1
|
Mangalpady SS, Peña-Corona SI, Borbolla-Jiménez F, Kaverikana R, Shetty S, Shet VB, Almarhoon ZM, Calina D, Leyva-Gómez G, Sharifi-Rad J. Arnicolide D: a multi-targeted anticancer sesquiterpene lactone-preclinical efficacy and mechanistic insights. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6317-6336. [PMID: 38652277 DOI: 10.1007/s00210-024-03095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Arnicolide D, a potent sesquiterpene lactone from Centipeda minima, has emerged as a promising anticancer candidate, demonstrating significant efficacy in inhibiting cancer cell proliferation, inducing apoptosis, and suppressing metastasis across various cancer models. This comprehensive study delves into the molecular underpinnings of Arnicolide D's anticancer actions, emphasizing its impact on key signaling pathways such as PI3K/AKT/mTOR and STAT3, and its role in modulating cell cycle and survival mechanisms. Quantitative data from preclinical studies reveal Arnicolide D's dose-dependent cytotoxicity against cancer cell lines, including nasopharyngeal carcinoma, triple-negative breast cancer, and human colon carcinoma, showcasing its broad-spectrum anticancer potential. Given its multifaceted mechanisms and preclinical efficacy, Arnicolide D warrants further investigation in clinical settings to validate its therapeutic utility against cancer. The evidence presented underscores the need for rigorous pharmacokinetic and toxicological studies to establish safe dosing parameters for future clinical trials.
Collapse
Affiliation(s)
- Shivaprasad Shetty Mangalpady
- Department of Chemistry, NMAM Institute of Technology (NMAMIT), Nitte (Deemed to Be University), Nitte, Mangaluru, India
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Fabiola Borbolla-Jiménez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Rajesh Kaverikana
- Department of Pharmacology, NGSM Institute of Pharmaceuticals, Nitte (Deemed to Be University), Mangaluru, India
| | - Shobhitha Shetty
- Department of Chemistry, A.J. Institute of Engineering & Technology, Mangaluru, India
| | - Vinayaka Babu Shet
- Department of Biotechnology Engineering, NMAM Institute of Technology (NMAMIT), Nitte (Deemed to Be University), Mangaluru, India
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | | |
Collapse
|
2
|
Sharma S, Chandra K, Naik A, Sharma A, Sharma R, Thakur A, Grewal AS, Dhingra AK, Banerjee A, Liou JP, Guru SK, Nepali K. Flavone-based dual PARP-Tubulin inhibitor manifesting efficacy against endometrial cancer. J Enzyme Inhib Med Chem 2023; 38:2276665. [PMID: 37919954 PMCID: PMC10627047 DOI: 10.1080/14756366.2023.2276665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
Structural tailoring of the flavone framework (position 7) via organopalladium-catalyzed C-C bond formation was attempted in this study. The impact of substituents with varied electronic effects (phenyl ring, position 2 of the benzopyran scaffold) on the antitumor properties was also assessed. Resultantly, the efforts yielded a furyl arm bearing benzopyran possessing a 4-fluoro phenyl ring (position 2) (14) that manifested a magnificent antitumor profile against the Ishikawa cell lines mediated through dual inhibition of PARP and tubulin [(IC50 (PARP1) = 74 nM, IC50 (PARP2) = 109 nM) and tubulin (IC50 = 1.4 µM)]. Further investigations confirmed the ability of 14 to induce apoptosis as well as autophagy and cause cell cycle arrest at the G2/M phase. Overall, the outcome of the study culminated in a tractable dual PARP-tubulin inhibitor endowed with an impressive activity profile against endometrial cancer.
Collapse
Affiliation(s)
- Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kavya Chandra
- Department of Biological Sciences, BITS Pilani KK Birla Goa campus, Goa, India
| | - Aliva Naik
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | | | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa campus, Goa, India
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Banerjee S, Sharma S, Thakur A, Sachdeva R, Sharma R, Nepali K, Liou JP. N-Heterocycle based Degraders (PROTACs) Manifesting Anticancer Efficacy: Recent Advances. Curr Drug Targets 2023; 24:1184-1208. [PMID: 37946353 DOI: 10.2174/0113894501273969231102095615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Proteolysis Targeting Chimeras (PROTACs) technology has emerged as a promising strategy for the treatment of undruggable therapeutic targets. Researchers have invested a great effort in developing druggable PROTACs; however, the problems associated with PROTACs, including poor solubility, metabolic stability, cell permeability, and pharmacokinetic profile, restrict their clinical utility. Thus, there is a pressing need to expand the size of the armory of PROTACs which will escalate the chances of pinpointing new PROTACs with optimum pharmacokinetic and pharmacodynamics properties. N- heterocycle is a class of organic frameworks that have been widely explored to construct new and novel PROTACs. This review provides an overview of recent efforts of medicinal chemists to develop N-heterocycle-based PROTACs as effective cancer therapeutics. Specifically, the recent endeavors centred on the discovery of PROTACs have been delved into various classes based on the E3 ligase they target (MDM2, IAP, CRBN, and other E3 ligases). Mechanistic insights revealed during the biological assessment of recently furnished Nheterocyclic- based PROTACs constructed via the utilization of ligands for various E3 ligases have been discussed.
Collapse
Affiliation(s)
- Suddhasatwa Banerjee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Ritika Sachdeva
- College of Medicine, Taipei Medical University, Taipei, 110031, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Tumor microenvironment as a metapopulation model: the effects of angiogenesis, emigration and treatment modalities. J Theor Biol 2022; 545:111147. [PMID: 35489642 DOI: 10.1016/j.jtbi.2022.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022]
Abstract
Tumors consist of heterogeneous cell subpopulations that may develop differing phenotypes, such as increased cell growth, metastatic potential and treatment sensitivity or resistance. To study the dynamics of cancer development at a single-cell level, we model the tumor microenvironment as a metapopulation, in which habitat patches correspond to possible sites for cell subpopulations. Cancer cells may emigrate into dispersal pool (e.g. circulation system) and spread to new sites (i.e. metastatic disease). In the patches, cells divide and new variants may arise, possibly leading into an invasion provided the aberration promotes the cell growth. To study such adaptive landscape of cancer ecosystem, we consider various evolutionary strategies (phenotypes), such as emigration and angiogenesis, which are important determinants during early stages of tumor development. We use the metapopulation fitness of new variants to investigate how these strategies evolve through natural selection and disease progression. We further study various treatment effects and investigate how different therapy regimens affect the evolution of the cell populations. These aspects are relevant, for example, when examining the dynamic process of a benign tumor becoming cancerous, and what is the best treatment strategy during the early stages of cancer development. It is shown that positive angiogenesis promotes cancer cell growth in the absence of anti-angiogenic treatment, and that the anti-angiogenic treatment reduces the need of cytotoxic treatment when used in a combination. Interestingly, the model predicts that treatment resistance might become a favorable quality to cancer cells when the anti-angiogenic treatment is intensive enough. Thus, the optimal treatment dosage should remain below a patient-specific level to avoid treatment resistance.
Collapse
|
5
|
Sorribes IC, Handelman SK, Jain HV. Mitigating temozolomide resistance in glioblastoma via DNA damage-repair inhibition. J R Soc Interface 2020; 17:20190722. [PMID: 31964274 DOI: 10.1098/rsif.2019.0722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastomas are among the most lethal cancers, with a 5 year survival rate below 25%. Temozolomide is typically used in glioblastoma treatment; however, the enzymes alkylpurine-DNA-N-glycosylase (APNG) and methylguanine-DNA-methyltransferase (MGMT) efficiently mediate the repair of DNA damage caused by temozolomide, reducing treatment efficacy. Consequently, APNG and MGMT inhibition has been proposed as a way of overcoming chemotherapy resistance. Here, we develop a mechanistic mathematical model that explicitly incorporates the effects of chemotherapy on tumour cells, including the processes of DNA damage induction, cell arrest and DNA repair. Our model is carefully parametrized and validated, and then used to virtually recreate the response of heteroclonal glioblastomas to dual treatment with temozolomide and inhibitors of APNG/MGMT. Using our mechanistic model, we identify four combination treatment strategies optimized by tumour cell phenotype, and isolate the strategy most likely to succeed in a pre-clinical and clinical setting. If confirmed in clinical trials, these strategies have the potential to offset chemotherapy resistance in patients with glioblastoma and improve overall survival.
Collapse
Affiliation(s)
| | - Samuel K Handelman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harsh V Jain
- Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
6
|
Halkola AS, Parvinen K, Kasanen H, Mustjoki S, Aittokallio T. Modelling of killer T-cell and cancer cell subpopulation dynamics under immuno- and chemotherapies. J Theor Biol 2019; 488:110136. [PMID: 31887273 DOI: 10.1016/j.jtbi.2019.110136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/25/2019] [Accepted: 12/21/2019] [Indexed: 12/22/2022]
Abstract
Each patient's cancer has a unique molecular makeup, often comprised of distinct cancer cell subpopulations. Improved understanding of dynamic processes between cancer cell populations is therefore critical for making treatment more effective and personalized. It has been shown that immunotherapy increases the survival of melanoma patients. However, there remain critical open questions, such as timing and duration of immunotherapy and its added benefits when combined with other types of treatments. We introduce a model for the dynamics of active killer T-cells and cancer cell subpopulations. Rather than defining the cancer cell populations based on their genetic makeup alone, we consider also other, non-genetic differences that make the cell populations either sensitive or resistant to a therapy. Using the model, we make predictions of possible outcomes of the various treatment strategies in virtual melanoma patients, providing hypotheses regarding therapeutic efficacy and side-effects. It is shown, for instance, that starting immunotherapy with a denser treatment schedule may enable changing to a sparser schedule later during the treatment. Furthermore, combination of targeted and immunotherapy results in a better treatment effect, compared to mono-immunotherapy, and a stable disease can be reached with a patient-tailored combination. These results offer better understanding of the competition between T-cells and cancer cells, toward personalized immunotherapy regimens.
Collapse
Affiliation(s)
- Anni S Halkola
- Department of Mathematics and Statistics, University of Turku, Turku, Finland; Western Finland Cancer Centre (FICAN West), Turku University Hospital, Turku, Finland.
| | - Kalle Parvinen
- Department of Mathematics and Statistics, University of Turku, Turku, Finland; Western Finland Cancer Centre (FICAN West), Turku University Hospital, Turku, Finland; Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
| | - Henna Kasanen
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Department of Mathematics and Statistics, University of Turku, Turku, Finland; Western Finland Cancer Centre (FICAN West), Turku University Hospital, Turku, Finland; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Salimi Sartakhti J, Manshaei MH, Basanta D, Sadeghi M. Evolutionary emergence of angiogenesis in avascular tumors using a spatial public goods game. PLoS One 2017; 12:e0175063. [PMID: 28399181 PMCID: PMC5388338 DOI: 10.1371/journal.pone.0175063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/20/2017] [Indexed: 11/18/2022] Open
Abstract
Natural selection in cancer often results in the emergence of increasingly malignant tumor cells that display many if not all of the hallmarks of cancer. One of the most important traits acquired during cancer progression is angiogenesis. Tumor cells capable of secreting pro-angiogenic factors can be seen as cooperators where the improved oxygenation, nutrient delivery and waste disposal resulting from angiogenesis could be seen as a public good. Under this view, the relatively costly secretion of molecular signals required to orchestrate angiogenesis would be undertaken exclusively by cooperating tumor cells but the benefits of angiogenesis would be felt by neighboring tumor cells regardless of their contribution to the process. In this work we detail a mathematical model to better understand how clones capable of secreting pro-angiogenic factors can emerge in a tumor made of non-cooperative tumor cells. Given the importance of the spatial configuration of the tumor in determining the efficacy of the secretion of pro-angiogenic factors as well as the benefits of angiogenesis we have developed a spatial game theoretic approach where interactions and public good diffusion are described by graphs. The results show that structure of the population affects the evolutionary dynamics of the pro-angiogenic clone. Specifically, when the benefit of angiogenesis is represented by sigmoid function with regards to the number of pro-angiogenic clones then the probability of the coexistence of pro-angiogenic and angiogenesis-neutral clones increases. Our results demonstrate that pro-angiogenic clone equilibrates into clusters that appear from surrounding vascular tissues towards the center of tumor. These clusters appear notably less dense after anti-angiogenic therapy.
Collapse
Affiliation(s)
- Javad Salimi Sartakhti
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Hossein Manshaei
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- * E-mail:
| | - David Basanta
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States of America
| | - Mehdi Sadeghi
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| |
Collapse
|
8
|
Viger L, Denis F, Draghi C, Ménard T, Letellier C. Spatial avascular growth of tumor in a homogeneous environment. J Theor Biol 2016; 416:99-112. [PMID: 28017801 DOI: 10.1016/j.jtbi.2016.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 01/21/2023]
Abstract
Describing tumor growth is a key issue in oncology for correctly understanding the underlying mechanisms leading to deleterious cancers. In order to take into account the micro-environment in tumor growth, we used a model describing - at the tissue level - the interactions between host (non malignant), effector immune and tumor cells to simulate the evolution of cancer. The spatial growth is described by a Laplacian operator for the diffusion of tumor cells. We investigated how the evolution of the tumor diameter is related to the dynamics (periodic or chaotic oscillations, stable singular points) underlying the interactions between the different populations of cells in proliferation sites. The sensitivity of this evolution to the key parameter responsible for the immuno-evasion, namely the growth rate of effector immune cells and their inhibition rate by tumor cells, is also investigated.
Collapse
Affiliation(s)
- Louise Viger
- CORIA UMR 6614 Normandie Université, CNRS Université et INSA de Rouen, Campus Universitaire du Madrillet, F-76800 Saint-Etienne du Rouvray, France.
| | - Fabrice Denis
- Centre Jean Bernard, 9 Rue Beauverger, 72000 Le Mans, France
| | - Clément Draghi
- CORIA UMR 6614 Normandie Université, CNRS Université et INSA de Rouen, Campus Universitaire du Madrillet, F-76800 Saint-Etienne du Rouvray, France
| | - Thibault Ménard
- CORIA UMR 6614 Normandie Université, CNRS Université et INSA de Rouen, Campus Universitaire du Madrillet, F-76800 Saint-Etienne du Rouvray, France
| | - Christophe Letellier
- CORIA UMR 6614 Normandie Université, CNRS Université et INSA de Rouen, Campus Universitaire du Madrillet, F-76800 Saint-Etienne du Rouvray, France
| |
Collapse
|
9
|
Gerlee P, Anderson ARA. The evolution of carrying capacity in constrained and expanding tumour cell populations. Phys Biol 2015; 12:056001. [DOI: 10.1088/1478-3975/12/5/056001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Viger L, Denis F, Rosalie M, Letellier C. A cancer model for the angiogenic switch. J Theor Biol 2014; 360:21-33. [DOI: 10.1016/j.jtbi.2014.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 06/04/2014] [Accepted: 06/17/2014] [Indexed: 11/28/2022]
|
11
|
Abstract
We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, CanadaV5A 1S6
| | - Kevin Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Francisco Úbeda
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
12
|
Bickel ST, Juliano JD, Nagy JD. Evolution of proliferation and the angiogenic switch in tumors with high clonal diversity. PLoS One 2014; 9:e91992. [PMID: 24732428 PMCID: PMC3986075 DOI: 10.1371/journal.pone.0091992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 02/17/2014] [Indexed: 11/19/2022] Open
Abstract
Natural selection among tumor cell clones is thought to produce hallmark properties of malignancy. Efforts to understand evolution of one such hallmark--the angiogenic switch--has suggested that selection for angiogenesis can "run away" and generate a hypertumor, a form of evolutionary suicide by extreme vascular hypo- or hyperplasia. This phenomenon is predicted by models of tumor angiogenesis studied with the techniques of adaptive dynamics. These techniques also predict that selection drives tumor proliferative potential towards an evolutionarily stable strategy (ESS) that is also convergence-stable. However, adaptive dynamics are predicated on two key assumptions: (i) no more than two distinct clones or evolutionary strategies can exist in the tumor at any given time; and (ii) mutations cause small phenotypic changes. Here we show, using a stochastic simulation, that relaxation of these assumptions has no effect on the predictions of adaptive dynamics in this case. In particular, selection drives proliferative potential towards, and angiogenic potential away from, their respective ESSs. However, these simulations also show that tumor behavior is highly contingent on mutational history, particularly for angiogenesis. Individual tumors frequently grow to lethal size before the evolutionary endpoint is approached. In fact, most tumor dynamics are predicted to be in the evolutionarily transient regime throughout their natural history, so that clinically, the ESS is often largely irrelevant. In addition, we show that clonal diversity as measured by the Shannon Information Index correlates with the speed of approach to the evolutionary endpoint. This observation dovetails with results showing that clonal diversity in Barrett's esophagus predicts progression to malignancy.
Collapse
Affiliation(s)
- Scott T. Bickel
- Department of Life Sciences, Scottsdale Community College, Scottsdale, Arizona, United States of America
| | - Joseph D. Juliano
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
| | - John D. Nagy
- Department of Life Sciences, Scottsdale Community College, Scottsdale, Arizona, United States of America
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|