on radish. J02 and J13 were identified as Lactobacillus pentosus and Leuconostoc fallax, respectively. The ability of J02 and J13 to suppress plant diseases is highly dependent on chitosan. LAB alone has no effect and chitosan alone has only a moderate effect on disease reduction. However, J02 or J13 broth cultures plus chitosan display a strong inhibitory effect against plant pathogens and significantly reduces disease severity. LAB strains after being cultured in fish surimi (agricultural waste) and glycerol or sucrose-containing medium and mixed with chitosan, reduce three cruciferous vegetable diseases, including cabbage black spot caused by Alternaria brassicicola, black rot caused by Xanthomonas campestris pv. campestris, and soft rot caused by Pcc. Experimental trials reveal that multiple applications are more effective than a single application. In-vitro assays also reveal the J02/chitosan mixture is antagonistic against Colletotrichum higginsianum, Sclerotium rolfsii, and Fusarium oxysporum f. sp. rapae, indicating a broad-spectrum activity of LAB/chitosan. Overall, our results indicate that a synergistic combination of LAB and chitosan offers a promising approach to biocontrol.
Collapse
Affiliation(s)
- Yu-Chen Lin
- Department of Plant Pathology, National Chung Hsing University (NCHU), Taichung 40227, Taiwan
| | - Kuang-Ren Chung
- Department of Plant Pathology, National Chung Hsing University (NCHU), Taichung 40227, Taiwan
| | - Jenn-Wen Huang
- Department of Plant Pathology, National Chung Hsing University (NCHU), Taichung 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), NCHU, Taichung 40227, Taiwan
| |
Collapse
|
37
|
Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhances biotic stress tolerance in tomato. Int J Biol Macromol 2019; 125:948-954. [DOI: 10.1016/j.ijbiomac.2018.12.167] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
|
38
|
Rendina N, Nuzzaci M, Scopa A, Cuypers A, Sofo A. Chitosan-elicited defense responses in Cucumber mosaic virus (CMV)-infected tomato plants. JOURNAL OF PLANT PHYSIOLOGY 2019; 234-235:9-17. [PMID: 30640158 DOI: 10.1016/j.jplph.2019.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/06/2018] [Accepted: 01/03/2019] [Indexed: 05/26/2023]
Abstract
The control of plant diseases by inducing plant resistance responses represents an interesting solution to avoid yield losses and protect the natural environment. Hence, the intertwined relationships between host, pathogen and inducer are increasingly subject of investigations. Here, we report the efficacy of chitosan-elicited defense responses in Solanum lycopersicum var. cerasiforme plants against Cucumber mosaic virus (CMV). Chitosan was applied via foliar spray before the CMV inoculation to verify its effectiveness as a preventive treatment against the viral infection. Virus accumulation, photosynthetic performance, as well as genes encoding for proteins affecting resistance responses and biosynthetic pathways, were investigated. It was observed a significant reduction of CMV accumulation in chitosan-treated plants that were successively infected with CMV, compared to only CMV-infected ones (up to 100%). Similarly, a positive effect of chitosan on gas exchange dynamics was revealed. The analysis of gene expression (CEVI-1, NPR1, PSY2 and PAL5) suggested the occurrence of chitosan-induced, systemic acquired resistance-related responses associated with a readjustment of the plant's oxidative status. In addition, the absence of deleterious symptoms in chitosan-treated successively CMV-infected plants, confirmed that chitosan can be used as a powerful control agent. Our data indicate that chitosan, when preventively applied, is able to elicit defense responses in tomato to control CMV infection. Such finding may be recommended to protect the tomato fruit yields as well as other crops.
Collapse
Affiliation(s)
- Nunzia Rendina
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell' Ateneo Lucano, 10, 85100 Potenza, Italy.
| | - Maria Nuzzaci
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell' Ateneo Lucano, 10, 85100 Potenza, Italy.
| | - Antonio Scopa
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell' Ateneo Lucano, 10, 85100 Potenza, Italy.
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, 3590 Diepenbeek, Belgium.
| | - Adriano Sofo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell' Ateneo Lucano, 10, 85100 Potenza, Italy.
| |
Collapse
|
39
|
|