1
|
Rosenbaum M, Foster G. Differential mechanisms affecting weight loss and weight loss maintenance. Nat Metab 2023; 5:1266-1274. [PMID: 37612402 DOI: 10.1038/s42255-023-00864-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/13/2023] [Indexed: 08/25/2023]
Abstract
In most lifestyle, pharmacological and surgical interventions, weight loss occurs over an approximately 6- to 9-month period and is followed by a weight plateau and then weight regain. Overall, only about 15% of individuals can sustain a 10% or greater non-surgical, non-pharmacological, weight loss. A key question is the degree to which the genotypes, phenotypes and environmental correlates of success in weight loss and weight loss maintenance are continuous or dichotomous. This Perspective is a comparison of the interactions of weight loss and maintenance with genetic, behavioural, physiological and environmental homeostatic systems and a discussion of the implications of these findings for research in, and treatment of, obesity. Data suggest that weight loss and weight loss maintenance are physiologically and psychologically different in many ways. Consequently, individuals may require different interventions designed for temporarily sustaining a negative energy balance during weight loss versus permanently maintaining energy balance after weight loss.
Collapse
Affiliation(s)
- Michael Rosenbaum
- Columbia University Irving Medical Center, Departments of Pediatrics and Medicine, Division of Molecular Genetics and the Irving Center for Clinical and Translational Research (MR), New York, NY, USA.
| | - Gary Foster
- WW International, Perelman School of Medicine at the University of Pennsylvania, Department of Psychiatry, Weight and Eating Disorders Program (GF), New York, NY, USA
| |
Collapse
|
2
|
Aldubayan MA, Pigsborg K, Gormsen SMO, Serra F, Palou M, Galmés S, Palou-March A, Favari C, Wetzels M, Calleja A, Rodríguez Gómez MA, Castellnou MG, Caimari A, Galofré M, Suñol D, Escoté X, Alcaide-Hidalgo JM, M Del Bas J, Gutierrez B, Krarup T, Hjorth MF, Magkos F. A double-blinded, randomized, parallel intervention to evaluate biomarker-based nutrition plans for weight loss: The PREVENTOMICS study. Clin Nutr 2022; 41:1834-1844. [PMID: 35839545 DOI: 10.1016/j.clnu.2022.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND & AIMS Growing evidence suggests that biomarker-guided dietary interventions can optimize response to treatment. In this study, we evaluated the efficacy of the PREVENTOMCIS platform-which uses metabolomic and genetic information to classify individuals into different 'metabolic clusters' and create personalized dietary plans-for improving health outcomes in subjects with overweight or obesity. METHODS A 10-week parallel, double-blinded, randomized intervention was conducted in 100 adults (82 completers) aged 18-65 years, with body mass index ≥27 but <40 kg/m2, who were allocated into either a personalized diet group (n = 49) or a control diet group (n = 51). About 60% of all food was provided free-of-charge. No specific instruction to restrict energy intake was given. The primary outcome was change in fat mass from baseline, evaluated by dual energy X-ray absorptiometry. Other endpoints included body weight, waist circumference, lipid profile, glucose homeostasis markers, inflammatory markers, blood pressure, physical activity, stress and eating behavior. RESULTS There were significant main effects of time (P < 0.01), but no group main effects, or time-by-group interactions, for the change in fat mass (personalized: -2.1 [95% CI -2.9, -1.4] kg; control: -2.0 [95% CI -2.7, -1.3] kg) and body weight (personalized: -3.1 [95% CI -4.1, -2.1] kg; control: -3.3 [95% CI -4.2, -2.4] kg). The difference between groups in fat mass change was -0.1 kg (95% CI -1.2, 0.9 kg, P = 0.77). Both diets resulted in significant improvements in insulin resistance and lipid profile, but there were no significant differences between groups. CONCLUSION Personalized dietary plans did not result in greater benefits over a generic, but generally healthy diet, in this 10-week clinical trial. Further studies are required to establish the soundness of different precision nutrition approaches, and translate this science into clinically relevant dietary advice to reduce the burden of obesity and its comorbidities. CLINICAL TRIAL REGISTRY ClinicalTrials.gov registry (NCT04590989).
Collapse
Affiliation(s)
- Mona A Aldubayan
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark; King Saud bin Abdulaziz University for Health Sciences, College of Applied Medical Sciences, Riyadh, Saudi Arabia
| | - Kristina Pigsborg
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | | | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Health Research Institute of the Balearic Islands (IdISBa), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Alimentómica S.L., Spin-off n.1 of the UIB Islands, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Health Research Institute of the Balearic Islands (IdISBa), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Alimentómica S.L., Spin-off n.1 of the UIB Islands, Spain
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Health Research Institute of the Balearic Islands (IdISBa), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Alimentómica S.L., Spin-off n.1 of the UIB Islands, Spain
| | - Andreu Palou-March
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Health Research Institute of the Balearic Islands (IdISBa), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Alimentómica S.L., Spin-off n.1 of the UIB Islands, Spain
| | - Claudia Favari
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Mart Wetzels
- ONMI: Behaviour Change Technology, Eindhoven, the Netherlands
| | - Alberto Calleja
- R&D Department, Food Division, Grupo Carinsa, Sant Quirze del Valles, Barcelona, Spain
| | - Miguel Angel Rodríguez Gómez
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, 43204 Reus, Spain
| | - María Guirro Castellnou
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, 43204 Reus, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Nutrition and Health Unit, Reus, Spain
| | - Mar Galofré
- Eurecat, Centre tecnològic de Catalunya, Digital Health Unit, Carrer de Bilbao, 72, 08005 Barcelona, Spain
| | - David Suñol
- Eurecat, Centre tecnològic de Catalunya, Digital Health Unit, Carrer de Bilbao, 72, 08005 Barcelona, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Nutrition and Health Unit, Reus, Spain
| | | | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Nutrition and Health Unit, Reus, Spain
| | - Biotza Gutierrez
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Nutrition and Health Unit, Reus, Spain
| | - Thure Krarup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark; Department of Endocrinology, Bispebjerg and Frederiksberg Hospital, Tuborgvej, Hellerup, Denmark
| | - Mads F Hjorth
- Healthy Weight Centre, Novo Nordisk Foundation, Tuborg Havnevej 19, 2900, Hellerup, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Montégut L, Lopez-Otin C, Magnan C, Kroemer G. Old Paradoxes and New Opportunities for Appetite Control in Obesity. Trends Endocrinol Metab 2021; 32:264-294. [PMID: 33707095 DOI: 10.1016/j.tem.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Human obesity is accompanied by alterations in the blood concentrations of multiple circulating appetite regulators. Paradoxically, most of the appetite-inhibitory hormones are elevated in nonsyndromic obesity, while most of the appetite stimulatory hormones are reduced, perhaps reflecting vain attempts of regulation by inefficient feedback circuitries. In this context, it is important to understand which appetite regulators exhibit a convergent rather than paradoxical behavior and hence are likely to contribute to the maintenance of the obese state. Pharmacological interventions in obesity should preferentially consist of the supplementation of deficient appetite inhibitors or the neutralization of excessive appetite stimulators. Here, we critically analyze the current literature on appetite-regulatory peptide hormones. We propose a short-list of appetite modulators that may constitute the best candidates for therapeutic interventions.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR8251, Université Paris Diderot, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
Loos RJF, Burant C, Schur EA. Strategies to Understand the Weight-Reduced State: Genetics and Brain Imaging. Obesity (Silver Spring) 2021; 29 Suppl 1:S39-S50. [PMID: 33759393 PMCID: PMC8500189 DOI: 10.1002/oby.23101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/09/2022]
Abstract
Most individuals with obesity or overweight have difficulty maintaining weight loss. The weight-reduced state induces changes in many physiological processes that appear to drive weight regain. Here, we review the use of cell biology, genetics, and imaging techniques that are being used to begin understanding why weight regain is the normal response to dieting. As with obesity itself, weight regain has both genetic and environmental drivers. Genetic drivers for "thinness" and "obesity" largely overlap, but there is evidence for specific genetic loci that are different for each of these weight states. There is only limited information regarding the genetics of weight regain. Currently, most genetic loci related to weight point to the central nervous system as the organ responsible for determining the weight set point. Neuroimaging tools have proved useful in studying the contribution of the central nervous system to the weight-reduced state in humans. Neuroimaging technologies fall into three broad categories: functional, connectivity, and structural neuroimaging. Connectivity and structural imaging techniques offer unique opportunities for testing mechanistic hypotheses about changes in brain function or tissue structure in the weight-reduced state.
Collapse
Affiliation(s)
- Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Charles Burant
- Department of Internal Medicine, University of Washington, Seattle, Washington, USA
| | - Ellen A. Schur
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
López-Taboada I, González-Pardo H, Conejo NM. Western Diet: Implications for Brain Function and Behavior. Front Psychol 2020; 11:564413. [PMID: 33329193 PMCID: PMC7719696 DOI: 10.3389/fpsyg.2020.564413] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The Western diet (WD) pattern characterized by high daily intake of saturated fats and refined carbohydrates often leads to obesity and overweight, and it has been linked to cognitive impairment and emotional disorders in both animal models and humans. This dietary pattern alters the composition of gut microbiota, influencing brain function by different mechanisms involving the gut-brain axis. In addition, long-term exposure to highly palatable foods typical of WD could induce addictive-like eating behaviors and hypothalamic-pituitary-adrenal (HPA) axis dysregulation associated with chronic stress, anxiety, and depression. In turn, chronic stress modulates eating behavior, and it could have detrimental effects on different brain regions such as the hippocampus, hypothalamus, amygdala, and several cortical regions. Moreover, obesity and overweight induce neuroinflammation, causing neuronal dysfunction. In this review, we summarize the current scientific evidence about the mechanisms and factors relating WD consumption with altered brain function and behavior. Possible therapeutic interventions and limitations are also discussed, aiming to tackle and prevent this current pandemic.
Collapse
Affiliation(s)
| | | | - Nélida María Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
6
|
Interaction between the genetic risk score and dietary protein intake on cardiometabolic traits in Southeast Asian. GENES AND NUTRITION 2020; 15:19. [PMID: 33045981 PMCID: PMC7552350 DOI: 10.1186/s12263-020-00678-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/30/2020] [Indexed: 12/18/2022]
Abstract
Background Cardiometabolic diseases are complex traits which are influenced by several single nucleotide polymorphisms (SNPs). Thus, analysing the combined effects of multiple gene variants might provide a better understanding of disease risk than using a single gene variant approach. Furthermore, studies have found that the effect of SNPs on cardiometabolic traits can be influenced by lifestyle factors, highlighting the importance of analysing gene-lifestyle interactions. Aims In the present study, we investigated the association of 15 gene variants with cardiometabolic traits and examined whether these associations were modified by lifestyle factors such as dietary intake and physical activity. Methods The study included 110 Minangkabau women [aged 25–60 years and body mass index (BMI) 25.13 ± 4.2 kg/m2] from Padang, Indonesia. All participants underwent a physical examination followed by anthropometric, biochemical and dietary assessments and genetic tests. A genetic risk score (GRS) was developed based on 15 cardiometabolic disease-related SNPs. The effect of GRS on cardiometabolic traits was analysed using general linear models. GRS-lifestyle interactions on continuous outcomes were tested by including the interaction term (e.g. lifestyle factor*GRS) in the regression model. Models were adjusted for age, BMI and location (rural or urban), wherever appropriate. Results There was a significant association between GRS and BMI, where individuals carrying 6 or more risk alleles had higher BMI compared to those carrying 5 or less risk alleles (P = 0.018). Furthermore, there were significant interactions of GRS with protein intake on waist circumference (WC) and triglyceride concentrations (Pinteraction = 0.002 and 0.003, respectively). Among women who had a lower protein intake (13.51 ± 1.18% of the total daily energy intake), carriers of six or more risk alleles had significantly lower WC and triglyceride concentrations compared with carriers of five or less risk alleles (P = 0.0118 and 0.002, respectively). Conclusions Our study confirmed the association of GRS with higher BMI and further showed a significant effect of the GRS on WC and triglyceride levels through the influence of a low-protein diet. These findings suggest that following a lower protein diet, particularly in genetically predisposed individuals, might be an effective approach for addressing cardiometabolic diseases among Southeast Asian women.
Collapse
|
7
|
Abrahams M, Matusheski NV. Personalised nutrition technologies: a new paradigm for dietetic practice and training in a digital transformation era. J Hum Nutr Diet 2020; 33:295-298. [PMID: 32173947 PMCID: PMC7317901 DOI: 10.1111/jhn.12746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- M Abrahams
- Faculty of Management, Law & Social Sciences, University of Bradford, Bradford, UK.,Qina Ltd, Olhao, Portugal
| | - N V Matusheski
- Nutrition Science and Advocacy, DSM Nutritional Products, Parsippany, NJ, USA
| |
Collapse
|
8
|
Crovesy L, Rosado EL. Interaction between genes involved in energy intake regulation and diet in obesity. Nutrition 2019; 67-68:110547. [DOI: 10.1016/j.nut.2019.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 01/01/2023]
|
9
|
Abstract
One of the biggest challenges in the management of obesity is the prevention of weight regain after successful weight loss. Weight regain after weight loss has large interindividual variation. Although many factors probably contribute to this variation, we hypothesize that variability in biological responses associated with weight loss-induced shrinking of subcutaneous adipocytes has an important role. In this Review, we show that weight loss-induced variations in cellular stress, extracellular matrix remodelling, inflammatory responses, adipokine secretion and lipolysis seem to be associated with the amount of weight that is regained after successful weight loss. Weight regain could therefore, at least in part, depend on a combination of these factors. Further research on the causality of these associations could aid the development of effective strategies to prevent weight regain after successful weight loss.
Collapse
Affiliation(s)
- Marleen A van Baak
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands.
| | - Edwin C M Mariman
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
10
|
A Scientific Perspective of Personalised Gene-Based Dietary Recommendations for Weight Management. Nutrients 2019; 11:nu11030617. [PMID: 30875721 PMCID: PMC6471589 DOI: 10.3390/nu11030617] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 01/06/2023] Open
Abstract
Various studies showed that a "one size fits all" dietary recommendation for weight management is questionable. For this reason, the focus increasingly falls on personalised nutrition. Although there is no precise and uniform definition of personalised nutrition, the inclusion of genetic variants for personalised dietary recommendations is more and more favoured, whereas scientific evidence for gene-based dietary recommendations is rather limited. The purpose of this article is to provide a science-based viewpoint on gene-based personalised nutrition and weight management. Most of the studies showed no clinical evidence for gene-based personalised nutrition. The Food4Me study, e.g., investigated four different groups of personalised dietary recommendations based on dietary guidelines, and physiological, clinical, or genetic parameters, and resulted in no difference in weight loss between the levels of personalisation. Furthermore, genetic direct-to-consumer (DTC) tests are widely spread by companies. Scientific organisations clearly point out that, to date, genetic DTC tests are without scientific evidence. To date, gene-based personalised nutrition is not yet applicable for the treatment of obesity. Nevertheless, personalised dietary recommendations on the genetic landscape of a person are an innovative and promising approach for the prevention and treatment of obesity. In the future, human intervention studies are necessary to prove the clinical evidence of gene-based dietary recommendations.
Collapse
|
11
|
Arena R, Ozemek C, Laddu D, Campbell T, Rouleau CR, Standley R, Bond S, Abril EP, Hills AP, Lavie CJ. Applying Precision Medicine to Healthy Living for the Prevention and Treatment of Cardiovascular Disease. Curr Probl Cardiol 2018; 43:448-483. [DOI: 10.1016/j.cpcardiol.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Wang T, Xu M, Bi Y, Ning G. Interplay between diet and genetic susceptibility in obesity and related traits. Front Med 2018; 12:601-607. [DOI: 10.1007/s11684-018-0648-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/26/2018] [Indexed: 01/28/2023]
|
13
|
Kaufman J, Montalvo-Ortiz JL, Holbrook H, O’Loughlin K, Orr C, Kearney C, Yang BZ, Wang T, Zhao H, Althoff R, Garavan H, Gelernter J, Hudziak J. Adverse Childhood Experiences, Epigenetic Measures, and Obesity in Youth. J Pediatr 2018; 202:150-156.e3. [PMID: 30177354 PMCID: PMC6513669 DOI: 10.1016/j.jpeds.2018.06.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/14/2018] [Accepted: 06/14/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine if measures of adverse childhood experiences and DNA methylation relate to indices of obesity in youth. STUDY DESIGN Participants were derived from a cohort of 321 8 to 15-year-old children recruited for an investigation examining risk and resilience and psychiatric outcomes in maltreated children. Assessments of obesity were collected as an add-on for a subset of 234 participants (56% female; 52% maltreated). Illumina arrays were used to examine whole genome epigenetic predictors of obesity in saliva DNA. For analytic purposes, the cohort analyzed in the first batch comprised the discovery sample (n = 160), and the cohort analyzed in the second batch the replication sample (n = 74). RESULTS After controlling for race, sex, age, cell heterogeneity, 3 principal components, and whole genome testing, 10 methylation sites were found to interact with adverse childhood experiences to predict cross-sectional measures of body mass index, and an additional 6 sites were found to exert a main effect in predicting body mass index (P < 5.0 × 10-7, all comparisons). Eight of the methylation sites were in genes previously associated with obesity risk (eg, PCK2, CxCl10, BCAT1, HID1, PRDM16, MADD, PXDN, GALE), with several of the findings from the discovery data set replicated in the second cohort. CONCLUSIONS This study lays the groundwork for future longitudinal studies to elucidate these mechanisms further and identify novel interventions to alleviate the health burdens associated with early adversity.
Collapse
Affiliation(s)
- Joan Kaufman
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute, Baltimore, MD; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD; Department of Psychiatry, Yale University, New Haven, CT.
| | | | - Hannah Holbrook
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT
| | - Kerry O’Loughlin
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT
| | - Catherine Orr
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT
| | - Catherine Kearney
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute
| | - Bao-Zhu Yang
- Department of Psychiatry, Yale University, New Haven, CT
| | - Tao Wang
- Department of Biostatistics, Yale University, New Haven, CT,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT
| | - Robert Althoff
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT
| | - Hugh Garavan
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, CT,Veterans Administration, West Haven, CT
| | - James Hudziak
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont, Burlington, VT
| |
Collapse
|
14
|
Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol 2018; 6:223-236. [PMID: 28919064 DOI: 10.1016/s2213-8587(17)30200-0] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023]
Abstract
Genome-wide association studies (GWAS) for BMI, waist-to-hip ratio, and other adiposity traits have identified more than 300 single-nucleotide polymorphisms (SNPs). Although there is reason to hope that these discoveries will eventually lead to new preventive and therapeutic agents for obesity, this will take time because such developments require detailed mechanistic understanding of how an SNP influences phenotype (and this information is largely unavailable). Fortunately, absence of functional information has not prevented GWAS findings from providing insights into the biology of obesity. Genes near loci regulating total body mass are enriched for expression in the CNS, whereas genes for fat distribution are enriched in adipose tissue itself. Gene by environment and lifestyle interaction analyses have revealed that our increasingly obesogenic environment might be amplifying genetic risk for obesity, yet those at highest risk could mitigate this risk by increasing physical activity and possibly by avoiding specific dietary components. GWAS findings have also been used in mendelian randomisation analyses probing the causal association between obesity and its many putative complications. In supporting a causal association of obesity with diabetes, coronary heart disease, specific cancers, and other conditions, these analyses have clinical relevance in identifying which outcomes could be preventable through weight loss interventions.
Collapse
Affiliation(s)
- Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond) 2017; 130:943-86. [PMID: 27154742 DOI: 10.1042/cs20160136] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/24/2016] [Indexed: 12/19/2022]
Abstract
In high-, middle- and low-income countries, the rising prevalence of obesity is the underlying cause of numerous health complications and increased mortality. Being a complex and heritable disorder, obesity results from the interplay between genetic susceptibility, epigenetics, metagenomics and the environment. Attempts at understanding the genetic basis of obesity have identified numerous genes associated with syndromic monogenic, non-syndromic monogenic, oligogenic and polygenic obesity. The genetics of leanness are also considered relevant as it mirrors some of obesity's aetiologies. In this report, we summarize ten genetically elucidated obesity syndromes, some of which are involved in ciliary functioning. We comprehensively review 11 monogenic obesity genes identified to date and their role in energy maintenance as part of the leptin-melanocortin pathway. With the emergence of genome-wide association studies over the last decade, 227 genetic variants involved in different biological pathways (central nervous system, food sensing and digestion, adipocyte differentiation, insulin signalling, lipid metabolism, muscle and liver biology, gut microbiota) have been associated with polygenic obesity. Advances in obligatory and facilitated epigenetic variation, and gene-environment interaction studies have partly accounted for the missing heritability of obesity and provided additional insight into its aetiology. The role of gut microbiota in obesity pathophysiology, as well as the 12 genes associated with lipodystrophies is discussed. Furthermore, in an attempt to improve future studies and merge the gap between research and clinical practice, we provide suggestions on how high-throughput '-omic' data can be integrated in order to get closer to the new age of personalized medicine.
Collapse
|
16
|
Affiliation(s)
- J. A. Betts
- Department for Health; University of Bath; Bath UK
| | | |
Collapse
|
17
|
Livingstone KM, Celis-Morales C, Papandonatos GD, Erar B, Florez JC, Jablonski KA, Razquin C, Marti A, Heianza Y, Huang T, Sacks FM, Svendstrup M, Sui X, Church TS, Jääskeläinen T, Lindström J, Tuomilehto J, Uusitupa M, Rankinen T, Saris WHM, Hansen T, Pedersen O, Astrup A, Sørensen TIA, Qi L, Bray GA, Martinez-Gonzalez MA, Martinez JA, Franks PW, McCaffery JM, Lara J, Mathers JC. FTO genotype and weight loss: systematic review and meta-analysis of 9563 individual participant data from eight randomised controlled trials. BMJ 2016; 354:i4707. [PMID: 27650503 PMCID: PMC6168036 DOI: 10.1136/bmj.i4707] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To assess the effect of the FTO genotype on weight loss after dietary, physical activity, or drug based interventions in randomised controlled trials. DESIGN Systematic review and random effects meta-analysis of individual participant data from randomised controlled trials. DATA SOURCES Ovid Medline, Scopus, Embase, and Cochrane from inception to November 2015. ELIGIBILITY CRITERIA FOR STUDY SELECTION Randomised controlled trials in overweight or obese adults reporting reduction in body mass index, body weight, or waist circumference by FTO genotype (rs9939609 or a proxy) after dietary, physical activity, or drug based interventions. Gene by treatment interaction models were fitted to individual participant data from all studies included in this review, using allele dose coding for genetic effects and a common set of covariates. Study level interactions were combined using random effect models. Metaregression and subgroup analysis were used to assess sources of study heterogeneity. RESULTS We identified eight eligible randomised controlled trials for the systematic review and meta-analysis (n=9563). Overall, differential changes in body mass index, body weight, and waist circumference in response to weight loss intervention were not significantly different between FTO genotypes. Sensitivity analyses indicated that differential changes in body mass index, body weight, and waist circumference by FTO genotype did not differ by intervention type, intervention length, ethnicity, sample size, sex, and baseline body mass index and age category. CONCLUSIONS We have observed that carriage of the FTO minor allele was not associated with differential change in adiposity after weight loss interventions. These findings show that individuals carrying the minor allele respond equally well to dietary, physical activity, or drug based weight loss interventions and thus genetic predisposition to obesity associated with the FTO minor allele can be at least partly counteracted through such interventions. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42015015969.
Collapse
Affiliation(s)
- Katherine M Livingstone
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, UK Deakin University, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Victoria, Australia
| | - Carlos Celis-Morales
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, UK BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - George D Papandonatos
- Department of Biostatistics, Brown University School of Public Health, Providence, RI, USA
| | - Bahar Erar
- Department of Biostatistics, Brown University School of Public Health, Providence, RI, USA
| | - Jose C Florez
- Diabetes Unit and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kathleen A Jablonski
- George Washington University Department of Epidemiology and Biostatistics The Biostatistics Center, Rockville, MD, USA
| | - Cristina Razquin
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain CIBER Fisiopatologia de la Obesidad y Nutricion and PREDIMED Network from Instituto de Salud Carlos III Spanish Government, Spain
| | - Amelia Marti
- CIBER Fisiopatologia de la Obesidad y Nutricion and PREDIMED Network from Instituto de Salud Carlos III Spanish Government, Spain Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Tao Huang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA Epidemiology Domain, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mathilde Svendstrup
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Danish Diabetes Academy, Odense, Denmark
| | - Xuemei Sui
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Timothy S Church
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Tiina Jääskeläinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland Department of Medical and Clinical Genetics, University of Helsinki, Finland
| | - Jaana Lindström
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Jaakko Tuomilehto
- Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Wim H M Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Maastricht, Netherlands
| | - Torben Hansen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Copenhagen University, Rolighedsvej 30, Frederiksberg C, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospitals, The Capital Region, Denmark
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Miguel A Martinez-Gonzalez
- CIBER Fisiopatologia de la Obesidad y Nutricion and PREDIMED Network from Instituto de Salud Carlos III Spanish Government, Spain Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
| | - J Alfredo Martinez
- CIBER Fisiopatologia de la Obesidad y Nutricion and PREDIMED Network from Instituto de Salud Carlos III Spanish Government, Spain Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Paul W Franks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Jeanne M McCaffery
- The Miriam Hospital and the Alpert School of Medicine, Brown University, Providence, USA
| | - Jose Lara
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, UK Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
18
|
Šerý O, Hlinecká L, Povová J, Bonczek O, Zeman T, Janout V, Ambroz P, Khan NA, Balcar VJ. Arachidonate 5-lipoxygenase (ALOX5) gene polymorphism is associated with Alzheimer's disease and body mass index. J Neurol Sci 2016; 362:27-32. [PMID: 26944113 DOI: 10.1016/j.jns.2016.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 12/20/2022]
Abstract
Dementias of old age, in particular Alzheimer's disease (AD), pose a growing threat to the longevity and quality of life of individuals as well as whole societies world-wide. The risk factors are both genetic and environmental (life-style) and there is an overlap with similar factors predisposing to cardiovascular diseases (CVD). Using a case-control genetic approach, we have identified a SNP (rs10507391) in ALOX5 gene, previously associated with an increased risk of stroke, as a novel genetic risk factor for AD. ALOX5 gene encodes a 5'-lipoxygenase (5'-LO) activating protein (FLAP), a crucial component of the arachidonic acid/leukotriene inflammatory cascade. A-allele of rs4769874 polymorphism increases the risk of AD 1.41-fold (p<0.0001), while AA genotype does so 1.79-fold (p<0.0001). In addition, GG genotype of rs4769874 polymorphism is associated with a modest increase in body mass index (BMI). We discuss potential biochemical mechanisms linking the SNP to AD and suggest possible preventive pharmacotherapies some of which are based on commonly available natural products. Finally, we set the newly identified AD risk factors into a broader context of similar CVD risk factors to generate a more comprehensive picture of interacting genetics and life-style habits potentially leading to the deteriorating mental health in the old age.
Collapse
Affiliation(s)
- Omar Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; Institute of Animal Physiology and Genetics, Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic.
| | - Lýdia Hlinecká
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jana Povová
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Czech Republic
| | - Ondřej Bonczek
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; Institute of Animal Physiology and Genetics, Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Tomáš Zeman
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Vladimír Janout
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Czech Republic
| | - Petr Ambroz
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Czech Republic
| | - Naim A Khan
- Physiologie de la Nutrition et Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, 6, Boulevard Gabriel, Dijon 21000, France
| | - Vladimir J Balcar
- Discipline Anatomy and Histology and Bosch Institute, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| |
Collapse
|
19
|
Association of PCK1 with Body Mass Index and Other Metabolic Features in Patients With Psychotropic Treatments. J Clin Psychopharmacol 2015; 35:544-52. [PMID: 26280835 DOI: 10.1097/jcp.0000000000000388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Weight gain is a major health problem among psychiatric populations. It implicates several receptors and hormones involved in energy balance and metabolism. Phosphoenolpyruvate carboxykinase 1 is a rate-controlling enzyme involved in gluconeogenesis, glyceroneogenesis and cataplerosis and has been related to obesity and diabetes phenotypes in animals and humans. The aim of this study was to investigate the association of phosphoenolpyruvate carboxykinase 1 polymorphisms with metabolic traits in psychiatric patients treated with psychotropic drugs inducing weight gain and in general population samples. One polymorphism (rs11552145G > A) significantly associated with body mass index in the psychiatric discovery sample (n = 478) was replicated in 2 other psychiatric samples (n1 = 168, n2 = 188), with AA-genotype carriers having lower body mass index as compared to G-allele carriers. Stronger associations were found among women younger than 45 years carrying AA-genotype as compared to G-allele carriers (-2.25 kg/m, n = 151, P = 0.009) and in the discovery sample (-2.20 kg/m, n = 423, P = 0.0004). In the discovery sample for which metabolic parameters were available, AA-genotype showed lower waist circumference (-6.86 cm, P = 0.008) and triglycerides levels (-5.58 mg/100 mL, P < 0.002) when compared to G-allele carriers. Finally, waist-to-hip ratio was associated with rs6070157 (proxy of rs11552145, r = 0.99) in a population-based sample (N = 123,865, P = 0.022). Our results suggest an association of rs11552145G > A polymorphism with metabolic-related traits, especially in psychiatric populations and in women younger than 45 years.
Collapse
|
20
|
Li K, Huang T, Li D. Gene–Diet Interaction on Body Weight Maintenance. Curr Nutr Rep 2015. [DOI: 10.1007/s13668-015-0133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Marcadenti A. <i>ADRB2</i>, <i>ADRB3</i>, <i>BDKRB2</i> and <i>MTNR1B</i> Genes Related to Body fat Modulation and Its Interaction with Physical Activity and Blood Pressure. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojemd.2015.57012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
The role of higher protein diets in weight control and obesity-related comorbidities. Int J Obes (Lond) 2014; 39:721-6. [PMID: 25540980 PMCID: PMC4424378 DOI: 10.1038/ijo.2014.216] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022]
Abstract
The importance of the relative dietary content of protein, carbohydrate and the type of carbohydrate (that is, glycemic index (GI)) for weight control under ad libitum conditions has been controversial owing to the lack of large scale studies with high diet adherence. The Diet, Obesity and Genes (DioGenes) European multicentre trial examined the importance of a slight increase in dietary protein content, reduction in carbohydrate and the importance of choosing low (LGI) vs high GI (HGI) carbohydrates for weight control in 932 obese families. Only the adults underwent a diet of 800 kcal per day for 8 weeks, and after losing ~11kg they were randomized to one of five energy ad libitum diets for 6 months. The diets differed in protein content and GI. The high-protein (HP) diet groups consumed 5.4% points more energy from protein than the normal protein (NP) groups, and the LGI diet groups achieved 5.1% lower GI than the HGI groups. The effect of HP and LGI was additive on weight loss and maintenance, and the combination was successful in preventing weight regain and reducing drop-out rate among the adults after the 11kg weight loss. This diet also reduced body fatness and prevalence of overweight and obesity among their children and had consistent beneficial effects on blood pressure, blood lipids and inflammation in both parents and children. After 1 year, mainly the HP effects were maintained. Putative genes have been identified that suggest this diet to be particularly effective in 67% of the population. In conclusion, the DioGenes diet has shown to be effective for prevention of weight regain and for weight reduction in overweight children under ad libitum conditions. The less-restrictive dietary approach fits into a normal food culture, and has been translated into popular diet and cook books in several languages.
Collapse
|
23
|
Perez-Cornago A, van Baak MA, Saris WHM, Martínez JA, Astrup A. The Role of Protein and Carbohydrates for Long-Term Weight Control: Lessons from the Diogenes Trial. Curr Nutr Rep 2014. [DOI: 10.1007/s13668-014-0096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Ankarfeldt MZ, Larsen SC, Ängquist L, Husemoen LLN, Roswall N, Overvad K, Jakobsen MU, Halkjær J, Tjønneland A, Linneberg A, Toft U, Hansen T, Pedersen O, Heitmann BL, Astrup A, Sørensen TIA. Interaction between genetic predisposition to adiposity and dietary protein in relation to subsequent change in body weight and waist circumference. PLoS One 2014; 9:e110890. [PMID: 25350854 PMCID: PMC4211714 DOI: 10.1371/journal.pone.0110890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/21/2014] [Indexed: 01/12/2023] Open
Abstract
Background Genetic predisposition to adiposity may interact with dietary protein in relation to changes of anthropometry. Objective To investigate the interaction between genetic predisposition to higher body mass index (BMI), waist circumference (WC) or waist-hip ratio adjusted for BMI (WHRBMI) and dietary protein in relation to subsequent change in body weight (ΔBW) or change in WC (ΔWC). Design Three different Danish cohorts were used. In total 7,054 individuals constituted the study population with information on diet, 50 single-nucleotide polymorphisms (SNPs) associated with BMI, WC or WHRBMI, as well as potential confounders. Mean follow-up time was ∼5 years. Four genetic predisposition-scores were based on the SNPs; a complete-score including all selected adiposity- associated SNPs, and three scores including BMI, WC or WHRBMI associated polymorphisms, respectively. The association between protein intake and ΔBW or ΔWC were examined and interactions between SNP-score and protein were investigated. Analyses were based on linear regressions using macronutrient substitution models and meta-analyses. Results When protein replaced carbohydrate, meta-analyses showed no associations with ΔBW (41.0 gram/y/5 energy% protein, [95% CI: −32.3; 114.3]) or ΔWC (<−0.1 mm/y/5 energy % protein, [−1.1; 1.1]). Similarly, there were no interactions for any SNP-scores and protein for either ΔBW (complete SNP-score: 1.8 gram/y/5 energy% protein/risk allele, [−7.0; 10.6]) or ΔWC (complete SNP-score: <0.1 mm/y/5 energy% protein/risk allele, [−0.1; 0.1]). Similar results were seen when protein replaced fat. Conclusion This study indicates that the genetic predisposition to general and abdominal adiposity, assessed by gene-scores, does not seem to modulate the influence of dietary protein on ΔBW or ΔWC.
Collapse
Affiliation(s)
- Mikkel Z. Ankarfeldt
- Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospital, the Capital Region, Copenhagen, Denmark
- Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Sofus C. Larsen
- Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospital, the Capital Region, Copenhagen, Denmark
- Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ängquist
- Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospital, the Capital Region, Copenhagen, Denmark
| | - Lise Lotte N. Husemoen
- Research Centre for Prevention and Health, Glostrup University Hospital, Copenhagen, Denmark
| | - Nina Roswall
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Marianne Uhre Jakobsen
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jytte Halkjær
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Allan Linneberg
- Research Centre for Prevention and Health, Glostrup University Hospital, Copenhagen, Denmark
| | - Ulla Toft
- Research Centre for Prevention and Health, Glostrup University Hospital, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Berit L. Heitmann
- Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospital, the Capital Region, Copenhagen, Denmark
- The National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, University of Sydney, Sydney, Australia
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, NEXS, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thorkild I. A. Sørensen
- Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospital, the Capital Region, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Cameron KO, Bhattacharya SK, Loomis AK. Small Molecule Ghrelin Receptor Inverse Agonists and Antagonists. J Med Chem 2014; 57:8671-91. [DOI: 10.1021/jm5003183] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kimberly O. Cameron
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 610
Main Street, Cambridge, Massachusetts 02139, United States
| | - Samit K. Bhattacharya
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 610
Main Street, Cambridge, Massachusetts 02139, United States
| | - A. Katrina Loomis
- Pharmatherapeutics
Precision Medicine, Pfizer Worldwide Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
26
|
Meidtner K, Fisher E, Angquist L, Holst C, Vimaleswaran KS, Boer JMA, Halkjær J, Masala G, Ostergaard JN, Mortensen LM, van der A DL, Tjønneland A, Palli D, Overvad K, Wareham NJ, Loos RJF, Sørensen TIA, Boeing H. Variation in genes related to hepatic lipid metabolism and changes in waist circumference and body weight. GENES AND NUTRITION 2014; 9:385. [PMID: 24496996 DOI: 10.1007/s12263-014-0385-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/22/2014] [Indexed: 01/10/2023]
Abstract
We analysed single nucleotide polymorphisms (SNPs) tagging the genetic variability of six candidate genes (ATF6, FABP1, LPIN2, LPIN3, MLXIPL and MTTP) involved in the regulation of hepatic lipid metabolism, an important regulatory site of energy balance for associations with body mass index (BMI) and changes in weight and waist circumference. We also investigated effect modification by sex and dietary intake. Data of 6,287 individuals participating in the European prospective investigation into cancer and nutrition were included in the analyses. Data on weight and waist circumference were followed up for 6.9 ± 2.5 years. Association of 69 tagSNPs with baseline BMI and annual changes in weight as well as waist circumference were investigated using linear regression analysis. Interactions with sex, GI and intake of carbohydrates, fat as well as saturated, monounsaturated and polyunsaturated fatty acids were examined by including multiplicative SNP-covariate terms into the regression model. Neither baseline BMI nor annual weight or waist circumference changes were significantly associated with variation in the selected genes in the entire study population after correction for multiple testing. One SNP (rs1164) in LPIN2 appeared to be significantly interacting with sex (p = 0.0003) and was associated with greater annual weight gain in men (56.8 ± 23.7 g/year per allele, p = 0.02) than in women (-25.5 ± 19.8 g/year per allele, p = 0.2). With respect to gene-nutrient interaction, we could not detect any significant interactions when accounting for multiple testing. Therefore, out of our six candidate genes, LPIN2 may be considered as a candidate for further studies.
Collapse
Affiliation(s)
- Karina Meidtner
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent advances in investigations of dietary factors, genetic factors, and their interactive effects on obesity and weight loss. RECENT FINDINGS Even with a tremendous body of research conducted, controversy still abounds regarding the relative effectiveness of various weight-loss diets. Recent advances in genome-wide association studies have made great strides in unraveling the genetic basis of regulation of body weight. In prospective cohorts, reproducible evidence is emerging to show interactions between genetic factors and dietary factors such as sugar-sweetened beverage on obesity. In randomized clinical trials, individuals' genotypes have also been found to modify diet interventions on weight loss, weight maintenance, and changes in related metabolic traits such as lipids, insulin resistance, and blood pressure. However, replication, functional exploration, and translation of the findings into personalized diet interventions remain the chief challenges. SUMMARY Preliminary but promising data have emerged to lend support to gene-diet interaction in determining weight loss and maintenance; and studies in the area hold great promise to inform future personalized diet interventions on the reduction of obesity and related health problems.
Collapse
Affiliation(s)
- Lu Qi
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
San-Cristobal R, Milagro FI, Martínez JA. Future Challenges and Present Ethical Considerations in the Use of Personalized Nutrition Based on Genetic Advice. J Acad Nutr Diet 2013; 113:1447-1454. [DOI: 10.1016/j.jand.2013.05.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/23/2013] [Indexed: 01/06/2023]
|
29
|
Wang Y, Wang A, Donovan SM, Teran-Garcia M. Individual genetic variations related to satiety and appetite control increase risk of obesity in preschool-age children in the STRONG kids program. Hum Hered 2013; 75:152-9. [PMID: 24081231 DOI: 10.1159/000353880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The burden of the childhood obesity epidemic is well recognized; nevertheless, the genetic markers and gene-environment interactions associated with the development of common obesity are still unknown. In this study, candidate genes associated to satiety and appetite control pathways with obesity-related traits were tested in Caucasian preschoolers from the STRONG Kids project. METHODS Eight genetic variants in genes related to obesity (BDNF, LEPR, FTO, PCSK1, POMC, TUB, LEP, and MC4R) were genotyped in 128 children from the STRONG Kids project (mean age 39.7 months). Data were analyzed for individual associations and to test for genetic predisposition scores (GPSs) with body mass index (BMI) and anthropometric traits (Z-scores, e.g. height-for-age Z-score, HAZ). Covariates included age, sex, and breastfeeding (BF) duration. RESULTS Obesity and overweight prevalence was 6.3 and 19.5%, respectively, according to age- and sex-specific BMI percentiles. Individual genetic associations of MC4R and LEPR markers with HAZ were strengthened when BF duration was included as a covariate. Our GPSs show that, as the number of risk alleles increased, the risk of higher BMI and HAZ also increased. Overall, the GPSs assembled were able to explain 2-3% of the variability in BMI and HAZ phenotypes. CONCLUSION Genetic associations with common obesity-related phenotypes were found in the STRONG Kids project. GPSs assembled for specific candidate genes were associated with BMI and HAZ phenotypes.
Collapse
Affiliation(s)
- Yingying Wang
- Division of Nutritional Sciences, University of Illinois, Urbana, Ill., USA
| | | | | | | | | |
Collapse
|
30
|
Stocks T, Ängquist L, Hager J, Charon C, Holst C, Martinez JA, Saris WH, Astrup A, Sørensen TI, Larsen LH. TFAP2B-Dietary Protein and Glycemic Index Interactions and Weight Maintenance after Weight Loss in the DiOGenes Trial. Hum Hered 2013; 75:213-9. [DOI: 10.1159/000353591] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Dietary Management and Genetic Predisposition. Curr Nutr Rep 2013. [DOI: 10.1007/s13668-013-0050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Adaptations of leptin, ghrelin or insulin during weight loss as predictors of weight regain: a review of current literature. Int J Obes (Lond) 2013; 38:388-96. [PMID: 23801147 DOI: 10.1038/ijo.2013.118] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/21/2013] [Accepted: 06/14/2013] [Indexed: 01/25/2023]
Abstract
Numerous laboratory studies involving both animal and human models indicate that weight loss induces changes in leptin, ghrelin and insulin sensitivity, which work to promote weight regain. It is unclear, however, whether these biological changes serve as a biomarker for predicting weight regain in free-living humans in which biological, behavioral and environmental factors are likely at play. We identified 12 studies published between January 1995 and December 2011 that reported changes in leptin, ghrelin or insulin during intentional weight loss with a follow-up period to assess regain. Two of the nine studies examining leptin suggested that larger decreases were associated with greater regain, three studies found the opposite (smaller decreases were associated with greater regain), whereas four studies found no significant relationship; none of the studies supported the hypothesis that increases in ghrelin during weight loss were associated with regain. One study suggested that improvements in insulin resistance were associated with weight gain, but five subsequent studies reported no association. Changes in leptin, ghrelin or insulin sensitivity, taken alone, are not sufficient to predict weight regain following weight loss in free-living humans. In future studies, it is important to include a combination of physiological, behavioral and environmental variables in order to identify subgroups at greatest risk of weight regain.
Collapse
|
33
|
Obesity: Underlying Mechanisms and the Evolving Influence of Diet. Curr Nutr Rep 2012. [DOI: 10.1007/s13668-012-0028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|