1
|
Faheem S, Hameed H, Paiva-Santos AC, Khan MA, Ghumman SA, Hameed A. The role of chondroitin sulphate as a potential biomaterial for hepatic tissue regeneration: A comprehensive review. Int J Biol Macromol 2024; 280:136332. [PMID: 39482129 DOI: 10.1016/j.ijbiomac.2024.136332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Chondroitin sulphate is an anionic hetero-polysaccharide, having numerous structural affinities for building the bio-active components. In addition to biodegradable/biocompatible activities, chondroitin sulphate also possesses anti-coagulant/anti-thrombogenic, anti-inflammatory, anti-oxidant as well as anti-tumor activities. Chondroitin sulphate has an inherited affinity for glycosylation enzymes and receptors, which are overexpressed over degenerated cells and organelles. Because of this affinity, chondroitin sulphate is nominated as an active cellular/subcellular targeted biological macromolecule to assist in site-specific delivery. Chondroitin sulphate is mainly considered a promising biomaterial for drug targeting and tissue engineering due to its specific physicochemical, mechanical, bio-degradation, and biological characteristics. In this review, the fundamental applications of chondroitin sulphate in hepatic tissue engineering are discussed. Chondroitin sulphate along with mesenchymal stem cells (MSCs) based scaffold and hydrogels for biopharmaceuticals' delivery in hepatic tissue engineering are critically discussed. In addition, the manuscript also describes leading features and markers involved in hepatic damage, and the potential role of chondroitin sulphate-based delivery systems in hepatic tissue engineering.
Collapse
Affiliation(s)
- Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | | | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan.
| |
Collapse
|
2
|
A novel Atlantic salmon (Salmo salar) bone collagen peptide delays osteoarthritis development by inhibiting cartilage matrix degradation and anti-inflammatory. Food Res Int 2022; 162:112148. [PMID: 36461366 DOI: 10.1016/j.foodres.2022.112148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Nowadays, the biological activity of collagen peptides has been revealed, but the effect of Atlantic salmon (Salmo salar) bone-derived collagen peptide (CPs) on osteoarthritis remains unclear. In this study, CPs was identified as a small molecular weight peptide rich in Gly-X-Y structure. Meanwhile, interleukin-1β (IL-1β)-induced hypertrophic chondrocytes and partial medial meniscectomy (pMMx) surgery model in rats were performed. In IL-1β stimulated chondrocytes, CPs significantly increased the type-II collagen content, reduced the type-X collagen abundance and chondrocytes apoptosis. Meanwhile, CPs reversed the increased expression of matrix metalloproteinase, metalloproteinase with thrombospondin motifs and RUNX family transcription factor 2 in chondrocytes induced by IL-1β. In vivo, CPs increased pain tolerance of rats and without organ toxicity at 1.6 g/kg.bw. CPs significantly decreased the levels of COMP and Helix-II in serum. Furthermore, a significant decrease of IL-1β in synovial fluid and cartilage tissue were observed by CPs intervention. From Micro-CT, CPs (0.8 g/kg.bw) significantly decreased Tb.sp and SMI value. Meanwhile, the expression of tumor necrosis factor and interleukin-6 were reduced by CPs administration both in vitro and in vivo. Together, CPs showed potential to be a novel and safe dietary supplement for helping anti-inflammatory and cartilage regeneration, ultimately hindering osteoarthritis development. However, the clear mechanism of CPs's positive effect on osteoarthritis needs to be further explored.
Collapse
|
3
|
Cunningham R, Gruen ME, Thomson A, Lascelles BDX. Evaluation of a nutritional supplement for the alleviation of pain associated with feline degenerative joint disease: a prospective, randomized, stratified, double-blind, placebo-controlled clinical trial. J Feline Med Surg 2022; 24:962-974. [PMID: 34719996 PMCID: PMC10812307 DOI: 10.1177/1098612x211053484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate the pain-alleviating and activity-enhancing effects of glucosamine/chondroitin sulfate (Dasuquin) in cats that had degenerative joint disease (DJD) and owner-noted mobility/activity impairment. We hypothesized that the nutritional supplement would produce pain-relieving and activity-enhancing effects in cats with painful DJD. METHODS In this prospective, randomized, stratified, double-blind, placebo-controlled clinical trial, 59 cats with DJD pain were assigned to receive a placebo (n = 30) or supplement (n = 29) for 6 weeks after 2 weeks of placebo. Outcome measures (at-home accelerometry and client-specific outcome measures [feline (CSOMf); Feline Musculoskeletal Pain Index (FMPI); quality of life (QoL)]; and veterinarian examination) were collected at days 14, 28, 42 and 56. RESULTS Twenty-seven cats in the treatment group and 30 in the placebo group completed the trial. Within the first 2 weeks (placebo administration to all cats), 78% of all cats had an improvement in CSOMf scores. Both groups showed significant improvement at most time points in CSOMf, FMPI, QoL and pain scores, with the placebo group showing greater improvement than the supplement group (significant for CSOMf [P = 0.01]). Overall, no differences in activity were seen between the groups. Cumulative distribution function analysis indicated that for most levels of activity, the placebo-treated cats were more active; however, the least active cats were more active on the supplement (P = 0.013). CONCLUSIONS AND RELEVANCE This study showed a strong placebo effect. The glucosamine/chondroitin sulfate supplement did not show pain-relieving effects when compared with placebo.
Collapse
Affiliation(s)
- Rachael Cunningham
- Comparative Behavioral Research, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Translational Research in Pain (TRiP) Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Margaret E Gruen
- Comparative Behavioral Research, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Andrea Thomson
- Comparative Behavioral Research, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Translational Research in Pain (TRiP) Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - B Duncan X Lascelles
- Translational Research in Pain (TRiP) Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Center for Translational Pain Research, Department of Anesthesiology, Duke University, NC, USA
| |
Collapse
|
4
|
Dong FK, Quan XG, Wang QB, Liu ZM, Cui T, Wang WJ, Tang DM, Zhang RM, Zhang C, Wang HY, Ren Q. Purification, structural characterization, and anticoagulant activity evaluation of chondroitin sulfate from codfish (Gadus macrocephalus) bones. Int J Biol Macromol 2022; 210:759-767. [PMID: 35526771 DOI: 10.1016/j.ijbiomac.2022.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/13/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
Abstract
Chondroitin sulfate (CCS) was purified from discarded codfish (Gadus macrocephalus) bones, and its chemical structure and anticoagulant activity were assessed. CCS was obtained via enzymatic lysis and ion-exchange column chromatography, with a yield of approximately 0.15%. High-performance gel performance chromatography revealed CCS to be a largely homogeneous polysaccharide with a relatively low molecular weight of 12.3 kDa. FT-IR spectroscopy, NMR spectroscopy, and SAX-HPLC indicated that CCS was composed of monosulfated disaccharides (ΔDi4S 73.85% and ΔDi6S 19.06%) and nonsulfated disaccharides (ΔDi0S 7.09%). In vitro anticoagulation analyses revealed that CCS was able to significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT) (p < 0.05). At a CCS concentration of 5 μg/mL and 25 μg/mL, APTT and TT were approximately 1.08 and 1.12 times higher, respectively, compared to the negative control group. The results indicated that CCS might offer value as a dietary fiber supplement with the potential to prevent the incidence of coagulation-related thrombosis.
Collapse
Affiliation(s)
- Fa-Kun Dong
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Xian-Gao Quan
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Qing-Bing Wang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zhao-Ming Liu
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Teng Cui
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wen-Jing Wang
- Rongsense Aquatic Food Group Co. LTD, Rizhao, Shandong, China
| | - Dao-Min Tang
- Rongsense Aquatic Food Group Co. LTD, Rizhao, Shandong, China
| | - Rui-Ming Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Chen Zhang
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Hui-Yun Wang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
5
|
Low molecular weight chondroitin sulfate ameliorates pathological changes in 5XFAD mice by improving various functions in the brain. Neuropharmacology 2021; 199:108796. [PMID: 34543632 DOI: 10.1016/j.neuropharm.2021.108796] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022]
Abstract
Our previous study found that low molecular weight chondroitin sulfate (LMWCS) had neuroprotective effects against the toxicity of amyloid-β (Aβ) peptides both in vitro and in vivo, and we speculated that the effects might be related with its anti-oxidative activities. In this study, the anti-Alzheimer's disease (AD) activity of LMWCS was further studied in 5XFAD transgenic mice. After 4-month gavage, the levels of Aβ1-42 level, amyloid precursor protein (APP) and presenilin 1 (PS1) were significantly decreased in the brains of 5XFAD mice, indicating the alteration of APP metabolism by LMWCS. Besides, LMWCS inhibited the secretions of pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6. Furthermore, the suppression of neuroinflammation by LMWCS was supported by the decreased expressions of glial fibrillary acidic protein (GFAP) and toll-like receptor 2 (TLR2) in the brains. LMWCS also reduced the production of reactive oxygen species (ROS) and the level of phospho-tau (Ser404) in the brains. Nevertheless, the changes in the behavior tests were moderate. In conclusion, LMWCS administration ameliorated APP metabolism, neuroinflammation, ROS production and tau protein abnormality in the brains of 5XFAD mice, displaying the potential to improve the pathological changes of AD mouse brain. LMWCS could be considered as a promising anti-AD drug candidate, nonetheless, the therapy regimen need to be optimized to improve its pharmacotherapy efficacy.
Collapse
|
6
|
Marine Collagen Hydrolysates Promote Collagen Synthesis, Viability and Proliferation While Downregulating the Synthesis of Pro-Catabolic Markers in Human Articular Chondrocytes. Int J Mol Sci 2021; 22:ijms22073693. [PMID: 33916312 PMCID: PMC8036580 DOI: 10.3390/ijms22073693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/08/2023] Open
Abstract
Cartilage is a non-innervated and non-vascularized tissue. It is composed of one main cell type, the chondrocyte, which governs homeostasis within the cartilage tissue, but has low metabolic activity. Articular cartilage undergoes substantial stresses that lead to chondral defects, and inevitably osteoarthritis (OA) due to the low intrinsic repair capacity of cartilage. OA remains an incurable degenerative disease. In this context, several dietary supplements have shown promising results, notably in the relief of OA symptoms. In this study, we investigated the effects of collagen hydrolysates derived from fish skin (Promerim®30 and Promerim®60) and fish cartilage (Promerim®40) on the phenotype and metabolism of human articular chondrocytes (HACs). First, we demonstrated the safety of Promerim® hydrolysates on HACs cultured in monolayers. Then we showed that, Promerim® hydrolysates can increase the HAC viability and proliferation, while decreasing HAC SA-β-galactosidase activity. To evaluate the effect of Promerim® on a more relevant model of culture, HAC were cultured as organoids in the presence of Promerim® hydrolysates with or without IL-1β to mimic an OA environment. In such conditions, Promerim® hydrolysates led to a decrease in the transcript levels of some proteases that play a major role in the development of OA, such as Htra1 and metalloproteinase-1. Promerim® hydrolysates downregulated HtrA1 protein expression. In contrast, the treatment of cartilage organoids with Promerim® hydrolysates increased the neosynthesis of type I collagen (Promerim®30, 40 and 60) and type II collagen isoforms (Promerim®30 and 40), the latter being the major characteristic component of the cartilage extracellular matrix. Altogether, our results demonstrate that the use of Promerim® hydrolysates hold promise as complementary dietary supplements in combination with the current classical treatments or as a preventive therapy to delay the occurrence of OA in humans.
Collapse
|
7
|
Leakey JEA, Ali AA, Babb AR, Badgley HL, Davis KJ, Juliar BE, Leakey TI, Lewis SM, Patton RE, Seng JE. Subchronic toxicity evaluation of glucosamine and glucosamine in combination with chondroitin sulfate in obese Zucker rats. Toxicol Appl Pharmacol 2021; 412:115371. [PMID: 33345901 DOI: 10.1016/j.taap.2020.115371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
D-glucosamine is a widely consumed dietary supplement used to promote joint health and treat osteoarthritis. It also stimulates intracellular hexosamine flux and increases transforming growth factor β1 (TGFβ1) mRNA expression and insulin resistance in animal studies. The effects of D-glucosamine exposure were investigated in obese Zucker rats. Male (leprfa/leprfa) Zucker rats were exposed to 30, 120, 300 and 600 mg D-glucosamine HCl per kg/day either alone or with chondroitin sulfate (24, 96, 240 and 480 mg/kg/day respectively) for 90 days. After 4 weeks exposure, these doses produced CmaxD-glucosamine concentrations of up to 24 μM in tail vein serum concurrent with a transient 30% increase in blood glucose concentration in the 600 mg/kg/day dose group. D-Glucosamine did not significantly alter body weight, blood glucose or serum insulin levels at any dose tested after 13 weeks exposure, but did increase urinary TGFβ1 concentrations. The Zucker rats developed nephropathy and scrotal sores that were related to their hyperglycemia and obesity, and D-glucosamine exposure exacerbated these conditions to a small extent. The incidence of pulmonary osseous metaplasia was increased in rats exposed to D-glucosamine and a single incidence of adrenal osseous metaplasia was noted in one animal exposed to 600/480 mg D-glucosamine HCl/chondroitin sulfate. These lesions may have been treatment related. These studies suggest that the risk of adverse effects of oral D-glucosamine is small compared to that of hyperglycemia in these animals, but the potential for TGFβ1-mediated pathologies, such as osseous metaplasia and renal nephropathy may be increased.
Collapse
Affiliation(s)
- Julian E A Leakey
- Office of Scientific Coordination, 3900 NCTR Rd., Jefferson, AR 72079, United States of America.
| | - A Afshan Ali
- Office of Scientific Coordination, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - Amy R Babb
- Office of Scientific Coordination, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - Heidi L Badgley
- Toxicologic Pathology Associates, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - Kelly J Davis
- Toxicologic Pathology Associates, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - Beth E Juliar
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - Tatiana I Leakey
- Office of Scientific Coordination, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - Sherry M Lewis
- Office of Scientific Coordination, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - Ralph E Patton
- Toxicologic Pathology Associates, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - John E Seng
- Toxicologic Pathology Associates, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| |
Collapse
|
8
|
Bourdon B, Contentin R, Cassé F, Maspimby C, Oddoux S, Noël A, Legendre F, Gruchy N, Galéra P. Marine Collagen Hydrolysates Downregulate the Synthesis of Pro-Catabolic and Pro-Inflammatory Markers of Osteoarthritis and Favor Collagen Production and Metabolic Activity in Equine Articular Chondrocyte Organoids. Int J Mol Sci 2021; 22:ijms22020580. [PMID: 33430111 PMCID: PMC7826754 DOI: 10.3390/ijms22020580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 01/07/2023] Open
Abstract
Articular cartilage experiences mechanical constraints leading to chondral defects that inevitably evolve into osteoarthritis (OA), because cartilage has poor intrinsic repair capacity. Although OA is an incurable degenerative disease, several dietary supplements may help improve OA outcomes. In this study, we investigated the effects of Dielen® hydrolyzed fish collagens from skin (Promerim®30 and Promerim®60) and cartilage (Promerim®40) to analyze the phenotype and metabolism of equine articular chondrocytes (eACs) cultured as organoids. Here, our findings demonstrated the absence of cytotoxicity and the beneficial effect of Promerim® hydrolysates on eAC metabolic activity under physioxia; further, Promerim®30 also delayed eAC senescence. To assess the effect of Promerim® in a cartilage-like tissue, eACs were cultured as organoids under hypoxia with or without BMP-2 and/or IL-1β. In some instances, alone or in the presence of IL-1β, Promerim®30 and Promerim®40 increased protein synthesis of collagen types I and II, while decreasing transcript levels of proteases involved in OA pathogenesis, namely Htra1, and the metalloproteinases Mmp1-3, Adamts5, and Cox2. Both Promerim® hydrolysates also decreased Htra1 protein amounts, particularly in inflammatory conditions. The effect of Promerim® was enhanced under inflammatory conditions, possibly due to a decrease in the synthesis of inflammation-associated molecules. Finally, Promerim® favored in vitro repair in a scratch wound assay through an increase in cell proliferation or migration. Altogether, these data show that Promerim®30 and 40 hold promise as dietary supplements to relieve OA symptoms in patients and to delay OA progression.
Collapse
Affiliation(s)
- Bastien Bourdon
- Normandie University, UNICAEN, BIOTARGEN, 14000 Caen, France; (B.B.); (R.C.); (F.C.); (C.M.); (F.L.); (N.G.)
- Dielen Laboratory, 50110 Tourlaville, France; (S.O.); (A.N.)
| | - Romain Contentin
- Normandie University, UNICAEN, BIOTARGEN, 14000 Caen, France; (B.B.); (R.C.); (F.C.); (C.M.); (F.L.); (N.G.)
| | - Frédéric Cassé
- Normandie University, UNICAEN, BIOTARGEN, 14000 Caen, France; (B.B.); (R.C.); (F.C.); (C.M.); (F.L.); (N.G.)
| | - Chloé Maspimby
- Normandie University, UNICAEN, BIOTARGEN, 14000 Caen, France; (B.B.); (R.C.); (F.C.); (C.M.); (F.L.); (N.G.)
| | - Sarah Oddoux
- Dielen Laboratory, 50110 Tourlaville, France; (S.O.); (A.N.)
| | - Antoine Noël
- Dielen Laboratory, 50110 Tourlaville, France; (S.O.); (A.N.)
| | - Florence Legendre
- Normandie University, UNICAEN, BIOTARGEN, 14000 Caen, France; (B.B.); (R.C.); (F.C.); (C.M.); (F.L.); (N.G.)
| | - Nicolas Gruchy
- Normandie University, UNICAEN, BIOTARGEN, 14000 Caen, France; (B.B.); (R.C.); (F.C.); (C.M.); (F.L.); (N.G.)
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Caen University Hospital, 14000 Caen, France
| | - Philippe Galéra
- Normandie University, UNICAEN, BIOTARGEN, 14000 Caen, France; (B.B.); (R.C.); (F.C.); (C.M.); (F.L.); (N.G.)
- Correspondence:
| |
Collapse
|
9
|
Hyaluronic acid and chondroitin sulfate (meth)acrylate-based hydrogels for tissue engineering: Synthesis, characteristics and pre-clinical evaluation. Biomaterials 2020; 268:120602. [PMID: 33360302 DOI: 10.1016/j.biomaterials.2020.120602] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
Hydrogels based on photocrosslinkable Hyaluronic Acid Methacrylate (HAMA) and Chondroitin Sulfate Methacrylate (CSMA) are presently under investigation for tissue engineering applications. HAMA and CSMA gels offer tunable characteristics such as tailorable mechanical properties, swelling characteristics, and enzymatic degradability. This review gives an overview of the scientific literature published regarding the pre-clinical development of covalently crosslinked hydrogels that (partially) are based on HAMA and/or CSMA. Throughout the review, recommendations for the next steps in clinical translation of hydrogels based on HAMA or CSMA are made and potential pitfalls are defined. Specifically, a myriad of different synthetic routes to obtain polymerizable hyaluronic acid and chondroitin sulfate derivatives are described. The effects of important parameters such as degree of (meth)acrylation and molecular weight of the synthesized polymers on the formed hydrogels are discussed and useful analytical techniques for their characterization are summarized. Furthermore, the characteristics of the formed hydrogels including their enzymatic degradability are discussed. Finally, a summary of several recent applications of these hydrogels in applied fields such as cartilage and cardiac regeneration and advanced tissue modelling is presented.
Collapse
|
10
|
Short- and Long-Term Effectiveness of Supplementation with Non-Animal Chondroitin Sulphate on Inflammation, Oxidative Stress and Functional Status in Obese Subjects with Moderate Knee Osteoarthritis before and after Physical Stress: A Randomized, Double-Blind, Placebo-Controlled Trial. Antioxidants (Basel) 2020; 9:antiox9121241. [PMID: 33297347 PMCID: PMC7762287 DOI: 10.3390/antiox9121241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
It has recently been demonstrated that chronic supplementation with nonanimal chondroitin sulfate (nonanimal CS) in overweight subjects with knee osteoarthritis (OA) improves the function, pain and inflammation, but there are no studies of its effectiveness in an acute setting. In 48 obese subjects with moderate knee OA, we investigated the effectiveness of nonanimal CS supplementation for eight weeks on the inflammation, functional status, oxidative stress, cartilage catabolism markers, metabolic profile and body composition, by Dual-Energy X-ray Absorptiometry (DXA) at the baseline, after 15 days and at the end of the eight-week study. To evaluate the acute effectiveness on inflammation, 15-min cycle training sessions were done 15 days after the start of the study and at the end. C-reactive protein (CRP) was assayed in blood samples collected before and after the two cycling exercises. The 48 obese subjects (M and F, 20–50 years, body mass index (BMI) 30–35 kg/m2) were randomly assigned to an experimental group (N = 24, 600-mg tablet of nonanimal CS/day) or the control group (N = 24, placebo). The between-groups analysis of covariance showed a significant effect on the Western Ontario and McMaster Universities Arthritis index (WOMAC) scale (p = 0.000) and CRP (p = 0.022). For intra-group differences, the result was significant in the CS group for BMI, WOMAC, CRP, total cholesterol and Homeostasis Model Assessment (HOMA). In these obese adults with OA, nonanimal CS improved the inflammation, knee function, metabolic profile and body composition.
Collapse
|