1
|
Tang S, Gong J, Song B, Li J, Cao W, Zhao J. Remediation of biochar-supported effective microorganisms and microplastics on multiple forms of nitrogenous and phosphorous in eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177142. [PMID: 39486534 DOI: 10.1016/j.scitotenv.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Lots of studies on eutrophication, but there is a lack of comprehensive research on the repair of multiple forms of nitrogen and phosphorus under combined heavy metals (HMs) pollution. This work investigated the various forms of nitrogen and phosphorus in the water-sediment systems of eutrophic lakes with the application of biochar, Effective Microorganisms (EMs) and microplastics, aiming to deliberate the repair behavior of multiple forms of nitrogen/phosphorus and the integrated repairment of these nutrients and HMs in different remediations. For amended-groups, the application of biochar-supported EMs (BE) achieved the most desirable remediation for removing nitrogen, phosphorus and HMs in water and improved their stability in sediment due to the improved microbial activity and the developed biofilm system created by biochar. The addition of aging microplastics (MP) obviously reduced the systematic levels of nitrogen, phosphorus and HMs due to the stimulation of microbial activity and the adsorption of biofilm/EPS, but its high movability also increased the Fe(II) and S(-II) levels and the pollutants' ecological risks in sediment. The co-application of BE and MP (MBE) destroyed the ecosystem and decreased the removal of nitrogen and phosphorus, while greatly removing HMs by the superfluous biofilms/EPS. The application of biochar (BC) preferentially adsorbed and degraded dissolved nitrogen and phosphorus, releasing HMs into water. From these amended-groups, it's also knew that the removal of nitrogen and phosphorus mainly came from the degradation/assimilation of NH3-N, SRP and dissolved matters, particularly those molecular weight below 3 kDa; the higher removal of phosphorus than nitrogen was attributed to the coprecipitation of Fe-S-P hydroxides and the adsorption of particulates; however, the colloidal (3-100 kDa) nitrogen and phosphorus had low accessibility and bioavailability, and it also showed the competitive adsorption with colloidal HMs, causing their relatively low removal in water. This study provides insight into the comprehensive repair of nitrogen, phosphorus and HMs in various forms by biochar-immobilized microbes and the influence of microplastics on nutrients and HMs in eutrophic lakes.
Collapse
Affiliation(s)
- Siqun Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Jun Zhao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| |
Collapse
|
2
|
Pandey S, Kannaujiya VK. Bacterial extracellular biopolymers: Eco-diversification, biosynthesis, technological development and commercial applications. Int J Biol Macromol 2024; 279:135261. [PMID: 39244116 DOI: 10.1016/j.ijbiomac.2024.135261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Synthetic polymers have been widely thriving as mega industries at a commercial scale in various commercial sectors over the last few decades. The extensive use of synthetic polymers has caused several negative repercussions on the health of humans and the environment. Recently, biopolymers have gained more attention among scientists of different disciplines by their potential therapeutic and commercial applications. Biopolymers are chain-like repeating units of molecules isolated from green sources. They are self-degradable, biocompatible, and non-toxic in nature. Recently, eco-friendly biopolymers such as extracellular polymeric substances (EPSs) have received much attention for their wide applications in the fields of emulsification, flocculation, preservatives, wastewater treatment, nanomaterial functionalization, drug delivery, cosmetics, glycomics, medicinal chemistry, and purification technology. The dynamicity of applications has raised the industrial and consumer demands to cater to the needs of mankind. This review deals with current insights and highlights on database surveys, potential sources, classification, extremophilic EPSs, bioprospecting, patents, microenvironment stability, biosynthesis, and genetic advances for production of high valued ecofriendly polymers. The importance of high valued EPSs in commercial and industrial applications in the global market economy is also summarized. This review concludes with future perspectives and commercial applications for the well-being of humanity.
Collapse
Affiliation(s)
- Saumi Pandey
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Vinod K Kannaujiya
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Leininger A, Lu S, Jiang J, Bian Y, May HD, Ren ZJ. The convergence of lactic acid microbiomes and metabolites in long-term electrofermentation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100459. [PMID: 39262839 PMCID: PMC11387266 DOI: 10.1016/j.ese.2024.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 09/13/2024]
Abstract
Regulating electron transfer in predominantly fermentative microbiomes has broad implications in environmental, chemical, food, and medical fields. Here we demonstrate electrochemical control in fermenting food waste, digestate, and wastewater to improve lactic acid production. We hypothesize that applying anodic potential will expedite and direct fermentation towards lactic acid. Continued operation that introduced epi/endophytic communities (Lactococcus, Lactobacillus, Weissella) to pure culture Lactiplantibacillus plantarum reactors with static electrodes was associated with the loss of anode-induced process intensification despite 80% L. plantarum retention. Employing fluidized electrodes discouraged biofilm formation and extended electrode influence to planktonic gram-positive fermenters using mediated extracellular electron transfer. While short-term experiments differentially enriched Lactococcus and Klebsiella spp., longer-term operations indicated convergent microbiomes and product spectra. These results highlight a functional resilience of environmental fermentative microbiomes to perturbations in redox potential, underscoring the need to better understand electrode induced polymicrobial interactions and physiological impacts to engineer tunable open-culture or synthetic consortia.
Collapse
Affiliation(s)
- Aaron Leininger
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Sidan Lu
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Jinyue Jiang
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Yanhong Bian
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Harold D May
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| |
Collapse
|
4
|
Grilc NK, Kristl J, Zupančič Š. Can polymeric nanofibers effectively preserve and deliver live therapeutic bacteria? Colloids Surf B Biointerfaces 2024; 245:114329. [PMID: 39486375 DOI: 10.1016/j.colsurfb.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Probiotics and live therapeutic bacteria (LTB), their strictly regulated therapeutic counterpart, are increasingly important in treating and preventing biofilm-related diseases. This necessitates new approaches to (i) preserve bacterial viability during manufacturing and storage and (ii) incorporate LTB into delivery systems for enhanced therapeutic efficacy. This review explores advances in probiotic and LTB product development, focusing on preservation, protection, and improved delivery. Preservation of bacteria can be achieved by drying methods that decelerate metabolism. These methods introduce stresses affecting viability which can be mitigated with suitable excipients like polymeric or low molecular weight stabilizers. The review emphasizes the incorporation of LTB into polymer-based nanofibers via electrospinning, enabling simultaneous drying, encapsulation, and delivery system production. Optimization of bacterial survival during electrospinning and storage is discussed, as well as controlled LTB release achievable through formulation design using gel-forming, gastroprotective, mucoadhesive, and pH-responsive polymers. Evaluation of the presence of the actual therapeutic strains, bacterial viability and activity by CFU enumeration or alternative analytical techniques is presented as a key aspect of developing effective and safe formulations with LTB. This review offers insights into designing delivery systems, especially polymeric nanofibers, for preservation and delivery of LTB, guiding readers in developing innovative biotherapeutic delivery systems.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
5
|
Mikshina P, Kharina M, Sungatullina A, Petrova T, Sibgatullin T, Nikitina E. Influence of flaxseed mucilage on the formation, composition, and properties of exopolysaccharides produced by different strains of lactic acid bacteria. Int J Biol Macromol 2024; 281:136092. [PMID: 39349088 DOI: 10.1016/j.ijbiomac.2024.136092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Microorganisms produce a wide variety of polysaccharides. Due to biosafety considerations, lactic acid bacteria (LAB) are popular producers of exopolysaccharides (EPS) for various applications. In this study, we analyzed the composition and properties of EPS produced by L. delbrueckii ssp. bulgaricus and LAB from clover silage (L. fermentum AG8, L. plantarum AG9) after growth on Man, Rogosa, and Sharpe broth (MRS) and with the addition of flaxseed mucilage (FSM) using chromatography, microscopy, and biochemical methods. We found that adding 0.4 % FSM does not drastically alter the medium's rheology but substantially increases EPS yield (by 3.1 to 3.8 times) and modifies the composition and macrostructure of EPS, as well as changes the spatial organization of LAB cells. The presence of FSM led to the production of xylose- and glucose-enriched EPS, which also contained varying proportions of fucose, rhamnose, arabinose, mannose, glycosamines, and uronic acids, depending on the strain. Most EPS had a low molecular weight (up to 32 kDa), except for EPS produced by L. fermentum AG8 in FSM-containing medium, which had molecular weight of 163 kDa. All EPS exhibited a porous microstructure and demonstrated scavenging capacity for OH- and DPPH-radicals, as well as high levels of α-glucosidase and lipase inhibitory activities, even at low concentrations (<1 g·L-1 of EPS). These characteristics make them promising for use in functional food production and medicine.
Collapse
Affiliation(s)
- Polina Mikshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Lobachevsky Str., 2/31, Kazan, Russia; Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia; Kazan (Volga Region) Federal University, 420008, Kremlevskaya, 18, Kazan, Russia.
| | - Maria Kharina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Lobachevsky Str., 2/31, Kazan, Russia; Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia
| | - Alya Sungatullina
- Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia
| | - Tatyana Petrova
- Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia
| | - Timur Sibgatullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Lobachevsky Str., 2/31, Kazan, Russia
| | - Elena Nikitina
- Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia
| |
Collapse
|
6
|
Svitich OA, Poddubikov AV, Vartanova NO, Leonova AY, Kurbatova EA. Biofilm Formation by Lactobacillus Strains of Modern Probiotics and Their Antagonistic Activity against Opportunistic Bacteria. Bull Exp Biol Med 2024:10.1007/s10517-024-06211-y. [PMID: 39264564 DOI: 10.1007/s10517-024-06211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 09/13/2024]
Abstract
The species identity of the studied lactobacillus strains was confirmed by matrix-activated laser desorption/ionization with time-of-flight ion separation (MALDI-TOF mass spectrometry). Lactobacillus strains differed in the dynamics of lactic acid accumulation and changes in the pH of the culture medium. The culture medium affected adhesion ability of lactobacilli. The ability to adhere does not affect the formation of biofilms by lactobacillus strains except for the L. acidophilus La5 strain, which has low adhesion ability and fewer microbial cells detected after mechanical destruction of the biofilm. The metabiotics of the lactobacillus culture medium have an antagonistic effect on conditionally pathogenic microorganisms. Adhesion, biofilm formation, and antagonistic activity of probiotic lactobacillus strains are strain-specific properties.
Collapse
Affiliation(s)
- O A Svitich
- Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - A V Poddubikov
- Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia.
| | - N O Vartanova
- Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - A Yu Leonova
- Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - E A Kurbatova
- Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| |
Collapse
|
7
|
Figueira LW, Bessa Muniz A, Doria ACOC, Castaldelli Nishime TM, Kostov KG, Koga-Ito CY. Inhibitory effect of helium cold atmospheric plasma on cariogenic biofilms. J Oral Microbiol 2024; 16:2397831. [PMID: 39267862 PMCID: PMC11391876 DOI: 10.1080/20002297.2024.2397831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to determine the effects of low-temperature plasma jet produced in gas helium (LTP-helium) on cariogenic biofilms composedby Streptococcusmutans, Streptococcus sanguinis and Streptococcus gordonii, and also by the combination of Candida albicans, Lactobacillus acidophilus and S. mutans. Biofilms were treated for 1, 3, 5, and 7 minutes. A 0.12% chlorhexidine solution was used as the positive control and sterile physiologic solution was the negative control. Biofilm viability was analyzed by viable cell recovery, scanning electron microscopy, and confocal laser scanning microscopy. All assays were performed intriplicate in three independent experiments. Multispecies biofilms exposed to LTP-helium had a significant reduction in viability when compared to the negative control (p < 0.0001). For biofilm formedby S. mutans, S. sanguinis, and S. gordonii, LTP treatments for 5 and 7 minutes caused similar reduction of morethan 2 log10. Also, a significant reduction in the viability of biofilms formedby C. albicans, L. acidophilus, and S. mutans was detected (p < 0.0001). In conclusion, LTP-helium reduced theviability of cariogenic biofilms with different microbial compositions, which indicates that LTP-helium is a potential tool for developing new protocols for dental caries prevention and treatment.
Collapse
Affiliation(s)
- Leandro Wagner Figueira
- Department of Environmental Engineering and Oral Biopathology Graduate Program, Institute of Science and Technology, São Paulo State University, UNESP, São José dos Campos, São Paulo, Brazil
| | - Ana Bessa Muniz
- Department of Environmental Engineering and Oral Biopathology Graduate Program, Institute of Science and Technology, São Paulo State University, UNESP, São José dos Campos, São Paulo, Brazil
| | - Anelise Cristina Osorio Cesar Doria
- Biotechnology and Electric Plasma Laboratory (Biotechplasma) - Research and Development Institute - IPD - Universidade Do Vale Do Paraíba. Av. Shishima Hifumi, São José dos Campos, Brazil
| | | | - Konstantin Georgiev Kostov
- Department of Physics, Guaratinguetá Faculty of Engineering, São Paulo State University/ UNESP, Guaratinguetá, Brazil
| | - Cristiane Y Koga-Ito
- Department of Environmental Engineering and Oral Biopathology Graduate Program, Institute of Science and Technology, São Paulo State University, UNESP, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
8
|
Ozma MA, Moaddab SR, Hosseini H, Khodadadi E, Ghotaslou R, Asgharzadeh M, Abbasi A, Kamounah FS, Aghebati Maleki L, Ganbarov K, Samadi Kafil H. A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics. Crit Rev Food Sci Nutr 2024; 64:9637-9655. [PMID: 37203933 DOI: 10.1080/10408398.2023.2214818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a significant public health issue, causing illnesses that were once easily treatable with antibiotics to develop into dangerous infections, leading to substantial disability and even death. To help fight this growing threat, scientists are developing new methods and techniques that play a crucial role in treating infections and preventing the inappropriate use of antibiotics. These effective therapeutic methods include phage therapies, quorum-sensing inhibitors, immunotherapeutics, predatory bacteria, antimicrobial adjuvants, haemofiltration, nanoantibiotics, microbiota transplantation, plant-derived antimicrobials, RNA therapy, vaccine development, and probiotics. As a result of the activity of probiotics in the intestine, compounds derived from the structure and metabolism of these bacteria are obtained, called postbiotics, which include multiple agents with various therapeutic applications, especially antimicrobial effects, by using different mechanisms. These compounds have been chosen in particular because they don't promote the spread of antibiotic resistance and don't include substances that can increase antibiotic resistance. This manuscript provides an overview of the novel approaches to preventing antibiotic resistance with emphasis on the various postbiotic metabolites derived from the gut beneficial microbes, their activities, recent related progressions in the food and medical fields, as well as concisely giving an insight into the new concept of postbiotics as "hyperpostbiotic".
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Republic of Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Pham TT, Nguyen TD, Nguyen TT, Pham MN, Nguyen PT, Nguyen TUT, Huynh TTN, Nguyen HT. Rhizosphere bacterial exopolysaccharides: composition, biosynthesis, and their potential applications. Arch Microbiol 2024; 206:388. [PMID: 39196410 DOI: 10.1007/s00203-024-04113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Bacterial exopolysaccharides (EPS) are biopolymers of carbohydrates, often released from cells into the extracellular environment. Due to their distinctive physicochemical properties, biocompatibility, biodegradability, and non-toxicity, EPS finds applications in various industrial sectors. However, the need for alternative EPS has grown over the past few decades as lactic acid bacteria's (LAB) low-yield EPS is unable to meet the demand. In this case, rhizosphere bacteria with the diverse communities in soil leading to variations in composition and structure, are recognized as a potential source of EPS applicable in various industries. In addition, media components and cultivation conditions have an impact on EPS production, which ultimately affects the quantity, structure, and biological functions of the EPS. Therefore, scientists are currently working on manipulating bacterial EPS by developing cultures and applying abiotic and biotic stresses, so that better production of exopolysaccharides can be attained. This review highlights the composition, biosynthesis, and effects of environmental factors on EPS production along with the potential applications in different fields of industry. Ultimately, an overview of potential future paths and tactics for improving EPS implementation and commercialization is pointed out.
Collapse
Affiliation(s)
| | | | - Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam.
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - To-Uyen Thi Nguyen
- Graduate University of Sciences and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | | | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
10
|
Karaman K, Sirke ST, Rifaioglu ŞNT. Molecular identification of lactic acid bacteria from traditional fermented foods and screening exopolysaccharide production by using food wastes. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01187-8. [PMID: 39192167 DOI: 10.1007/s12223-024-01187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
In this study, lactic acid bacteria (LAB) isolation from fermented foods and molecular identification using magnetic bead technology were performed. And then exopolysaccharide (EPS) production possibility was tested in agar medium, and the positive ones were selected for the next step. The bacteria that could produce higher carbohydrate level were grown in MRS medium fortified with whey and pumpkin waste. In our study, 19 different LAB species were identified from fermented products collected from different places in Hatay (Türkiye) province. In molecular identification, universal primer pairs, p806R/p8FPL, and PEU7/DG74 were used for PCR amplification. After that, PCR products purified using paramagnetic bead technology were sequenced by the Sanger sequencing method. The dominant species, 23.8% of the isolates, were identified as Lactiplantibacillus plantarum. As a technological property of LAB, exopolysaccharide production capability of forty-two LAB isolate was tested in agar medium, and after eleven isolates were selected as positive. Two LAB (Latilactobacillus curvatus SHA2-3B and Loigolactobacillus coryniformis SHA6-3B) had higher EPS production capability when they were grown in MRS broth fortified with pumpkin waste and whey. The highest EPS content (1750 mg/L glucose equivalent) was determined in Loigolactobacillus coryniformis SHA6-3B grown in MRS broth fortified with 10% pumpkin waste. Besides the produced EPS samples were validated with FTIR and SEM methods.
Collapse
Affiliation(s)
- Kevser Karaman
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Türkiye.
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye.
| | - Sibel Turan Sirke
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncuyil University, Van, Türkiye
- Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri, Türkiye
| | - Şeyda Nur Türkay Rifaioglu
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye
- Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
11
|
Kumar A, Saha MK, Kumar V, Bhattacharya A, Barge S, Mukherjee AK, Kalita MC, Khan MR. Heat-killed probiotic Levilactobacillus brevis MKAK9 and its exopolysaccharide promote longevity by modulating aging hallmarks and enhancing immune responses in Caenorhabditis elegans. Immun Ageing 2024; 21:52. [PMID: 39095841 PMCID: PMC11295351 DOI: 10.1186/s12979-024-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Proteostasis is a critical aging hallmark responsible for removing damaged or misfolded proteins and their aggregates by improving proteasomal degradation through the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS). Research on the impact of heat-killed probiotic bacteria and their structural components on aging hallmarks and innate immune responses is scarce, yet enhancing these effects could potentially delay age-related diseases. RESULTS This study introduces a novel heat-killed Levilactobacillus brevis strain MKAK9 (HK MKAK9), along with its exopolysaccharide (EPS), demonstrating their ability to extend longevity by improving proteostasis and immune responses in wild-type Caenorhabditis elegans. We elucidate the underlying mechanisms through a comprehensive approach involving mRNA- and small RNA sequencing, proteomic analysis, lifespan assays on loss-of-function mutants, and quantitative RT-PCR. Mechanistically, HK MKAK9 and its EPS resulted in downregulation of the insulin-like signaling pathway in a DAF-16-dependent manner, enhancing protein ubiquitination and subsequent proteasomal degradation through activation of the ALP pathway, which is partially mediated by microRNA mir-243. Importantly, autophagosomes engulf ubiquitinylated proteins, as evidenced by increased expression of the autophagy receptor sqst-3, and subsequently fuse with lysosomes, facilitated by increased levels of the lysosome-associated membrane protein (LAMP) lmp-1, suggesting the formation of autolysosomes for degradation of the selected cargo. Moreover, HK MKAK9 and its EPS activated the p38 MAPK pathway and its downstream SKN-1 transcription factor, which are known to regulate genes involved in innate immune response (thn-1, ilys-1, cnc-2, spp-9, spp-21, clec-47, and clec-266) and antioxidation (sod-3 and gst-44), thereby reducing the accumulation of reactive oxygen species (ROS) at both cellular and mitochondrial levels. Notably, SOD-3 emerged as a transcriptional target of both DAF-16 and SKN-1 transcription factors. CONCLUSION Our research sets a benchmark for future investigations by demonstrating that heat-killed probiotic and its specific cellular component, EPS, can downregulate the insulin-signaling pathway, potentially improving the autophagy-lysosome pathway (ALP) for degrading ubiquitinylated proteins and promoting organismal longevity. Additionally, we discovered that increased expression of microRNA mir-243 regulates insulin-like signaling and its downstream ALP pathway. Our findings also indicate that postbiotic treatment may bolster antioxidative and innate immune responses, offering a promising avenue for interventions in aging-related diseases.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | | | - Vipin Kumar
- Application Specialist, Research Business Cytiva, Gurugram, Haryana, India
| | - Anupam Bhattacharya
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Sagar Barge
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India.
| |
Collapse
|
12
|
Ullah N, Hasnain SZU, Baloch R, Amin A, Nasibova A, Selakovic D, Rosic GL, Islamov S, Naraliyeva N, Jaradat N, Mammadova AO. Exploring essential oil-based bio-composites: molecular docking and in vitro analysis for oral bacterial biofilm inhibition. Front Chem 2024; 12:1383620. [PMID: 39086984 PMCID: PMC11288909 DOI: 10.3389/fchem.2024.1383620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 08/02/2024] Open
Abstract
Oral bacterial biofilms are the main reason for the progression of resistance to antimicrobial agents that may lead to severe conditions, including periodontitis and gingivitis. Essential oil-based nanocomposites can be a promising treatment option. We investigated cardamom, cinnamon, and clove essential oils for their potential in the treatment of oral bacterial infections using in vitro and computational tools. A detailed analysis of the drug-likeness and physicochemical properties of all constituents was performed. Molecular docking studies revealed that the binding free energy of a Carbopol 940 and eugenol complex was -2.0 kcal/mol, of a Carbopol 940-anisaldehyde complex was -1.9 kcal/mol, and a Carbapol 940-eugenol-anisaldehyde complex was -3.4 kcal/mol. Molecular docking was performed against transcriptional regulator genes 2XCT, 1JIJ, 2Q0P, 4M81, and 3QPI. Eugenol cinnamaldehyde and cineol presented strong interaction with targets. The essential oils were analyzed against Staphylococcus aureus and Staphylococcus epidermidis isolated from the oral cavity of diabetic patients. The cinnamon and clove essential oil combination presented significant minimum inhibitory concentrations (MICs) (0.0625/0.0312 mg/mL) against S. epidermidis and S. aureus (0.0156/0.0078 mg/mL). In the anti-quorum sensing activity, the cinnamon and clove oil combination presented moderate inhibition (8 mm) against Chromobacterium voilaceum with substantial violacein inhibition (58% ± 1.2%). Likewise, a significant biofilm inhibition was recorded in the case of S. aureus (82.1% ± 0.21%) and S. epidermidis (84.2% ± 1.3%) in combination. It was concluded that a clove and cinnamon essential oil-based formulation could be employed to prepare a stable nanocomposite, and Carbapol 940 could be used as a compatible biopolymer.
Collapse
Affiliation(s)
- Niamat Ullah
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Syed Zia Ul Hasnain
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Rabia Baloch
- Allama Iqbal Teaching Hospital, Dera Ghazi Khan, Pakistan
| | - Adnan Amin
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Aygun Nasibova
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
- Institute of Radiation Problems, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gvozden Luka Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sokhib Islamov
- Department of Technology of Storage and Processing of Agricultural Products, Tashkent State Agrarian University, Tashkent, Uzbekistan
| | | | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | |
Collapse
|
13
|
Andrew M, Jayaraman G. Production optimization and antioxidant potential of exopolysaccharide produced by a moderately halophilic bacterium Virgibacillus dokdonensis VITP14. Prep Biochem Biotechnol 2024:1-19. [PMID: 38963714 DOI: 10.1080/10826068.2024.2370879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
This study aimed to enhance the extracellular polymeric substances (EPS) production of Virgibacillus dokdonensis VITP14 and explore its antioxidant potential. EPS and biomass production by VITP14 strain were studied under different culture parameters and media compositions using one factor at a time method. Among different nutrient sources, glucose and peptone were identified as suitable carbon and nitrogen sources. Furthermore, the maximum EPS production was observed at 5% of inoculum size, 5 g/L of NaCl, and 96 h of fermentation. Response surface methodology was employed to augment EPS production and investigate the optimal levels of nutrient sources with their interaction. The strain was observed to produce actual maximum EPS of about 26.4 g/L for finalized optimum medium containing glucose 20 g/L, peptone 10 g/L, and NaCl 50 g/L while the predicted maximum EPS was 26.5 g/L. There was a nine fold increase in EPS production after optimization study. Additionally, EPS has exhibited significant scavenging, reducing, and chelating potential (>85%) at their higher concentration. This study imparts valuable insights into optimizing moderately halophilic bacterial EPS production and evaluating its natural antioxidant properties. According to findings, V. dokdonensis VITP14 was a promising isolate that will provide significant benefits to biopolymer producing industries.
Collapse
Affiliation(s)
- Monic Andrew
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gurunathan Jayaraman
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
14
|
Čuljak N, Bellich B, Pedroni A, Butorac K, Pavunc AL, Novak J, Banić M, Šušković J, Cescutti P, Kos B. Limosilactobacillus fermentum strains MC1 and D12: Functional properties and exopolysaccharides characterization. Int J Biol Macromol 2024; 273:133215. [PMID: 38897515 DOI: 10.1016/j.ijbiomac.2024.133215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Lactic acid bacteria (LAB) produce a broad spectrum of exopolysaccharides (EPSs), commonly used as texturizers in food products. Due to their potential contribution to LAB probiotic properties, like adhesion to human epithelial cells and competitive exclusion of pathogens from human intestinal epithelial cells, this study was focussed on the structural and functional characterization of the EPSs produced by two Limosilactobacillus fermentum strains - MC1, originating from mother's milk, and D12, autochthonous from Croatian smoked fresh cheese. Whole-genome sequencing and functional annotation of both L. fermentum strains by RAST server revealed the genes involved in EPS production and transport, with some differences in functionally related genes. EPSs were extracted from the cell surface of both bacterial strains and purified by size-exclusion chromatography. Structural characterization of the EPSs, achieved by chemical analyses and 1D and 2D NMR spectroscopy, showed that both strains produce an identical mixture of three different EPSs containing galactofuranose and glucopyranose residues. However, a comparison of the functional properties showed that the MC1 strain adhered better to the Caco-2 cell line and exhibited stronger antimicrobial effect against Salmonella enterica serovar Typhimurium FP1 than the D12 strain, which may be attributed to the potential bacteriocin activity of the MC1 strain.
Collapse
Affiliation(s)
- Nina Čuljak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Barbara Bellich
- Department of Advanced Translational Diagnostics, Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Via dell'Istria 65, 34137 Trieste, Italy
| | - Alice Pedroni
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127 Trieste, Italy
| | - Katarina Butorac
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Andreja Leboš Pavunc
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jasna Novak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Martina Banić
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jagoda Šušković
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127 Trieste, Italy.
| | - Blaženka Kos
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Cultures Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Geerlings SY, van der Ark K, Nijsse B, Boeren S, van Loosdrecht M, Belzer C, de Vos WM. Omics-based analysis of Akkermansia muciniphila cultivation in food-grade media. MICROBIOME RESEARCH REPORTS 2024; 3:36. [PMID: 39421255 PMCID: PMC11480725 DOI: 10.20517/mrr.2024.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 10/19/2024]
Abstract
Background and Aim: Over the past years, the gut microbiota and its correlation to health and disease has been studied extensively. In terms of beneficial microbes, an increased interest in Akkermansia muciniphila (A. muciniphila) has been observed since its discovery. Direct evidence for the role of A. muciniphila in host health has been provided in both mice and human studies. However, for human interventions with A. muciniphila cells, industrial-scale fermentations are needed, and hence, the used cultivation media should be free of animal-derived components, food-grade, non-allergenic and allow for efficient growth to high densities to provide cost-effective production platforms. In this study, we assessed the growth and performance of A. muciniphila in batch bioreactors using newly developed plant-based media. Methods: The bioreactors were supplemented with varying carbon sources, including different ratios of N-acetylglucosamine (GlcNAc) and glucose. We monitored the growth of A. muciniphila in the plant-based medium using optical density (OD600) measurements and microscopy. In addition, we used a combination of biochemical analysis as well as transcriptional and proteomics analysis to gain detailed insight into the physiology. Results: Comparisons between growth on these media and that on mucin revealed differences at both transcriptome and proteome levels, including differences in the expression of glycosyltransferases, signaling proteins, and stress response. Furthermore, elongated cells and higher OD600 values were observed using the plant-based media as compared to cultivation media containing mucin. Conclusion: These differences do not hamper growth, and therefore, our data suggest that the food-grade medium composition described here could be used to produce A. muciniphila with high yields for therapeutic purposes.
Collapse
Affiliation(s)
- Sharon Y. Geerlings
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Kees van der Ark
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Delft 2629 HZ, the Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
16
|
Michielsen S, Vercelli GT, Cordero OX, Bachmann H. Spatially structured microbial consortia and their role in food fermentations. Curr Opin Biotechnol 2024; 87:103102. [PMID: 38461750 DOI: 10.1016/j.copbio.2024.103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Microbial consortia are important for the fermentation of foods. They bring combined functionalities to the fermented product, but stability and product consistency of fermentations with complex consortia can be hard to control. Some of these consortia, such as water- and milk-kefir and kombucha, grow as multispecies aggregates or biofilms, in which micro-organisms taking part in a fermentation cascade are spatially organized. The spatial organization of micro-organisms in these aggregates can impact what metabolic interactions are realized in the consortia, ultimately affecting the growth dynamics and evolution of microbes. A better understanding of such spatially structured communities is of interest from the perspective of microbial ecology and biotechnology, as multispecies aggregates can be used to valorize energy-rich substrates, such as plant-based substrates or side streams from the food industry.
Collapse
Affiliation(s)
- Sabine Michielsen
- Systems Biology Lab, A-LIFE/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Gabriel T Vercelli
- Department of Civil and Environmental Engineering, 15 Vassar St, Cambridge, MA 02139, USA
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, 15 Vassar St, Cambridge, MA 02139, USA
| | - Herwig Bachmann
- Systems Biology Lab, A-LIFE/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Microbiology Department, NIZO Food Research, Ede, the Netherlands.
| |
Collapse
|
17
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Alteration of oral microbial biofilms by sweeteners. Biofilm 2024; 7:100171. [PMID: 38197082 PMCID: PMC10772577 DOI: 10.1016/j.bioflm.2023.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
There is a growing interest in using sweeteners for taste improvement in the food and drink industry. Sweeteners were found to regulate the formation or dispersal of structural components of microbial biofilms. Dietary sugars may enhance biofilm formation and facilitate the development of antimicrobial resistance, which has become a major health issue worldwide. In contrast, bulk and non-nutritive sweeteners are also beneficial for managing microbial infections. This review discusses the clinical significance of oral biofilms formed upon the administration of nutritive and non-nutritive sweeteners. The underlying mechanism of action of sweeteners in the regulation of mono- or poly-microbial biofilm formation and destruction is comprehensively discussed. Bulk and non-nutritive sweeteners have also been used in conjunction with antimicrobial substances to reduce microbial biofilm formation. Formulations with bulk and non-nutritive sweeteners have been demonstrated to be particularly efficient in this regard. Finally, future perspectives with respect to advancing our understanding of mechanisms underlying biofilm regulation activities of sweeteners are presented as well. Several alternative strategies for the application of bulk sweeteners and non-nutritive sweeteners have been employed to control the biofilm-forming microbial pathogens. Gaining insight into the underlying mechanisms responsible for enhancing or inhibiting biofilm formation and virulence properties by both mono- and poly-microbial species in the presence of the sweetener is crucial for developing a therapeutic agent to manage microbial infections.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
18
|
Liang S, Wang X, Li C, Liu L. Biological Activity of Lactic Acid Bacteria Exopolysaccharides and Their Applications in the Food and Pharmaceutical Industries. Foods 2024; 13:1621. [PMID: 38890849 PMCID: PMC11172363 DOI: 10.3390/foods13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Exopolysaccharides are natural macromolecular bioactive substances produced by lactic acid bacteria. With their unique physiological activity and structural characteristics, they are gradually showing broad application prospects in the food and pharmaceutical industries. Exopolysaccharides have various biological functions, such as exerting antioxidant and anti-tumor activities and regulating gut microbiota. Meanwhile, as a food additive, exopolysaccharides can significantly enhance the taste and quality of food, bringing consumers a better eating experience. In the field of medicine, exopolysaccharides have been widely used as drug carriers due to their non-toxic properties and good biocompatibility. This article summarizes the biological activities of exopolysaccharides produced by lactic acid bacteria, their synthesis, and their applications in food and pharmaceutical industries, aiming to promote further research and development in this field.
Collapse
Affiliation(s)
- Shengnan Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chun Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Libo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
19
|
Pinchao YA, Serna-Cock L, Mora OO. Probiotic capacity of commensal lactic acid bacteria from the intestine of Guinea pigs ( Cavia porcellus). Heliyon 2024; 10:e29431. [PMID: 38655303 PMCID: PMC11035050 DOI: 10.1016/j.heliyon.2024.e29431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The intricate balance of intestinal microbiota is significantly influenced by the pivotal role of indigenous lactic acid bacteria (LAB). These LAB not only contribute to antimicrobial activity and enhance animal health and productivity but also serve as defense against intestinal infections. In the present study, the probiotic potential of LAB strains isolated from various intestinal sections of adult and young guinea pigs (Cavia porcellus) was comprehensively assessed. Strains belonging to the genera Ligilactobacillus, Weissella, Enterococcus, and Limosilactobacillus were also identified. The antibacterial activities of the LAB strains against Salmonella typhimurium, Escherichia coli, and Staphylococcus aureus were quantified. Exopolysaccharide production, adherence capacity, antibiotic resistance, and bile salt tolerance (0.15 %, 0.30 %, and 0.45 %) of LAB were quantified. Further analyses focused on the effects of pH (2.9, 5.0, 6.4, and 7.4), temperature (40, 50, and 60 °C) and NaCl concentrations (3.5 % and 6.5 % w/v) on LAB growth. Strains GCI9 and GDE10 (Ligilactobacillus salivarius), isolated from the cecum and intestine of guinea pigs, exhibited significant antimicrobial activity against S. typhimurium, E. coli and S. aureus. Remarkable adherence capacity to porcine gastric mucin was demonstrated by L. salivarius strains, specifically ACI1, GCI9, and GDE10, with the highest exopolysaccharide levels produced by ACI1 and GCI9 (1.71 and 1.76 mg/mL, respectively). The probiotic potential was further underscored by remarkable bile salt tolerance, especially in strain GDE10, and substantial exopolysaccharide production. These strains displayed notable adaptability to varying environmental conditions, including NaCl concentrations at 3.5 % and 6.5 %, temperatures ranging from 40 to 60 °C, and pH levels of 2.9, 5.0, 6.4, and 7.4. This comprehensive assessment of the probiotic properties of L. salivarius strains, particularly ACI1, GCI9, and GDE10, shows promise for the development of probiotic formulations aimed at enhancing the intestinal health of guinea pigs.
Collapse
Affiliation(s)
- Yamid A. Pinchao
- Faculty of Engineering and Administration, Universidad Nacional de Colombia, Palmira, Colombia
| | - Liliana Serna-Cock
- Faculty of Engineering and Administration, Universidad Nacional de Colombia, Palmira, Colombia
| | - Oswaldo Osorio Mora
- Faculty of Agroindustrial Engineering, Universidad de Nariño, San Juan de Pasto, Colombia
| |
Collapse
|
20
|
Elleuch J, Drira M, Ghribi I, Hadjkacem F, Pierre G, Khemakhem H, Michaud P, Fendri I, Abdelkafi S. Lead removal from the aqueous solution by extracellular polymeric substances produced by the marine diatom Navicula salinicola. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 38619982 DOI: 10.1080/09593330.2024.2338456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Microbial extracellular polymeric substances (EPS) have recently emerged as significant contributors in diverse biotechnological applications. Extracellular polymeric substances (EPS), produced by a Navicula salinicola strain, have been studied for potential applications in a specific heavy metal (lead (Pb II)) removal from wastewater. The optimisation of operational parameters, mainly pH, Pb and EPS concentrations, using the Box-Behnken design (BBD) was undertaken to enhance lead uptake. The higher Pb adsorption capacity reached 2211.029 mg/g. Hydroxyl, carbonyl, carboxyl, phosphoric, and sulfhydryl groups were identified quantitatively as potential sites for Pb adsorption. EPS exhibited a notable flocculation rate of 70.20% in kaolin clay at a concentration of 15 mg/L. They demonstrated an emulsifying activity greater than 88%, showcasing their versatile potential for both sedimentation processes and stabilising liquid-liquid systems. EPS could be excellent nonconventional renewable biopolymers for treating water and wastewater.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
| | - Marwa Drira
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Imtinen Ghribi
- Laboratory of Plant Biotechnologies Applied to the Improvement of Plants, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Farah Hadjkacem
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
- CNRS, Clermont Auvergne INP, Institute Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Guillaume Pierre
- CNRS, Clermont Auvergne INP, Institute Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratory of Multifunctional Materials and Applications (LaMMA), (LR16ES18), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | | | - Philippe Michaud
- CNRS, Clermont Auvergne INP, Institute Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratory of Plant Biotechnologies Applied to the Improvement of Plants, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
21
|
Rampanti G, Cantarini A, Cardinali F, Milanović V, Garofalo C, Aquilanti L, Osimani A. Technological and Enzymatic Characterization of Autochthonous Lactic Acid Bacteria Isolated from Viili Natural Starters. Foods 2024; 13:1115. [PMID: 38611419 PMCID: PMC11011773 DOI: 10.3390/foods13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Viili, a Finnish ropy fermented milk, is traditionally manufactured through spontaneous fermentation, by mesophilic lactic acid bacteria and yeast-like fungi, or back-slopping. This study evaluated four natural viili starters as sources of lactic acid bacteria for dairy production. Back-slopping activation of the studied viili samples was monitored through pH and titratable acidity measurements and enumeration of mesophilic lactic acid bacteria. Sixty lactic acid bacteria isolates were collected, molecularly identified, and assayed for acidification performance, enzymatic activities, production of exopolysaccharides (EPSs), presence of the histidine decarboxylase (hdcA) gene of Gram-positive bacteria, and production of bacteriocins. A neat predominance of Lactococcus lactis emerged among the isolates, followed by Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, Enterococcus lactis, and Lactococcus cremoris. Most isolates exhibited proteolytic activity, whereas only a few enterococci showed lipase activity. Five isolates identified as L. cremoris, L. lactis, and E. faecalis showed a good acidification performance. Most of the isolates tested positive for leucine arylamidase, whereas only one E. durans and two L. lactis isolates were positive for valine arylamidase. A few isolates also showed a positive reaction for beta-galactosidase and alpha- and beta-glucosidase. None of the isolates produced EPSs or bacteriocins. The hdcA gene was detected in five isolates identified as L. lactis and E. faecium. A few L. cremoris and L. lactis isolates for potential use as starter or adjunct cultures for dairy processing were finally identified.
Collapse
Affiliation(s)
| | | | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (A.C.); (V.M.); (C.G.); (L.A.); (A.O.)
| | | | | | | | | |
Collapse
|
22
|
Yao S, Tu R, Jin Y, Zhou R, Wu C, Qin J. Improvement of the viability of Tetragenococcus halophilus under acidic stress by forming the biofilm cell structure based on RNA-Seq and iTRAQ analyses. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3559-3569. [PMID: 38147410 DOI: 10.1002/jsfa.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Tetragenococcus halophilus is a halophilic lactic acid bacterium (LAB) isolated from soya sauce moromi. During the production of these fermented foods, acid stress is an inevitable environmental stress. In our previous study, T. halophilus could form biofilms and the cells in the biofilms exhibited higher cell viability under multiple environmental stresses, including acid stress. RESULTS In this study, the effect of preformed T. halophilus biofilms on cell survival, cellular structure, intracellular environment, and the expression of genes and proteins under acid stress was investigated. The result showed that acid stress with pH 4.30 for 1.5 h reduced the live T. halophilus cell count and caused cellular structure damage. However, T. halophilus biofilm cells exhibited greater cell survival under acid stress than the planktonic cells, and biofilm formation reduced the damage of acid stress to the cell membrane and cell wall. The biofilm cells maintained a higher level of H+ -ATPase activity and intracellular ammonia concentration after acid stress. The RNA-Seq and iTRAQ technologies revealed that the genes and proteins associated with ATP production, the uptake of trehalose and N-acetylmuramic acid, the assembly of H+ -ATPase, amino acid biosynthesis and metabolism, ammonia production, fatty acid biosynthesis, CoA biosynthesis, thiamine production, and acetoin biosynthesis might be responsible for the stronger acid tolerance of T. halophilus biofilm cells together. CONCLUSION These findings further explained the mechanisms that allowed LAB biofilm cells to resist environmental stress. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongkun Tu
- Luzhou Lao Jiao Co., Ltd., Luzhou, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Saud S, Xiaojuan T, Fahad S. The consequences of fermentation metabolism on the qualitative qualities and biological activity of fermented fruit and vegetable juices. Food Chem X 2024; 21:101209. [PMID: 38384684 PMCID: PMC10878862 DOI: 10.1016/j.fochx.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Fermentation of fruit and vegetable juices with probiotics is a novel nutritional approach with potential health benefits. Lactic acid fermentation-based biotransformation results in changes in the profile and nature of bioactive compounds and improves the organoleptic properties, shelf life and bioavailability of vitamins and minerals in the fermented juices. This process has been shown to enrich the phenolic profile and bioactivity components of the juices, resulting in a new type of functional food with improved health benefits. Fruits and vegetables are the ideal substrate for microbial growth, and fruit and vegetable juice will produce rich nutrients and a variety of functional activities after fermentation, so that the high-quality utilization of fruits and vegetables is realized, and the future fermented fruit and vegetable juice products have a wide application market. This paper explores the typical fermentation methods for fruit and vegetable juices, investigates the bioactive components, functional activities, and the influence of fermentation on enhancing the quality of fruit and vegetable juices. The insights derived from this study carry significant implications for guiding the development of fermented fruit and vegetable juice industry.
Collapse
Affiliation(s)
- Shah Saud
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Tang Xiaojuan
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
24
|
Tang S, Gong J, Song B, Cao W, Li J. Remediation of biochar-supported effective microorganisms and microplastics on multiple forms of heavy metals in eutrophic lake. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133098. [PMID: 38064949 DOI: 10.1016/j.jhazmat.2023.133098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/08/2024]
Abstract
In mineral-rich areas, eutrophic lakes are at risk of HMs pollution. However, few papers focused on the repair of HMs in eutrophic environment. Our study analyzed multiple forms of HMs, pore structure and microbial responses in the water-sediment system of eutrophic lake treated with biochar, Effective Microorganisms (EMs) or/and microplastics (MPs). As biochar provided an ideal carrier for EMs, the remediation of biochar-supported EMs (BE) achieved the greatest repairment that improved the bacterial indexes and greatly decreased the most HMs in various forms across the water-sediment system, and it also reduced metal mobility, bioavailability and ecological risk. The addition of aged MPs (MP) stimulated the microbial activity and significantly reduced the HMs levels in different forms due to the adsorption of biofilms/EPS adhered on MPs, but it increased metals mobility and ecological risks. The strong adsorption and high mobility of aged MPs would increase enrichment of HMs and cause serious ecological hazards. The incorporation of BE and MP (MBE) also greatly reduced the HMs in full forms, which was primarily ascribed to the adsorption of superfluous biofilms/EPS, but it distinctly depressed the microbial activity. The single addition of biochar and EMs resulted in the inability of HMs to be adsorbed due to the preferentially adsorption of dissolved nutrients and the absence of effective carrier, respectively. In the remediation cases, the remarkable removal of HMs was principally accomplished by the adsorption of HMs with molecular weight below 100 kDa, especially 3 kDa ∼100 kDa, which had higher specific surfaces and abundant active matters, resulting in higher adsorption onto biofilms/EPS.
Collapse
Affiliation(s)
- Siqun Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| |
Collapse
|
25
|
de Souza F, Gupta RK. Bacteria for Bioplastics: Progress, Applications, and Challenges. ACS OMEGA 2024; 9:8666-8686. [PMID: 38434856 PMCID: PMC10905720 DOI: 10.1021/acsomega.3c07372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Bioplastics are one of the answers that can point society toward a sustainable future. Under this premise, the synthesis of polymers with competitive properties using low-cost starting materials is a highly desired factor in the industry. Also, tackling environmental issues such as nonbiodegradable waste generation, high carbon footprint, and consumption of nonrenewable resources are some of the current concerns worldwide. The scientific community has been placing efforts into the biosynthesis of polymers using bacteria and other microbes. These microorganisms can be convenient reactors to consume food and agricultural wastes and convert them into biopolymers with inherently attractive properties such as biodegradability, biocompatibility, and appreciable mechanical and chemical properties. Such biopolymers can be applied to several fields such as packing, cosmetics, pharmaceutical, medical, biomedical, and agricultural. Thus, intending to elucidate the science of microbes to produce polymers, this review starts with a brief introduction to bioplastics by describing their importance and the methods for their production. The second section dives into the importance of bacteria regarding the biochemical routes for the synthesis of polymers along with their advantages and disadvantages. The third section covers some of the main parameters that influence biopolymers' production. Some of the main applications of biopolymers along with a comparison between the polymers obtained from microorganisms and the petrochemical-based ones are presented. Finally, some discussion about the future aspects and main challenges in this field is provided to elucidate the main issues that should be tackled for the wide application of microorganisms for the preparation of bioplastics.
Collapse
Affiliation(s)
- Felipe
Martins de Souza
- National
Institute for Materials Advancement, Pittsburgh
State University, 1204 Research Road, Pittsburgh, Kansas 66762, United States
| | - Ram K. Gupta
- National
Institute for Materials Advancement, Pittsburgh
State University, 1204 Research Road, Pittsburgh, Kansas 66762, United States
- Department
of Chemistry, Pittsburgh State University, 1701 South Broadway Street, Pittsburgh, Kansas 66762, United States
| |
Collapse
|
26
|
Kwun SY, Yoon JA, Kim GY, Bae YW, Park EH, Kim MD. Isolation of a Potential Probiotic Levilactobacillus brevis and Evaluation of Its Exopolysaccharide for Antioxidant and α-Glucosidase Inhibitory Activities. J Microbiol Biotechnol 2024; 34:167-175. [PMID: 38282411 PMCID: PMC10840464 DOI: 10.4014/jmb.2304.04043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 01/30/2024]
Abstract
The probiotic properties of ten lactic acid bacteria and antioxidant and α-glucosidase inhibitory activities of the exopolysaccharide (EPS) of the selected strain were investigated in this study. Levilactobacillus brevis L010 was one of the most active strains across all the in vitro tests. The cell-free supernatant (50 g/l) of L. brevis L010 showed high levels of both α-glucosidase inhibitory activity (98.73 ± 1.32%) and 2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity (32.29 ± 3.86%). The EPS isolated from cell-free supernatant of L. brevis L010 showed 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging activity (80.27 ± 2.51%) at 80 g/l, DPPH radical-scavenging activity (38.19 ± 9.61%) at 40 g/l, and ferric reducing antioxidant power (17.35 ± 0.20 mg/l) at 80 g/l. Further, EPS exhibited inhibitory activities against α-glucosidase at different substrate concentrations. Kinetic analysis suggests that the mode of inhibition was competitive, with a kinetic constant of Km = 2.87 ± 0.88 mM and Vmax = 0.39 ± 0.06 μmole/min. It was concluded that the EPS might be one of the plausible candidates for possible antioxidant and α-glucosidase activities of the L. brevis L010 strain.
Collapse
Affiliation(s)
- Se-Young Kwun
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeong-Ah Yoon
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ga-Yeon Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young-Woo Bae
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun-Hee Park
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Myoung-Dong Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Fermentation and Brewing, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
27
|
Chowdhury N, Naorem RS, Hazarika DJ, Goswami G, Dasgupta A, Bora SS, Boro RC, Barooah M. An oxalate decarboxylase-like cupin domain containing protein is involved in imparting acid stress tolerance in Bacillus amyloliquefaciens MBNC. World J Microbiol Biotechnol 2024; 40:64. [PMID: 38189984 DOI: 10.1007/s11274-023-03870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024]
Abstract
We report here the structural and functional properties of an oxalate decarboxylase (OxDC)-like cupin domain-containing protein of Bacillus amyloliquefaciens MBNC and its role in imparting tolerance to acid stress conditions. Quantitative real-time PCR (qPCR) analysis revealed 32-fold and 20-fold upregulation of the target gene [(OxDC')cupin] under acetic acid stress and hydrochloric acid stress, respectively, indicating its association with the acid stress response. Bacterial cells with targeted inactivation of the (OxDC')cupin gene using the pMUTIN4 vector system showed decreased growth and survival rate in acidic pH, with drastically reduced exopolysaccharide production. In Silico protein-protein interaction studies revealed seven genes (viz. glmS, nagA, nagB, tuaF, tuaF, gcvT, and ykgA) related to cell wall biosynthesis and biofilm production to interact with OxDC-like cupin domain containing protein. While all these seven genes were upregulated in B. amyloliquefaciens MBNC after 6 h of exposure to pH 4.5, the mutant cells containing the inactivated (OxDC')cupin gene displayed significantly lower expression (RQ: 0.001-0.02) (compared to the wild-type cells) in both neutral and acidic pH. Our results indicate that the OxDC-like cupin domain containing protein is necessary for cell wall biosynthesis and biofilm production in Bacillus amyloliquefaciens MBNC for survival in acid-stress conditions.
Collapse
Affiliation(s)
- Naimisha Chowdhury
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Romen Singh Naorem
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Dibya Jyoti Hazarika
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Gunajit Goswami
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Abhisek Dasgupta
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Sudipta Sankar Bora
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
28
|
Kim YY, Kim JC, Kim S, Yang JE, Kim HM, Park HW. Heterotypic stress-induced adaptive evolution enhances freeze-drying tolerance and storage stability of Leuconostoc mesenteroides WiKim33. Food Res Int 2024; 175:113731. [PMID: 38128991 DOI: 10.1016/j.foodres.2023.113731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Lactic acid bacteria (LAB) are currently being investigated for their potential use as probiotics and starter cultures. Researchers have developed powdering processes for the commercialization of LAB. Previous studies have focused on identifying innovative cryoprotective agents and freeze-drying (FD) techniques to enhance the stability of LAB. In this study, adaptive laboratory evolution (ALE) was employed to develop a strain with high FD tolerance and enhanced storage stability. Leuconostoc mesenteroids WiKim33 was subjected to heterotypic shock (heat and osmosis shock) to induce the desired phenotype and genotype. An FD-tolerant enhanced Leu. mesenteroides WiKim33 strain (ALE50) was obtained, which harbored a modified fatty acid composition and cell envelope characteristics. Specifically, ALE50 showed a lower unsaturated fatty acid (UFA)/saturated fatty acid (SFA) ratio and a higher cyclic fatty acid (CFA) composition. Moreover, the exopolysaccharide (EPS) thickness increased significantly by 331% compared to that of the wild type (WT). FD tolerance, which was evaluated using viability testing after FD, was enhanced by 33.4%. Overall, we demonstrated the feasibility of ALE to achieve desirable characteristics and provided insights into the mechanisms underlying increased FD tolerance.
Collapse
Affiliation(s)
- Yeong Yeol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Cheol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Seulbi Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea; Division of Applied Bioscience & Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Eun Yang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ho Myeong Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Hae Woong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| |
Collapse
|
29
|
Shehata NS, Elwakil BH, Elshewemi SS, Ghareeb DA, Olama ZA. Selenium nanoparticles coated bacterial polysaccharide with potent antimicrobial and anti-lung cancer activities. Sci Rep 2023; 13:21871. [PMID: 38072846 PMCID: PMC10711019 DOI: 10.1038/s41598-023-48921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Bacterial exopolysaccharides are homopolymeric or heteropolymeric polysaccharides with large molecular weights (10-1000 kDa). Exopolysaccharides' functional uses and potential have revolutionized the industrial and medicinal industries. Hence, the aim of the present study was to optimize the production of bacterial exopolysaccharide and apply it as a capping agent for selenium nanoparticles synthesis. Exopolysaccharide (EPS) producing Lactic acid bacteria (LAB) were isolated from dairy products then biochemically characterized and assessed for their potential antimicrobial effect. The most potent EPS producer was identified as Lactiplantibacillus plantarum strain A2 with accession number OP218384 using 16S rRNA sequencing. Overall, FTIR data of the extracted EPS revealed similarity with amylopectin spectrum. 1H NMR spectrum revealed an α-anomeric configuration of the glycosidic linkage pattern in the polysaccharides while the 13C NMR spectrum can also be separated into two main portions, the anomeric carbons region (δ 98-102 ppm) and the non-anomeric carbons region (δ 60-81 ppm). Antimicrobial activity of the produced EPS showed maximum activity against Staphylococcus aureus, MRSA, Enterobacter aerogenes, Klebsiella pneumoniae and Candida albicans respectively. The EPS capsule layer surrounding the bacterial cells was detected by TEM study. Optimization of EPS production was evaluated using Taguchi design, trial 23 reported the highest biomass yield and EPS output (6.5 and 27.12 g/L respectively) with 2.4 and 3.3 folds increase (from the basal media) respectively. The optimized exopolysaccharide was used as a capping and stabilizing agent for selenium nanoparticles (EPS-SeNPs) synthesis. Zeta potential, size and PDI of the synthesized nanoparticles were - 19.7 mV, 45-65 nm and 0.446 respectively with strong bactericidal and fungicidal effect against the tested pathogens. Complete microbial growth eradication was recorded after 6, 8 and 10 h against Staphylococcus aureus, Candida albicans and Klebsiella pneumoniae respectively. EPS-SeNPs showed a potent antioxidant effect reached 97.4% and anticancer effect against A549 lung cancer cell line (IC50 reached 5.324 µg/mL). EPS-SeNPs inhibited cancerous cell growth at S phase. Moreover, molecular studies revealed the anti-apoptotic activity of Bcl2's was inhibited and Bax was activated. The present investigation successfully synthesized selenium nanoparticles through bacterial EPS with significantly high antimicrobial and anticancer activity.
Collapse
Affiliation(s)
- Nourhan S Shehata
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt.
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Bassma H Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Salma S Elshewemi
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Biological Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21526, Egypt
| | - Zakia A Olama
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Wahyuni S, Asnani A, Khaeruni A, Dewi NDP, Sarinah S, Faradilla RHF. Study on physicochemical characteristics of local colored rice varieties (black, red, brown, and white) fermented with lactic acid bacteria (SBM.4A). JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:3035-3042. [PMID: 37790923 PMCID: PMC10542439 DOI: 10.1007/s13197-023-05813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 10/05/2023]
Abstract
In this study, the physicochemical properties of local colored rice flour were studied after modification through fermentation with lactic acid bacteria (LAB) SBM.4A. SBM.4A was LAB isolated from the rice washing water and was in the cladogram of the Pediococcus pentosaceus strain SRCM102739 CP028266.1 and Pediococcus pentosaceus strain SRCM102738 CP028264.1. The studied rice varieties were wakacinda (white rice), wakawondu (red rice), warumbia (brown rice), and wakaombe (black rice). Characterizations of both fermented and native rice flour included chemical composition, FTIR profile, crystallinity, morphology, and pasting properties. Fermentation did not introduce new chemical functional groups to the flour and only slightly increased crystallinity from approximately 22.5% to 25.05%. In contrast, fermentation greatly affected the chemical composition and pasting properties of rice flour. Protein content of the fermented flour increased up to 214% relative to the native rice flour. Effect of fermentation on pasting properties varied between rice varieties. Increase in peak and final viscosities was observed in red, brown, and black rice. The opposite effect was found in white rice. However, fermentation improved the stability of flour to retrogradation for all rice varieties. These showed that the fermentation improved the properties of the local-colored rice flour and may widen their application as food ingredients.
Collapse
Affiliation(s)
- Sri Wahyuni
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Halu Oleo, Kendari, Sulawesi Tenggara 93132 Indonesia
| | - Asnani Asnani
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, Universitas Halu Oleo, Kendari, Indonesia
| | - Andi Khaeruni
- Department of Plant Protection, Faculty of Agriculture, Universitas Halu Oleo, Kendari, Indonesia
| | - Novi Dian Puspita Dewi
- Department of Chemistry, Faculty of Math and Natural Science, Universitas Halu Oleo, Kendari, Indonesia
| | - Sarinah Sarinah
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Halu Oleo, Kendari, Sulawesi Tenggara 93132 Indonesia
| | - R. H. Fitri Faradilla
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Halu Oleo, Kendari, Sulawesi Tenggara 93132 Indonesia
| |
Collapse
|
31
|
Montemurro M, Beccaccioli M, Perri G, Rizzello CG, Reverberi M, Pontonio E. A chestnut-hemp type-II sourdough to improve technological, nutritional, and sensory properties of gluten-free bread. Int J Food Microbiol 2023; 404:110322. [PMID: 37454506 DOI: 10.1016/j.ijfoodmicro.2023.110322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The nutritional quality of gluten-free (GF) products is usually improved by using flours derived from alternative grains (e.g., pseudocereals and legumes), additives and hydrolysates, leading to long ingredient lists in the labels, that conflict with current customer expectations. In this work, chestnut, carob, and hemp flours were used as mixed ingredients for making a gluten-free type-II sourdough. Three exopolysaccharides-producer lactic acid bacteria, belonging to Leuconostoc mesenteroides, Weissella cibaria, and Leuconostoc pseudomesenteroides, were used, and the fermentation processes (6 log10 cfu/g, 25 °C, 16 h) optimize to maximize the EPS synthesis (15.70 ± 2.1 mg/kg). The chestnut-hemp (70:30) type-II sourdough was included in a rice/corn gluten-free bread recipe also containing psyllium flour as structuring agent. Although the fortification with unfermented flours already led the achievement of 6 g/100 g of fiber (high fiber, Regulation EC n. 1924/2006) and content of magnesium higher than the daily reference intakes, the use of type-II sourdoughs led to a further structural, sensory, and nutritional improvements (e.g., decreasing the main anti-nutritional factor phytic acid). This work demonstrated that the use of ad-hoc selected ingredients and optimized protocol can be used to produce a GF and "clean label" bread with optimal nutritional features and appreciable sensory and structural properties.
Collapse
Affiliation(s)
- Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy; National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy
| | - Marzia Beccaccioli
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
| | - Giuseppe Perri
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Massimo Reverberi
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
| | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
32
|
Drouin P, da Silva ÉB, Tremblay J, Chevaux E, Apper E, Castex M. Inoculation with Lentilactobacillus buchneri alone or in combination with Lentilactobacillus hilgardii modifies gene expression, fermentation profile, and starch digestibility in high-moisture corn. Front Microbiol 2023; 14:1253588. [PMID: 37901805 PMCID: PMC10602787 DOI: 10.3389/fmicb.2023.1253588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Inoculants combining Lentilactobacillus buchneri and Lentilactobacillus hilgardii have been shown to improve the aerobic stability of high-moisture corn (HMC) and whole-plant corn silage, but the mode of action of this co-inoculation remains to be elucidated. This study used metatranscriptomics to evaluate the effects of inoculation with L. buchneri alone or combined with L. hilgardii on the bacterial community, gene expression, fermentation profile, and starch digestibility in HMC. High-moisture corn not inoculated (Control) or inoculated with L. buchneri NCIMB 40788 (LB) or L. buchneri NCIMB 40788 combined with L. hilgardii CNCM-I-4785 (Combo) was ensiled in mini silo bags for 30, 60, 120, and 180 days. The fermentation profile was evaluated at all time points. Metatranscriptomics was performed on samples collected on day 120. Combo had a greater alpha diversity richness index of contigs than LB and Control, and inoculation with Combo and LB modified the beta-diversity of contigs compared to Control. Out of 69 genes of interest, 20 were differentially expressed in LB compared to Control and 25 in Combo compared to Control. Of those differently expressed genes, 16 (10 of which were associated with carbohydrate metabolism and six with amino acid metabolism) were differently expressed in both LB and Combo compared to Control, and all those genes were upregulated in the inoculated silages. When we compared Combo and LB, we found seven genes expressed differently, four associated with carbohydrate metabolism and downregulated in Combo, and three associated with amino acid metabolism and upregulated in Combo. At day 120, the inoculated silages had more culturable lactic acid bacteria, higher Lactobacillus relative abundance, and lower Leuconostoc relative abundance than Control. The concentration of acetic acid remained low throughout ensiling in Control, but in LB and Combo, it increased up to day 60 and remained stable from day 60 to 180. The 1,2-propanediol was only detected in LB and Combo. Inoculation did not affect the concentration of starch, but starch digestibility was greater in Combo than in Control. Inoculation of HMC with Combo modified the gene expression and fermentation profile compared to Control and LB, improving starch digestibility compared to uninoculated HMC.
Collapse
Affiliation(s)
- Pascal Drouin
- Independent Researcher, Saint-Jean-sur-Richelieu, QC, Canada
| | | | - Julien Tremblay
- Energy, Mining, and Environment, National Research Council of Canada, Montréal, QC, Canada
| | | | | | | |
Collapse
|
33
|
Shangpliang HNJ, Tamang JP. Metagenomics and metagenome-assembled genomes mining of health benefits in jalebi batter, a naturally fermented cereal-based food of India. Food Res Int 2023; 172:113130. [PMID: 37689895 DOI: 10.1016/j.foodres.2023.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Jalebi is one of the oldest Indian traditional fermented wheat-based confectioneries. Since jalebi is prepared by natural fermentation, diverse microbial community is expected to play bio-functional activities. Due to limited studies, information on microbial community structure in jalebi is unknown. Hence, the present study is aimed to profile the microbial community in jalebi by shotgun metagenomics and also to predict putative probiotic and functional genes by metagenome-assembled genome (MAG). Bacteria were the most abundant domain (91.91%) under which Bacillota was the most abundant phylum (82%). The most abundant species was Lapidilactobacillus dextrinicus followed by several species of lactic acid bacteria, acetic acid bacteria including few yeasts. Lap. dextrinicus was also significantly abundant in jalebi when compared to similar fermented wheat-based sourdough. Additionally, Lap. bayanensis, Pediococcus stilesii, and yeast- Candida glabrata, Gluconobacter japonicus, Pichia kudriavzevii, Wickerhamomyces anomalus were only detected in jalebi, which are not detected in sourdough. Few viruses and archaea were detected with < 1 % abundance. In silico screening of genes from the abundant species was mined using both KEGG and EggNOG database for putative health beneficial attributes. Circular genomes of five high-quality MAGs, identified as Lapidilactobacillus dextrinicus, Enterococcus hirae, Pediococcus stilesii, Acetobacter indonesiensis and Acetobacter cibinongensis, were constructed separately and putative genes were mapped and annotated. The CRISPR/Cas gene clusters in the genomes of four MAGs except Acetobacter cibinongensis were detected. MAGs also showed several secondary metabolites. Since, the identified MAGs have different putative genes for bio-functional properties, this may pave the way to selectively culture the uncultivated putative microbes for jalebi production. We believe this is the first report on metagenomic and MAGs of jalebi.
Collapse
Affiliation(s)
| | - Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok 737102, Sikkim, India.
| |
Collapse
|
34
|
Angelov A, Georgieva A, Petkova M, Bartkiene E, Rocha JM, Ognyanov M, Gotcheva V. On the Molecular Selection of Exopolysaccharide-Producing Lactic Acid Bacteria from Indigenous Fermented Plant-Based Foods and Further Fine Chemical Characterization. Foods 2023; 12:3346. [PMID: 37761055 PMCID: PMC10527965 DOI: 10.3390/foods12183346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Exopolysaccharides (EPSs) produced by lactic acid bacteria present a particular interest for the food industry since they can be incorporated in foods via in situ production by selected starter cultures or applied as natural additives to improve the quality of various food products. In the present study, 43 strains were isolated from different plant-based fermented foods and identified by molecular methods. The species found were distinctively specific according to the food source. Only six Lactiplantibacillus plantarum strains, all isolated from sauerkraut, showed the ability to produce exopolysaccharide (EPS). The utilization of glucose, fructose and sucrose was explored with regard to EPS and biomass accumulation by the tested strains. Sucrose was clearly the best carbon source for EPS production by most of the strains, yielding up to 211.53 mg/L by strain Lactiplantibacillus plantarum ZE2, while biomass accumulation reached the highest levels in the glucose-based culture medium. Most strains produced similar levels of EPS with glucose and fructose, while fructose was utilized more poorly for biomass production, yielding about 50% of biomass compared to glucose for most strains. Composition analysis of the EPSs produced by strain Lactiplantibacillus plantarum ZE2 from glucose (EPS-1) and fructose (EPS-2) revealed that glucose (80-83 mol%) and protein (41% w/w) predominated in both analyzed EPSs. However, the yield of EPS-1 was twice higher than that of EPS-2, and differences in the levels of all detected sugars were found, which shows that even for the same strain, EPS yield and composition vary depending on the carbon source. These results may be the basis for the development of tailored EPS-producing starter cultures for food fermentations, as well as technologies for the production of EPS for various applications.
Collapse
Affiliation(s)
- Angel Angelov
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4000 Plovdiv, Bulgaria;
| | - Aneliya Georgieva
- Institute of Food Preservation and Quality, 154 Vasil Aprilov Blvd., 4000 Plovdiv, Bulgaria;
| | - Mariana Petkova
- Department of Microbiology and Ecological Biotechnologies, Agricultural University, 12 Mendeleev Blvd., 4000 Plovdiv, Bulgaria;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Manol Ognyanov
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| | - Velitchka Gotcheva
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
35
|
Martha-Lucero N, Viniegra-González G, González-Olivares L, Cruz-Guerrero A. Biofilm formation by agave epiphytic lactic acid bacteria fed with agave fructans. World J Microbiol Biotechnol 2023; 39:299. [PMID: 37667093 DOI: 10.1007/s11274-023-03749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
The aim of this work was to find out if biofilms can be made by lactic acid bacteria (LAB) isolated from agave plants using agave fructans as sole carbohydrate substrates or if it was necessary to use fructose as a breakdown product of such polymers. This is part of a research project geared to develop industrial lactic acid production from agave fructans, an abundant raw material in Mexico's agave plantations. Present results showed that nine strains of LAB isolated from Agave salmiana and belonging to genus Lacticaseibacillus and Enterococcus produced exopolysaccharides directly from agave fructans to a greater extent than with fructose. The best polysaccharide productions in planktonic cultures were Lacticaseibacillus paracasei strains DG2, DG3, DG4 and DG8. Furthermore, all nine LAB strains produced biofilms on polystyrene microplates, much better with agave fructans than with fructose. In most strains, biofilm formation was favored at pH from 6.0 to 6.5, except for strains DG7 and DG9 where pH 5.5 was optimal. Biofilm formation required between 3 and 5 days of incubation in all Lacticaseibacillus paracasei strains, whereas Enterococcus faecium required a little less of 3 days. Present results support the straight use of agave fructans to develop LAB biofilms using agave epiphytic bacteria. This finding simplifies upstream processing of agave fructans to be used for future lactic acid fermentation in LAB biofilm reactors.
Collapse
Affiliation(s)
- Nayeli Martha-Lucero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, San Rafael Atlixco 186, Ciudad de México, México
| | - Gustavo Viniegra-González
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, San Rafael Atlixco 186, Ciudad de México, México
| | - Luis González-Olivares
- Universidad Autonoma del Estado de Hidalgo, Área académica de química, Mineral de la Reforma, Hgo., México
| | - Alma Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, San Rafael Atlixco 186, Ciudad de México, México.
| |
Collapse
|
36
|
Castro-López C, García-Galaz A, García HS, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Potential probiotic lactobacilli strains isolated from artisanal Mexican Cocido cheese: evidence-based biosafety and probiotic action-related traits on in vitro tests. Braz J Microbiol 2023; 54:2137-2152. [PMID: 37450104 PMCID: PMC10485211 DOI: 10.1007/s42770-023-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
The biosafety of four potentially probiotic lactobacilli strains, isolated from artisanal Mexican Cocido cheese, was assessed through in vitro tests aimed to determine (1) the antibiotic susceptibility profile by broth microdilution, (2) the transferability of antibiotic resistance determinants by filter-mating, and (3) the phenotypic and genotypic stability during serial batch sub-culture (100-day period) by evaluating physiological and probiotic features and RAPD-PCR fingerprinting. Lactobacilli strains exhibited multidrug-resistance; however, resistance determinants were not transferred in the filter-mating assay. Significant (p < 0.05) differences were observed in bacterial morphology and some functional and technological properties when strains were serially sub-cultured over 50 generations (G50), compared to the initial cultures (G0). Conversely, the strains did not show mucinolytic and hemolytic activities either at G0 or after 100 generations (G100). Genetic polymorphism and genomic template instability on selected strains were detected, which suggest possible evolutionary arrangements that may occur when these bacteria are largely cultured. Our findings suggest that the assessed strains did not raise in vitro biosafety concerns; however, complementary studies are still needed to establish the safe potential applications in humans and animals.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Alfonso García-Galaz
- Laboratorio de Microbiología Polifásica y Bioactividades, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos‒UNIDA, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz, Veracruz, México, 91897
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México.
| |
Collapse
|
37
|
Yue Y, Wang Y, Han Y, Zhang Y, Cao T, Huo G, Li B. Genome Analysis of Bifidobacterium Bifidum E3, Structural Characteristics, and Antioxidant Properties of Exopolysaccharides. Foods 2023; 12:2988. [PMID: 37627987 PMCID: PMC10453370 DOI: 10.3390/foods12162988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, the antioxidant properties of intact cells (IC), cell-free supernatant (CFS), and cell-free extracts (CFE) and whole genome sequencing of Bifidobacterium bifidum E3 (B. bifidum E3), as well as the structural characteristics and antioxidant properties of EPS-1, EPS-2, and EPS-3, were evaluated. The results revealed that intact cells (IC), cell-free supernatant (CFS), and cell-free extracts (CFE) had potent DPPH (1,1-Diphenyl-2-picrylhydrazyl radical), hydroxyl, and superoxide anion radical scavenging capacities, among which CFS was the best. At the genetic level, we identified a strong carbohydrate metabolism capacity, an EPS synthesis gene cluster, and five sugar nucleotides in B. bifidum E3. Therefore, we extracted cEPS from B. bifidum E3 and purified it to obtain EPS-1, EPS-2, and EPS-3. EPS-1, EPS-2, and EPS-3 were heteropolysaccharides with an average molecular weight of 4.15 × 104 Da, 3.67 × 104 Da, and 5.89 × 104 Da, respectively. The EPS-1 and EPS-2 are mainly comprised of mannose and glucose, and the EPS-3 is mainly comprised of rhamnose, mannose, and glucose. The typical characteristic absorption peaks of polysaccharides were shown in Fourier transform infrared spectroscopy (FT-IR spectroscopy). The microstructural study showed a rough surface structure for EPS-1, EPS-2, and EPS-3. Furthermore, EPS-1, EPS-2, and EPS-3 exhibited potent DPPH, hydroxyl, and superoxide anion radical scavenging capacities. Correlation analysis identified that antioxidant capacities may be influenced by various factors, especially molecular weight, chemical compositions, and monosaccharide compositions. In summary, the EPS that was produced by B. bifidum E3 may provide insights into health-promoting benefits in humans.
Collapse
Affiliation(s)
- Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yuqi Wang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yu Han
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Ting Cao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
38
|
Qiu S, Yang A, Zeng H. Flux balance analysis-based metabolic modeling of microbial secondary metabolism: Current status and outlook. PLoS Comput Biol 2023; 19:e1011391. [PMID: 37619239 PMCID: PMC10449171 DOI: 10.1371/journal.pcbi.1011391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Abstract
In microorganisms, different from primary metabolism for cellular growth, secondary metabolism is for ecological interactions and stress responses and an important source of natural products widely used in various areas such as pharmaceutics and food additives. With advancements of sequencing technologies and bioinformatics tools, a large number of biosynthetic gene clusters of secondary metabolites have been discovered from microbial genomes. However, due to challenges from the difficulty of genome-scale pathway reconstruction and the limitation of conventional flux balance analysis (FBA) on secondary metabolism, the quantitative modeling of secondary metabolism is poorly established, in contrast to that of primary metabolism. This review first discusses current efforts on the reconstruction of secondary metabolic pathways in genome-scale metabolic models (GSMMs), as well as related FBA-based modeling techniques. Additionally, potential extensions of FBA are suggested to improve the prediction accuracy of secondary metabolite production. As this review posits, biosynthetic pathway reconstruction for various secondary metabolites will become automated and a modeling framework capturing secondary metabolism onset will enhance the predictive power. Expectedly, an improved FBA-based modeling workflow will facilitate quantitative study of secondary metabolism and in silico design of engineering strategies for natural product production.
Collapse
Affiliation(s)
- Sizhe Qiu
- School of Food and Health, Beijing Technology and Business University, Bejing, China
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hong Zeng
- School of Food and Health, Beijing Technology and Business University, Bejing, China
| |
Collapse
|
39
|
Jeewon R, Aullybux AA, Puchooa D, Nazurally N, Alrefaei AF, Zhang Y. Marine Microbial Polysaccharides: An Untapped Resource for Biotechnological Applications. Mar Drugs 2023; 21:420. [PMID: 37504951 PMCID: PMC10381399 DOI: 10.3390/md21070420] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
As the largest habitat on Earth, the marine environment harbors various microorganisms of biotechnological potential. Indeed, microbial compounds, especially polysaccharides from marine species, have been attracting much attention for their applications within the medical, pharmaceutical, food, and other industries, with such interest largely stemming from the extensive structural and functional diversity displayed by these natural polymers. At the same time, the extreme conditions within the aquatic ecosystem (e.g., temperature, pH, salinity) may not only induce microorganisms to develop a unique metabolism but may also increase the likelihood of isolating novel polysaccharides with previously unreported characteristics. However, despite their potential, only a few microbial polysaccharides have actually reached the market, with even fewer being of marine origin. Through a synthesis of relevant literature, this review seeks to provide an overview of marine microbial polysaccharides, including their unique characteristics. In particular, their suitability for specific biotechnological applications and recent progress made will be highlighted before discussing the challenges that currently limit their study as well as their potential for wider applications. It is expected that this review will help to guide future research in the field of microbial polysaccharides, especially those of marine origin.
Collapse
Affiliation(s)
- Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aadil Ahmad Aullybux
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Daneshwar Puchooa
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Nadeem Nazurally
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ying Zhang
- School of Ecology and Natural Conservation, Beijing Forestry University, 35 East Qinghua Road, Haidian District, Beijing 100083, China
| |
Collapse
|
40
|
Bazukyan I, Georgieva-Miteva D, Velikova T, Dimov SG. In Silico Probiogenomic Characterization of Lactobacillus delbrueckii subsp. lactis A4 Strain Isolated from an Armenian Honeybee Gut. INSECTS 2023; 14:540. [PMID: 37367356 DOI: 10.3390/insects14060540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
A Lactobacillus delbrueckii ssp. lactis strain named A4, isolated from the gut of an Armenian honeybee, was subjected to a probiogenomic characterization because of its unusual origin. A whole-genome sequencing was performed, and the bioinformatic analysis of its genome revealed a reduction in the genome size and the number of the genes-a process typical for the adaptation to endosymbiotic conditions. Further analysis of the genome revealed that Lactobacillus delbrueckii ssp. lactis strain named A4 could play the role of a probiotic endosymbiont because of the presence of intact genetic sequences determining antioxidant properties, exopolysaccharides synthesis, adhesion properties, and biofilm formation, as well as an antagonistic activity against some pathogens which is not due to pH or bacteriocins production. Additionally, the genomic analysis revealed significant potential for stress tolerance, such as extreme pH, osmotic stress, and high temperature. To our knowledge, this is the first report of a potentially endosymbiotic Lactobacillus delbrueckii ssp. lactis strain adapted to and playing beneficial roles for its host.
Collapse
Affiliation(s)
- Inga Bazukyan
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
| | | | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Svetoslav G Dimov
- Faculty of Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
| |
Collapse
|
41
|
Jańczuk A, Brodziak A, Król J, Czernecki T. Properties of Yoghurt Fortified in Lactoferrin with Effect of Storage Time. Animals (Basel) 2023; 13:ani13101610. [PMID: 37238040 DOI: 10.3390/ani13101610] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The stability of fortified yoghurts during refrigerated storage is important for industry and the consumer. The aim of the study was to evaluate the nutritional value, microbiological quality, organoleptic properties, and structure of natural yoghurts made with the addition of lactoferrin during refrigerated storage. In this study, we produced natural yoghurts fortified in lactoferrin, using YC-X11 yoghurt starter culture based on Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Physicochemical (acidity, nutritional value and structure) as well as microbiological and organoleptic changes occurring during 28-days refrigerated storage were determined. Storage research made it possible to determine the direction of changes taking place in the products. The analysed parameters did not differ statistically significantly between the control yoghurts and those with the addition of lactoferrin. Textural and rheological studies also shown that the addition of lactoferrin did not significantly change the structure of the yoghurt. The yoghurts were characterized by high sanitary and hygienic quality during the whole refrigerated storage. Lactoferrin has a positive effect on the durability of the product.
Collapse
Affiliation(s)
- Anna Jańczuk
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Aneta Brodziak
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Jolanta Król
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Tomasz Czernecki
- Department of Biotechnology, Microbiology and Human Nutrition, Dietitian Service, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
42
|
Xiong J, Liu DM, Huang YY. Exopolysaccharides from Lactiplantibacillus plantarum: isolation, purification, structure–function relationship, and application. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
43
|
Mgomi FC, Yang YR, Cheng G, Yang ZQ. Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms. Biofilm 2023; 5:100118. [PMID: 37125395 PMCID: PMC10139968 DOI: 10.1016/j.bioflm.2023.100118] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The continuous growth of pathogenic microorganisms and associated biofilms poses severe public health challenges, particularly in food and clinical environments. However, these difficulties have enabled scientists to develop novel and safe methods for combating pathogens. The use of biofilms produced by lactic acid bacteria (LAB) against pathogenic bacteria has recently gained popularity. This review provides an in-depth look at LAB biofilms, their distribution, and mechanisms of action against pathogenic bacteria. More importantly, the bioactive substances produced by LAB-forming biofilm may be active against undesirable microorganisms and their products, which is of great interest in improving human health. Therefore, this review implies that a combination of LAB biofilms and other LAB products like bacteriocins could provide viable alternatives to traditional methods of combating pathogenic microorganisms and their biofilms.
Collapse
|
44
|
Nicolescu CM, Bumbac M, Buruleanu CL, Popescu EC, Stanescu SG, Georgescu AA, Toma SM. Biopolymers Produced by Lactic Acid Bacteria: Characterization and Food Application. Polymers (Basel) 2023; 15:1539. [PMID: 36987319 PMCID: PMC10058920 DOI: 10.3390/polym15061539] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Plants, animals, bacteria, and food waste are subjects of intensive research, as they are biological sources for the production of biopolymers. The topic links to global challenges related to the extended life cycle of products, and circular economy objectives. A severe and well-known threat to the environment, the non-biodegradability of plastics obliges different stakeholders to find legislative and technical solutions for producing valuable polymers which are biodegradable and also exhibit better characteristics for packaging products. Microorganisms are recognized nowadays as exciting sources for the production of biopolymers with applications in the food industry, package production, and several other fields. Ubiquitous organisms, lactic acid bacteria (LAB) are well studied for the production of exopolysaccharides (EPS), but much less as producers of polylactic acid (PLA) and polyhydroxyalkanoates (PHAs). Based on their good biodegradability feature, as well as the possibility to be obtained from cheap biomass, PLA and PHAs polymers currently receive increased attention from both research and industry. The present review aims to provide an overview of LAB strains' characteristics that render them candidates for the biosynthesis of EPS, PLA, and PHAs, respectively. Further, the biopolymers' features are described in correlation with their application in different food industry fields and for food packaging. Having in view that the production costs of the polymers constitute their major drawback, alternative solutions of biosynthesis in economic terms are discussed.
Collapse
Affiliation(s)
- Cristina Mihaela Nicolescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Marius Bumbac
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
- Faculty of Sciences and Arts, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Claudia Lavinia Buruleanu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Elena Corina Popescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Sorina Geanina Stanescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Andreea Antonia Georgescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Siramona Maria Toma
- Doctoral School of University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
45
|
An J, Zhang Y, Zhao Z, Huan R, Yi H, Wang H, Luan C, Feng S, Huang H, Li S, Wang D, Zhai Z, Hao Y. Molecular Organization and Functional Analysis of a Novel Plasmid-Borne cps Gene Cluster from Lactiplantibacillus plantarum YC41. Microbiol Spectr 2023; 11:e0415022. [PMID: 36877018 PMCID: PMC10100969 DOI: 10.1128/spectrum.04150-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/03/2023] [Indexed: 03/07/2023] Open
Abstract
Capsular polysaccharide (CPS) can tightly attach to bacterial surfaces and plays a critical role in protecting microorganisms from environmental stresses. However, the molecular and functional properties of some plasmid-borne cps gene clusters are poorly understood. In this study, comparative genomics of the draft genomes of 21 Lactiplantibacillus plantarum strains revealed that the specific gene cluster for CPS biosynthesis was observed only in the 8 strains with a ropy phenotype. Furthermore, the complete genomes showed that the specific gene cluster cpsYC41 was located on the novel plasmid pYC41 in L. plantarum YC41. In silico analysis confirmed that the cpsYC41 gene cluster contained the dTDP-rhamnose precursor biosynthesis operon, the repeating-unit biosynthesis operon, and the wzx gene. The insertional inactivation of the rmlA and cpsC genes abolished the ropy phenotype and reduced the CPS yields by 93.79% and 96.62%, respectively, in L. plantarum YC41 mutants. These results revealed that the cpsYC41 gene cluster was responsible for CPS biosynthesis. Moreover, the survival rates of the YC41-rmlA- and YC41-cpsC- mutants under acid, NaCl, and H2O2 stresses were decreased by 56.47 to 93.67% compared to that of the control strain. Furthermore, the specific cps gene cluster was also confirmed to play a vital role in CPS biosynthesis in L. plantarum MC2, PG1, and YD2. These findings enhance our understanding of the genetic organization and gene functions of plasmid-borne cps gene clusters in L. plantarum. IMPORTANCE Capsular polysaccharide is well known to protect bacteria against various environmental stresses. The gene cluster for CPS biosynthesis is typically organized in the chromosome in bacteria. It is worth noting that complete genome sequencing showed that a novel plasmid pYC41-borne cpsYC41 gene cluster was identified in L. plantarum YC41. The cpsYC41 gene cluster included the dTDP-rhamnose precursor biosynthesis operon, the repeating-unit biosynthesis operon, and the wzx gene, which was verified by the significantly decreased CPS yield and the absent ropy phenotype in the corresponding mutants. The cpsYC41 gene cluster plays an important role in bacterial survival under environmental stress, and the mutants had decreased fitness under stress conditions. The vital role of this specific cps gene cluster in CPS biosynthesis was also confirmed in other CPS-producing L. plantarum strains. These results advanced a better understanding of the molecular mechanisms of plasmid-borne cps gene clusters and the protective functionality of CPS.
Collapse
Affiliation(s)
- Jieran An
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuchen Zhang
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhaoer Zhao
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ran Huan
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hui Wang
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chunguang Luan
- China National Research Institute of Food and Fermentation Industries, Beijing, China
| | | | | | - Shanwen Li
- Qinghai Huzhu Barley Wine Co. Ltd., Haining, China
| | - Deliang Wang
- China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Tongthong T, Kaewduangduen W, Phuengmaung P, Chancharoenthana W, Leelahavanichkul A. Lacticaseibacillus rhamnosus dfa1 Attenuate Cecal Ligation-Induced Systemic Inflammation through the Interference in Gut Dysbiosis, Leaky Gut, and Enterocytic Cell Energy. Int J Mol Sci 2023; 24:ijms24043756. [PMID: 36835163 PMCID: PMC9960508 DOI: 10.3390/ijms24043756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Despite an uncommon condition, the clinical management of phlegmon appendicitis (retention of the intra-abdominal appendiceal abscess) is still controversial, and probiotics might be partly helpful. Then, the retained ligated cecal appendage (without gut obstruction) with or without oral Lacticaseibacillus rhamnosus dfa1 (started at 4 days prior to the surgery) was used as a representative model. At 5 days post-surgery, the cecal-ligated mice demonstrated weight loss, soft stool, gut barrier defect (leaky gut using FITC-dextran assay), fecal dysbiosis (increased Proteobacteria with reduced bacterial diversity), bacteremia, elevated serum cytokines, and spleen apoptosis without kidney and liver damage. Interestingly, the probiotics attenuated disease severity as indicated by stool consistency index, FITC-dextran assay, serum cytokines, spleen apoptosis, fecal microbiota analysis (reduced Proteobacteria), and mortality. Additionally, impacts of anti-inflammatory substances from culture media of the probiotics were demonstrated by attenuation of starvation injury in the Caco-2 enterocyte cell line as indicated by transepithelial electrical resistance (TEER), inflammatory markers (supernatant IL-8 with gene expression of TLR4 and NF-κB), cell energy status (extracellular flux analysis), and the reactive oxygen species (malondialdehyde). In conclusion, gut dysbiosis and leaky-gut-induced systemic inflammation might be helpful clinical parameters for patients with phlegmon appendicitis. Additionally, the leaky gut might be attenuated by some beneficial molecules from probiotics.
Collapse
Affiliation(s)
- Tongthong Tongthong
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warerat Kaewduangduen
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wiwat Chancharoenthana
- Tropical Immunology and Translational Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-256-4251
| |
Collapse
|
47
|
Yang S, Xu X, Peng Q, Ma L, Qiao Y, Shi B. Exopolysaccharides from lactic acid bacteria, as an alternative to antibiotics, on regulation of intestinal health and the immune system. ANIMAL NUTRITION 2023; 13:78-89. [PMID: 37025257 PMCID: PMC10070398 DOI: 10.1016/j.aninu.2023.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/07/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Over-use or misuse of antibiotics in livestock and poultry production contributes to the rising threat of antibiotic resistance in animals and has negative ecological effects. Exopolysaccharides from lactic acid bacteria (LAB-EPS) are a class of biological macromolecules which are secreted by lactic acid bacteria to the outside of the cell wall during their growth and metabolism. Numerous studies demonstrated that LAB-EPS have anti-inflammatory and antimicrobial activities and are able to regulate intestinal health and the immune system in livestock. They are biodegradable, nontoxic and bio-compatible, which are considered as ideal alternatives to antibiotics. This review aims to discuss and summarize recent research findings of LAB-EPS on regulation of intestinal health and the immune system in animals, and thus provide scientific justification for commercial applications of LAB-EPS in livestock.
Collapse
|
48
|
Stühmeier-Niehe C, Lass L, Brocksieper M, Chanos P, Hertel C. Pre-Treatment of Starter Cultures with Mild Pulsed Electric Fields Influences the Characteristics of Set Yogurt. Foods 2023; 12:foods12030442. [PMID: 36765971 PMCID: PMC9913929 DOI: 10.3390/foods12030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to investigate the effect of pulsed electric field (PEF) pre-treatment of a dairy starter culture of Lactobacillus delbrueckii subsp. bulgaricus LB186 and Streptococcus thermophilus ST504 on the fermentation and final product characteristics of set-style yogurt. The effects of PEF treatment parameters, voltage (4-20 kV), pulse number (20-80 pulses), frequency (1-21 Hz), and pulse (5-8 µs) width on pH development, cell counts, and proteolytic activity, as well as on texture and degree of syneresis in yogurt were investigated by use of a two-level full factorial design. Pulse frequency and pulse width had a significant effect on the yogurt stiffness (p < 0.05) and the interaction of voltage and frequency had a significant effect on both stiffness and proteolytic activity (p < 0.05). Further experiments confirmed that pre-treatment of the dairy culture with specific PEF parameters immediately before addition to milk could accelerate fermentation of, increase stiffness of, and reduce syneresis in the final yogurt. This effect of the PEF-pre-treated culture was partially retained even after flash-freezing and 14 days of storage of the culture at -20 °C. The effects were attributed to responses to oxidative stress induced by the PEF pre-treatment.
Collapse
Affiliation(s)
- Corinna Stühmeier-Niehe
- Department of Biotechnology, German Institute of Technologies (DIL), Professor-von Klitzing Str. 7, 49610 Quakenbrück, Germany
- Elea Technology GmbH, Professor-von Klitzing Str. 9, 49610 Quakenbrück, Germany
| | - Luca Lass
- Applied Life Sciences, Hochschule Emden-Leer, Constantiaplatz 4, 26723 Emden, Germany
| | - Miriam Brocksieper
- Faculty of Agriculture, Rheinische Friedrich-Wilhelms-Universität, Regina-Pacis Weg 3, 53113 Bonn, Germany
| | - Panagiotis Chanos
- Department of Biotechnology, German Institute of Technologies (DIL), Professor-von Klitzing Str. 7, 49610 Quakenbrück, Germany
- Correspondence:
| | - Christian Hertel
- Department of Biotechnology, German Institute of Technologies (DIL), Professor-von Klitzing Str. 7, 49610 Quakenbrück, Germany
| |
Collapse
|
49
|
Pei C, Lu H, Ma J, Eichler J, Guan Z, Gao L, Liu L, Zhou H, Yang J, Jin C. AepG is a glucuronosyltransferase involved in acidic exopolysaccharide synthesis and contributes to environmental adaptation of Haloarcula hispanica. J Biol Chem 2023; 299:102911. [PMID: 36642187 PMCID: PMC9943897 DOI: 10.1016/j.jbc.2023.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
The attachment of a sugar to a hydrophobic lipid carrier is the first step in the biosynthesis of many glycoconjugates. In the halophilic archaeon Haloarcula hispanica, HAH_1206, renamed AepG, is a predicted glycosyltransferase belonging to the CAZy Group 2 family that shares a conserved amino acid sequence with dolichol phosphate mannose synthases. In this study, the function of AepG was investigated by genetic and biochemical approaches. We found that aepG deletion led to the disappearance of dolichol phosphate-glucuronic acid. Our biochemical assays revealed that recombinant cellulose-binding, domain-tagged AepG could catalyze the formation of dolichol phosphate-glucuronic acid in time- and dose-dependent manners. Based on the in vivo and in vitro analyses, AepG was confirmed to be a dolichol phosphate glucuronosyltransferase involved in the synthesis of the acidic exopolysaccharide produced by H. hispanica. Furthermore, lack of aepG resulted in hindered growth and cell aggregation in high salt medium, indicating that AepG is vital for the adaptation of H. hispanica to a high salt environment. In conclusion, AepG is the first dolichol phosphate glucuronosyltransferase identified in any of the three domains of life and, moreover, offers a starting point for further investigation into the diverse pathways used for extracellular polysaccharide biosynthesis in archaea.
Collapse
Affiliation(s)
- Caixia Pei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hua Lu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jiayin Ma
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Linlu Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinghua Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
50
|
Georgieva A, Petkova M, Todorova E, Gotcheva V, Angelov A. Isolation and selection of sauerkraut lactic acid bacteria producing exopolysaccharides. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235802001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Fermented plant-based foods, including sauerkraut, offer high nutritional and functional value. Their microflora is dominated by lactic acid bacteria which are a source of different substances with health- promoting benefits and diverse applications in the food industry. Production of exopolysaccharides (EPSs) by lactic acid bacteria attracts particular interest in the food industry due to their rheological properties. In the present study, we isolated 20 strains of lactic acid bacteria from traditional Bulgarian sauerkraut. The isolates were identified by 16S rDNA sequencing and were attributed to Lactiplantibacillus plantarum (75%) and Pediococcus pentosaceus (25%). All strains were screened for their ability to synthesize exopolysaccharides, and 6 of them proved positive. Since culture media composition and especially the carbon source is a critical factor influencing the yield of bacterial EPSs, the impact of various carbon sources on the EPSs synthesis by the selected producers was explored. The best results were obtained by using glucose and sucrose as sole carbon sources.
Collapse
|