1
|
Chen L, Qiu H, Chen Q, Xiang P, Lei J, Zhang J, Lu Y, Wang X, Wu S, Yu C, Ma L. N-acetylneuraminic acid modulates SQSTM1/p62 sialyation-mediated ubiquitination degradation contributing to vascular endothelium dysfunction in experimental atherosclerosis mice. IUBMB Life 2024; 76:161-178. [PMID: 37818680 DOI: 10.1002/iub.2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Sialic acid (SIA) has been reported to be a risk factor for atherosclerosis (AS) due to its high plasma levels in such patients. However, the effect of increasing SIA in circulation on endothelial function during AS progression remains unclear. In the present study, ApoE-/- mice and endothelial cells line (HUVEC cells) were applied to investigate the effect of SIA on AS progression and its potential molecular mechanism. In vivo, mice were injected intraperitoneally with Neu5Ac (main form of SIA) to keep high-level SIA in circulation. ORO, H&E, and Masson staining were applied to detect the plaque progression. In vitro, HUVECs were treated with Neu5Ac at different times, CCK-8, RT-PCR, western blot, and immunoprecipitation methods were used to analyze its effects on endothelial function and the potential involved mechanism. Results from the present study showed that high plasma levels of Neu5Ac in ApoE-/- mice could aggravate the plaque areas as well as increase necrotic core areas and collagen fiber contents. Remarkably, Neu5Ac levels in circulation displayed a positive correlation with AS plaque areas. Furthermore, results from HUVECs showed that Neu5Ac inhibited cells viability in a time/dose-dependent manner, by then induced the activation of inflammation makers such as ICAM-1 and IL-1β. Mechanism study showed that the activation of excessive autophagy medicated by SQSTM1/p62 displayed an important role in endothelium inflammatory injury. Neu5Ac could modify SQSTM1/p62 as a sialylation protein, and then increase its level with ubiquitin binding, further inducing ubiquitination degradation and being involved in the excessive autophagy pathway. Inhibition of sialylation by P-3Fax-Neu5Ac, a sialyltransferase inhibitor, reduced the binding of SQSTM1/p62 to ubiquitin. Together, these findings indicated that Neu5Ac increased SQSTM1/p62-ubiquitin binding through sialylation modification, thereby inducing excessive autophagy and subsequent endothelial injury. Inhibition of SQSTM1/p62 sialylation might be a potential strategy for preventing such disease with high levels of Neu5Ac in circulation.
Collapse
Affiliation(s)
- Le Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Hongmei Qiu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Qingqiu Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Peng Xiang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Jin Lei
- Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
| | - Jun Zhang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Yining Lu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Xianmin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Limei Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| |
Collapse
|
2
|
Wu S, Chen Y, Chen Z, Wei F, Zhou Q, Li P, Gu Q. Reactive oxygen species and gastric carcinogenesis: The complex interaction between Helicobacter pylori and host. Helicobacter 2023; 28:e13024. [PMID: 37798959 DOI: 10.1111/hel.13024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Helicobacter pylori (H. pylori) is a highly successful human pathogen that colonizes stomach in around 50% of the global population. The colonization of bacterium induces an inflammatory response and a substantial rise in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), mostly derived from host neutrophils and gastric epithelial cells, which play a crucial role in combating bacterial infections. However, H. pylori has developed various strategies to quench the deleterious effects of ROS, including the production of antioxidant enzymes, antioxidant proteins as well as blocking the generation of oxidants. The host's inability to eliminate H. pylori infection results in persistent ROS production. Notably, excessive ROS can disrupt the intracellular signal transduction and biological processes of the host, incurring chronic inflammation and cellular damage, such as DNA damage, lipid peroxidation, and protein oxidation. Markedly, the sustained inflammatory response and oxidative stress during H. pylori infection are major risk factor for gastric carcinogenesis. In this context, we summarize the literature on H. pylori infection-induced ROS production, the strategies used by H. pylori to counteract the host response, and subsequent host damage and gastric carcinogenesis.
Collapse
Affiliation(s)
- Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yongqiang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Fangtong Wei
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
3
|
Tandoro Y, Chen BK, Ali A, Wang CK. Review of Phytochemical Potency as a Natural Anti- Helicobacter pylori and Neuroprotective Agent. Molecules 2023; 28:7150. [PMID: 37894629 PMCID: PMC10609179 DOI: 10.3390/molecules28207150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Phytochemicals are plant secondary metabolites that show health benefits for humans due to their bioactivity. There is a huge variety of phytochemicals that have already been identified, and these compounds can act as antimicrobial and neuroprotection agents. Due to their anti-microbial activity and neuroprotection, several phytochemicals might have the potency to be used as natural therapeutic agents, especially for Helicobacter pylori infection and neurodegenerative disease, which have become a global health concern nowadays. According to previous research, there are some connections between H. pylori infection and neurodegenerative diseases, especially Alzheimer's disease. Hence, this comprehensive review examines different kinds of phytochemicals from natural sources as potential therapeutic agents to reduce H. pylori infection and improve neurodegenerative disease. An additional large-scale study is needed to establish the connection between H. pylori infection and neurodegenerative disease and how phytochemicals could improve this condition.
Collapse
Affiliation(s)
- Yohanes Tandoro
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
- Faculty of Agricultural Technology, Widya Mandala Catholic University Surabaya, Surabaya 60265, Indonesia
| | - Bo-Kai Chen
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| | - Asif Ali
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| |
Collapse
|
4
|
Yao CJ, Yang SJ, Huang CH, Chang YT, Wang CH, Shieh MJ, Young TH. Retention Time Extended by Nanoparticles Improves the Eradication of Highly Antibiotic-Resistant Helicobacter pylori. Pharmaceutics 2022; 14:pharmaceutics14102117. [PMID: 36297552 PMCID: PMC9608011 DOI: 10.3390/pharmaceutics14102117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Helicobacter pylori infection usually causes gastrointestinal complications, including gastrointestinal bleeding or perforation, and serious infections may lead to gastric cancer. Amoxicillin is used to treat numerous bacterial infections but is easily decomposed in the gastric acid environment via the hydrolyzation of the β-lactam ring. In this study, we develop chitosan-based nanoparticles loaded with amoxicillin (CAANs) as an H. pylori eradication platform. The CAANs were biocompatible and could retain the antibiotic activity of amoxicillin against H. pylori growth. The mucoadhesive property of chitosan and alginate enabled the CAANs to adhere to the mucus layers and penetrate through these to release amoxicillin in the space between the layers and the gastric epithelium. The use of this nanoparticle could prolong the retention time and preserve the antibiotic activity of amoxicillin in the stomach and help enhance the eradication rate of H. pylori and reduce treatment time. These CAANs, therefore, show potential for the effective treatment of highly antibiotic-resistant H. pylori infection using amoxicillin.
Collapse
Affiliation(s)
- Cheng-Jung Yao
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, No. 111, Section 3, Xinglong Road, Taipei 116, Taiwan
| | - Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Chung-Huan Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Yuan-Ting Chang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Chung-Hao Wang
- Gene’e Tech Co., Ltd., 2nd Floor, No. 661, Bannan Road, Zhonghe District, New Taipei City 235, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
- Correspondence: (M.-J.S.); (T.-H.Y.); Tel.: +886-2-23123456 (ext. 81444) (M.-J.S.)
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Correspondence: (M.-J.S.); (T.-H.Y.); Tel.: +886-2-23123456 (ext. 81444) (M.-J.S.)
| |
Collapse
|
5
|
Irons EE, Cortes Gomez E, Andersen VL, Lau JTY. Bacterial colonization and TH17 immunity are shaped by intestinal sialylation in neonatal mice. Glycobiology 2022; 32:414-428. [PMID: 35157771 PMCID: PMC9022908 DOI: 10.1093/glycob/cwac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 11/14/2022] Open
Abstract
Interactions between the neonate host and its gut microbiome are central to the development of a healthy immune system. However, the mechanisms by which animals alter early colonization of microbiota for their benefit remain unclear. Here, we investigated the role of early-life expression of the α2,6-sialyltransferase ST6GAL1 in microbiome phylogeny and mucosal immunity. Fecal, upper respiratory, and oral microbiomes of pups expressing or lacking St6gal1 were analyzed by 16S rRNA sequencing. At weaning, the fecal microbiome of St6gal1-KO mice had reduced Clostridiodes, Coprobacillus, and Adlercreutzia, but increased Helicobacter and Bilophila. Pooled fecal microbiomes from syngeneic donors were transferred to antibiotic-treated wild-type mice, before analysis of recipient mucosal immune responses by flow cytometry, RT-qPCR, microscopy, and ELISA. Transfer of St6gal1-KO microbiome induced a mucosal Th17 response, with expression of T-bet and IL-17, and IL-22-dependent gut lengthening. Early life intestinal sialylation was characterized by RT-qPCR, immunoblot, microscopy, and sialyltransferase enzyme assays in genetic mouse models at rest or with glucocorticoid receptor modulators. St6gal1 expression was greatest in the duodenum, where it was mediated by the P1 promoter and efficiently inhibited by dexamethasone. Our data show that the inability to produce α2,6-sialyl ligands contributes to microbiome-dependent Th17 inflammation, highlighting a pathway by which the intestinal glycosylation regulates mucosal immunity.
Collapse
Affiliation(s)
- Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Valerie L Andersen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| |
Collapse
|
6
|
Yang Y, Shu X, Xie C. An Overview of Autophagy in Helicobacter pylori Infection and Related Gastric Cancer. Front Cell Infect Microbiol 2022; 12:847716. [PMID: 35463631 PMCID: PMC9033262 DOI: 10.3389/fcimb.2022.847716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is considered a class I carcinogen in the pathogenesis of gastric cancer. In recent years, the interaction relationship between H. pylori infection and autophagy has attracted increasing attention. Most investigators believe that the pathogenesis of gastric cancer is closely related to the formation of an autophagosome-mediated downstream signaling pathway by H. pylori infection-induced cells. Autophagy is involved in H. pylori infection and affects the occurrence and development of gastric cancer. In this paper, the possible mechanism by which H. pylori infection affects autophagy and the progression of related gastric cancer signaling pathways are reviewed.
Collapse
Affiliation(s)
| | - Xu Shu
- *Correspondence: Xu Shu, ; Chuan Xie,
| | - Chuan Xie
- *Correspondence: Xu Shu, ; Chuan Xie,
| |
Collapse
|
7
|
Wang Y, Du J, Wu X, Abdelrehem A, Ren Y, Liu C, Zhou X, Wang S. Crosstalk between autophagy and microbiota in cancer progression. Mol Cancer 2021; 20:163. [PMID: 34895252 PMCID: PMC8665582 DOI: 10.1186/s12943-021-01461-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a highly conserved catabolic process seen in eukaryotes and is essentially a lysosome-dependent protein degradation pathway. The dysregulation of autophagy is often associated with the pathogenesis of numerous types of cancers, and can not only promote the survival of cancer but also trigger the tumor cell death. During cancer development, the microbial community might predispose cells to tumorigenesis by promoting mucosal inflammation, causing systemic disorders, and may also regulate the immune response to cancer. The complex relationship between autophagy and microorganisms can protect the body by activating the immune system. In addition, autophagy and microorganisms can crosstalk with each other in multifaceted ways to influence various physiological and pathological responses involved in cancer progression. Various molecular mechanisms, correlating the microbiota disorders and autophagy activation, control the outcomes of protumor or antitumor responses, which depend on the cancer type, tumor microenvironment and disease stage. In this review, we mainly emphasize the leading role of autophagy during the interaction between pathogenic microorganisms and human cancers and investigate the various molecular mechanisms by which autophagy modulates such complicated biological processes. Moreover, we also highlight the possibility of curing cancers with multiple molecular agents targeting the microbiota/autophagy axis. Finally, we summarize the emerging clinical trials investigating the therapeutic potential of targeting either autophagy or microbiota as anticancer strategies, although the crosstalk between them has not been explored thoroughly.
Collapse
Affiliation(s)
- Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Jiang Du
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuemei Wu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| | - Ahmed Abdelrehem
- Department of Craniomaxillofacial and Plastic Surgery, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Yu Ren
- Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070 China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| |
Collapse
|
8
|
Jahan M, Francis N, Wynn P, Wang B. The Potential for Sialic Acid and Sialylated Glycoconjugates as Feed Additives to Enhance Pig Health and Production. Animals (Basel) 2021; 11:ani11082318. [PMID: 34438776 PMCID: PMC8388453 DOI: 10.3390/ani11082318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary This review discusses the current challenges in the pig industry and the potential nutritional significance of sialic acid (Sia) and glycoconjugates (Sia-GC’s) for pig health and nutrition. Sia is a nine-carbon acidic sugar which is present in various organs and body fluids of humans and animals. Sias contribute to many beneficial biological functions including pathogen resistance, immunomodulation, gut microbiota development, gut maturation, anti-inflammation and neurodevelopment. The role of Sias in regulating the metabolism of pigs has seldom been reported. However, we have documented significant beneficial effects of specific Sia-GC’s on health and production performance of sows and piglets. These findings are reviewed in relation to other studies while noting the beneficial effects of the inclusion of Sia, Sia containing oligosaccharide or the sialo-protein lactoferrin in the diets of gilts and sows. The importance of the passive transfer of of Sia and Sia-GC’s through milk to the young and the implications for their growth and development is also reviewed. This information will assist in optimizing the composition of sow/gilt milk replacers designed to increases the survival of IUGR piglets or piglets with dams suffering from agalactia, a common problem in pig production systems worldwide. Abstract Swine are one of the most important agricultural species for human food production. Given the significant disease challenges confronting commercial pig farming systems, introduction of a new feed additive that can enhance animal performance by improving growth and immune status represents a major opportunity. One such candidate is sialic acid (Sia), a diverse family of nine-carbon acidic sugar, present in various organs and body fluid, as well as an essential structural and functional constituent of brain ganglioside of humans and animals. Sias are key monosaccharide and biomarker of sialylated milk oligosaccharide (Sia-MOS’s), sialylated glycoproteins and glycolipids in milk and all vertebrate cells. Sias accomplish many critical endogenous functions by virtue of their physiochemical properties and via recognition by intrinsic receptors. Human milk sialylated glycoconjugates (Sia-GC’s) are bioactive compounds known to act as prebiotics that promote gut microbiota development, gut maturation, pathogen resistance, immunomodulation, anti-inflammation and neurodevelopment. However, the importance of Sia in pig health, especially in the growth, development, immunity of developing piglet and in pig production remains unknown. This review aims to critically discuss the current status of knowledge of the biology and nutritional role of Sia and Sia-GC’s on health of both female sow and newborn piglets.
Collapse
Affiliation(s)
| | | | | | - Bing Wang
- Correspondence: ; Tel.: +61-2-6933-4549
| |
Collapse
|
9
|
Lu SY, Guo S, Chai SB, Yang JQ, Yue Y, Li H, Sun PM, Zhang T, Sun HW, Zhou JL, Yang JW, Yang HM, Li ZP, Cui Y. Autophagy in Gastric Mucosa: The Dual Role and Potential Therapeutic Target. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2648065. [PMID: 34195260 PMCID: PMC8214476 DOI: 10.1155/2021/2648065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
The incidence of stomach diseases is very high, which has a significant impact on human health. Damaged gastric mucosa is more vulnerable to injury, leading to bleeding and perforation, which eventually aggravates the primary disease. Therefore, the protection of gastric mucosa is crucial. However, existing drugs that protect gastric mucosa can cause nonnegligible side effects, such as hepatic inflammation, nephritis, hypoacidity, impotence, osteoporotic bone fracture, and hypergastrinemia. Autophagy, as a major intracellular lysosome-dependent degradation process, plays a key role in maintaining intracellular homeostasis and resisting environmental pressure, which may be a potential therapeutic target for protecting gastric mucosa. Recent studies have demonstrated that autophagy played a dual role when gastric mucosa exposed to biological and chemical factors. More indepth studies are needed on the protective effect of autophagy in gastric mucosa. In this review, we focus on the mechanisms and the dual role of various biological and chemical factors regulating autophagy, such as Helicobacter pylori, virus, and nonsteroidal anti-inflammatory drugs. And we summarize the pathophysiological properties and pharmacological strategies for the protection of gastric mucosa through autophagy.
Collapse
Affiliation(s)
- Sheng-Yu Lu
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Song Guo
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Shao-Bin Chai
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jia-Qi Yang
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - He-Ming Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Zheng-Peng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| |
Collapse
|
10
|
Green Tea Polyphenol Catechins Inhibit Coronavirus Replication and Potentiate the Adaptive Immunity and Autophagy-Dependent Protective Mechanism to Improve Acute Lung Injury in Mice. Antioxidants (Basel) 2021; 10:antiox10060928. [PMID: 34200327 PMCID: PMC8230342 DOI: 10.3390/antiox10060928] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Effective antiviral therapeutics are urgently required to fight severe acute respiratory syndrome (SARS) caused by a SARS coronavirus (SARS-CoV). Because polyphenol catechins could confer antioxidative, anti-inflammatory, antiviral, and antimicrobial activities, we assessed the therapeutic effects of catechins against SARS-CoV replication in Vero E6 cells, the preventive effect of catechins on CD25/CD69/CD94/CD8+ cytotoxic T lymphocytes-mediated adaptive immunity, and the protective effect on lipopolysaccharide-induced acute lung injury (ALI) in mice. We found that catechins containing 32.8% epigallocatechin gallate, 15.2% epicatechin gallate, 13.2 epicatechin, 10.8% epigallocatechin, 10.4% gallocatechin, and 4.4% catechin directly inhibited SARS-CoV replication at sub-micromolecular concentrations. Four-week catechins ingestion increased CD8+ T cell percentage, upregulated CD69+/CD25+/CD94-NKG2A/CD8+ T lymphocytes-mediated adaptive immunity, and increased type I cytokines release responding to ovalbumin/alum. Catechins significantly reduced lipopolysaccharide-induced cytokine storm and oxidative stress and ALI by inhibiting PI3K/AKT/mTOR signaling to upregulate Beclin-1/Atg5-Atg12/LC3-II-mediated autophagy mechanism. Pretreatment of autophagy inhibitor 3-Methyladenine reversed the inhibiting effects of catechins on the cytokines and oxidative stress levels and ALI. In conclusion, our data indicated that catechins directly inhibited SARS-CoV replication, potentiated the CD25/CD69/CD94/CD8+ T lymphocytes-mediated adaptive immunity and attenuated lipopolysaccharide-induced ALI and cytokine storm by PI3K/AKT/mTOR-signaling-mediated autophagy, which may be applied to prevent and/or treat SARS-CoV infection.
Collapse
|
11
|
Yang SJ, Huang CH, Yang JC, Wang CH, Shieh MJ. Residence Time-Extended Nanoparticles by Magnetic Field Improve the Eradication Efficiency of Helicobacter pylori. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54316-54327. [PMID: 33236884 DOI: 10.1021/acsami.0c13101] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Helicobacter pylori infection is one of the leading causes of several gastroduodenal diseases, such as gastritis, peptic ulcer, and gastric cancer. In fact, H. pylori eradication provides a preventive effect against the incidence of gastric cancer. Amoxicillin is a commonly used antibiotic for H. pylori eradication. However, due to its easy degradation by gastric acid, it is necessary to administer it in a large dosage and to combine it with other antibiotics. This complexity and the strong side effects of H. pylori eradication therapy often lead to treatment failure. In this study, the chitosan/poly (acrylic acid) particles co-loaded with superparamagnetic iron oxide nanoparticles and amoxicillin (SPIO/AMO@PAA/CHI) are used as drug nano-carriers for H. pylori eradication therapy. In vitro and in vivo results show that the designed SPIO/AMO@PAA/CHI nanoparticles are biocompatible and could retain the biofilm inhibition and the bactericidal effect of amoxicillin against H. pylori. Moreover, the mucoadhesive property of chitosan allows SPIO/AMO@PAA/CHI nanoparticles to adhere to the gastric mucus layer and rapidly pass through the mucus layer after exposure to a magnetic field. When PAA is added, it competes with amoxicillin for chitosan, so that amoxicillin is quickly and continuously released between the mucus layer and the gastric epithelium and directly acts on H. pylori. Consequently, the use of this nano-carrier can extend the drug residence time in the stomach, reducing the drug dose and treatment period of H. pylori eradication therapy.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Chung-Huan Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Jyh-Chin Yang
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Chung-Hao Wang
- Gene'e Tech Co. Ltd. 2F., No. 661, Bannan Road, Zhonghe District, New Taipei City 235, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
12
|
Zhang F, Chen C, Hu J, Su R, Zhang J, Han Z, Chen H, Li Y. Molecular mechanism of Helicobacter pylori-induced autophagy in gastric cancer. Oncol Lett 2019; 18:6221-6227. [PMID: 31788098 DOI: 10.3892/ol.2019.10976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative pathogen that colonizes gastric epithelial cells. The drug resistance rates of H. pylori have dramatically increased, causing persistent infections. Chronic infection by H. pylori is a critical cause of gastritis, peptic ulcers and even gastric cancer. In host cells, autophagy is stimulated to maintain cellular homeostasis following intracellular pathogen recognition by the innate immune defense system. However, H. pylori-induced autophagy is not consistent during acute and chronic infection. Therefore, a deeper understanding of the association between H. pylori infection and autophagy in gastric epithelial cells could aid the understanding of the mechanisms of persistent infection and the identification of autophagy-associated therapeutic targets for H. pylori infection. The present review describes the role of H. pylori and associated virulence factors in the induction of autophagy by different signaling pathways during acute infection. Additionally, the inhibition of autophagy in gastric epithelial cells during chronic infection was discussed. The present review summarized H. pylori-mediated autophagy and provided insights into its mechanism of action, suggesting the induction of autophagy as a novel therapeutic target for persistent H. pylori infection.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Cong Chen
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Jike Hu
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Ruiliang Su
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Junqiang Zhang
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhijian Han
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Hao Chen
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yumin Li
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
13
|
Dadresanfar B, Vatanpour M, Farahmand M, Taheri S, Mahaseni Aghdam HR. Ex Vivo Comparative Study of the Effect of Different Concentrations of Green Tea Extract and Two Common Irrigants on Root Canals Infected with Enterococcus faecalis. JOURNAL OF RESEARCH IN DENTAL AND MAXILLOFACIAL SCIENCES 2019. [DOI: 10.29252/jrdms.4.2.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
14
|
Pandey RP, Kim DH, Woo J, Song J, Jang SH, Kim JB, Cheong KM, Oh JS, Sohng JK. Broad-spectrum neutralization of avian influenza viruses by sialylated human milk oligosaccharides: in vivo assessment of 3'-sialyllactose against H9N2 in chickens. Sci Rep 2018; 8:2563. [PMID: 29416087 PMCID: PMC5803236 DOI: 10.1038/s41598-018-20955-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/22/2018] [Indexed: 01/19/2023] Open
Abstract
Two sialylated human milk oligosaccharides (SHMOs) 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) were accessed for their possible antiviral activity against six different subtypes of thirteen avian influenza (AI) viruses in vitro. 3'-SL exhibited promising antiviral activity against almost all subtypes of tested AI viruses in hemagglutination inhibition assay, whereas 6'-SL showed activity against few selected H1N1, H1N2, and H3N2 subtype strains. 3'-SL has minimum inhibitory concentration values of 15.62 mM or less in more than half of the viruses examined. 3'-SL also showed effective inactivation of H9N2 Korea isolate (A/Chicken/Korea/MS96/1996) at 12.5 mM concentration in Madin Darby Canine Kidney (MDCK) cell line. Thus, 3'-SL was further studied for in vivo study against H9N2 virus in pathogen free chicken experiment models. In vivo study exhibited improved clinical symptoms on H9N2 infected chickens when treated with 3'-SL. Moreover, treating chickens with 3'-SL resulted in complete elimination of H9N2 viruses within 24 h of virus infection (0.8 HAU of H9N2). Indirect ELISA assay confirmed complete wash-out of H9N2 viruses from the colon after neutralization by 3'-SL without entering the blood stream. These in vivo results open up possible applications of 3'-SL for the prevention of AI virus infections in birds by a simple cleansing mechanism.
Collapse
Affiliation(s)
- Ramesh Prasad Pandey
- Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering and Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Korea
| | - Dae Hee Kim
- GeneChem Inc., 59-5 Jang-dong, Yuseong-gu, Daejeon, 305-343, Korea
| | - Jinsuk Woo
- GeneChem Inc., 59-5 Jang-dong, Yuseong-gu, Daejeon, 305-343, Korea
| | - Jaeyoung Song
- Animal and Plant Quarantine Agency (QIA) 175 Anynag-ro Manan-gu, Anyang-si, Gyeonggi-do, 430-757, Korea
| | - Sang Ho Jang
- Median Diagnostics Inc., 878, Sunhwan-daero, Dongnae-myeon, Chuncheon-si, Gangwon-do, Korea
| | - Joon Bae Kim
- Median Diagnostics Inc., 878, Sunhwan-daero, Dongnae-myeon, Chuncheon-si, Gangwon-do, Korea
| | - Kwang Myun Cheong
- Median Diagnostics Inc., 878, Sunhwan-daero, Dongnae-myeon, Chuncheon-si, Gangwon-do, Korea
| | - Jin Sik Oh
- Median Diagnostics Inc., 878, Sunhwan-daero, Dongnae-myeon, Chuncheon-si, Gangwon-do, Korea
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering and Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Korea.
| |
Collapse
|
15
|
Pietrzyk Ł. Food properties and dietary habits in colorectal cancer prevention and development. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2016.1236813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Łukasz Pietrzyk
- Department of Didactics and Medical Simulation, Chair of Human Anatomy, Medical University of Lublin, Lublin, Poland
- Department of General, Oncological and Minimally Invasive Surgery, 1st Military Clinical Hospital in Lublin, Lublin, Poland
| |
Collapse
|
16
|
Abstract
The development of a suitable technology for the production of probiotics is a key research for industrial production, which should take into account the viability and the stability of the organisms involved. Microbial criteria, stress tolerance during processing, and storage of the product constitute the basis for the production of probiotics. Generally, the bacteria belonging to the genera Lactobacillus and Bifidobacterium have been used as probiotics. Based on their positive qualities, probiotic bacteria are widely used in the production of food. Interest in the incorporation of the probiotic bacteria into other products apart from dairy products has been increasing and represents a great challenge. The recognition of dose delivery systems for probiotic bacteria has also resulted in research efforts aimed at developing probiotic food outside the dairy sector. Producing probiotic juices has been considered more in the recent years, due to an increased concern in personal health of consumers. This review focuses on probiotics, prebiotics, and the microencapsulation of living cells.
Collapse
Affiliation(s)
- Loveleen Kaur Sarao
- a Department of Microbiology , College of Basic Sciences and Humanities, Punjab Agricultural University , Ludhiana , Punjab , India
| | - M Arora
- a Department of Microbiology , College of Basic Sciences and Humanities, Punjab Agricultural University , Ludhiana , Punjab , India
| |
Collapse
|
17
|
Noh HJ, Koh HB, Kim HK, Cho HH, Lee J. Anti-bacterial effects of enzymatically-isolated sialic acid from glycomacropeptide in a Helicobacter pylori-infected murine model. Nutr Res Pract 2016; 11:11-16. [PMID: 28194260 PMCID: PMC5300941 DOI: 10.4162/nrp.2017.11.1.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/20/2016] [Accepted: 11/08/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND/OBJECTIVES Helicobacter pylori (H. pylori) colonization of the stomach mucosa and duodenum is the major cause of acute and chronic gastroduodenal pathology in humans. Efforts to find effective anti-bacterial strategies against H. pylori for the non-antibiotic control of H. pylori infection are urgently required. In this study, we used whey to prepare glycomacropeptide (GMP), from which sialic acid (G-SA) was enzymatically isolated. We investigated the anti-bacterial effects of G-SA against H. pylori in vitro and in an H. pylori-infected murine model. MATERIALS/METHODS The anti-bacterial activity of G-SA was measured in vitro using the macrodilution method, and interleukin-8 (IL-8) production was measured in H. pylori and AGS cell co-cultures by ELISA. For in vivo study, G-SA 5 g/kg body weight (bw)/day and H. pylori were administered to mice three times over one week. After one week, G-SA 5 g/kg bw/day alone was administered every day for one week. Tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and IL-10 levels were measured by ELISA to determine the anti-inflammatory effects of G-SA. In addition, real-time PCR was performed to measure the genetic expression of cytotoxin-associated gene A (cagA). RESULTS G-SA inhibited the growth of H. pylori and suppressed IL-8 production in H. pylori and in AGS cell co-cultures in vitro. In the in vivo assay, administration of G-SA reduced levels of IL-1β and IL-6 pro-inflammatory cytokines whereas IL-10 level increased. Also, G-SA suppressed the expression of cagA in the stomach of H. pylori-infected mice. CONCLUSION G-SA possesses anti-H. pylori activity as well as an anti-H. pylori-induced gastric inflammatory effect in an experimental H. pylori-infected murine model. G-SA has potential as an alternative to antibiotics for the prevention of H. pylori infection and H. pylori-induced gastric disease prevention.
Collapse
Affiliation(s)
- Hye-Ji Noh
- Department of Medical Nutrition, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi 17104, Korea
| | - Hong Bum Koh
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | | | | | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi 17104, Korea
| |
Collapse
|
18
|
Nagahashi M, Wakai T, Shimada Y, Ichikawa H, Kameyama H, Kobayashi T, Sakata J, Yagi R, Sato N, Kitagawa Y, Uetake H, Yoshida K, Oki E, Kudo SE, Izutsu H, Kodama K, Nakada M, Tse J, Russell M, Heyer J, Powers W, Sun R, Ring JE, Takabe K, Protopopov A, Ling Y, Okuda S, Lyle S. Genomic landscape of colorectal cancer in Japan: clinical implications of comprehensive genomic sequencing for precision medicine. Genome Med 2016; 8:136. [PMID: 28007036 PMCID: PMC5180401 DOI: 10.1186/s13073-016-0387-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
Background Comprehensive genomic sequencing (CGS) has the potential to revolutionize precision medicine for cancer patients across the globe. However, to date large-scale genomic sequencing of cancer patients has been limited to Western populations. In order to understand possible ethnic and geographic differences and to explore the broader application of CGS to other populations, we sequenced a panel of 415 important cancer genes to characterize clinically actionable genomic driver events in 201 Japanese patients with colorectal cancer (CRC). Methods Using next-generation sequencing methods, we examined all exons of 415 known cancer genes in Japanese CRC patients (n = 201) and evaluated for concordance among independent data obtained from US patients with CRC (n = 108) and from The Cancer Genome Atlas-CRC whole exome sequencing (WES) database (n = 224). Mutation data from non-hypermutated Japanese CRC patients were extracted and clustered by gene mutation patterns. Two different sets of genes from the 415-gene panel were used for clustering: 61 genes with frequent alteration in CRC and 26 genes that are clinically actionable in CRC. Results The 415-gene panel is able to identify all of the critical mutations in tumor samples as well as WES, including identifying hypermutated tumors. Although the overall mutation spectrum of the Japanese patients is similar to that of the Western population, we found significant differences in the frequencies of mutations in ERBB2 and BRAF. We show that the 415-gene panel identifies a number of clinically actionable mutations in KRAS, NRAS, and BRAF that are not detected by hot-spot testing. We also discovered that 26% of cases have mutations in genes involved in DNA double-strand break repair pathway. Unsupervised clustering revealed that a panel of 26 genes can be used to classify the patients into eight different categories, each of which can optimally be treated with a particular combination therapy. Conclusions Use of a panel of 415 genes can reliably identify all of the critical mutations in CRC patients and this information of CGS can be used to determine the most optimal treatment for patients of all ethnicities. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0387-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan.
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Hiroshi Ichikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Hitoshi Kameyama
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Ryoma Yagi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Nobuaki Sato
- Niigata Cancer Center Hospital, 15-3 Kawagishi-cho 2-Chome, Chuo-ku, Niigata City, Niigata, 951-8566, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Uetake
- Department of Chemotherapy and Oncosurgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki-ku, Yokohama, 224-8503, Japan
| | - Hiroshi Izutsu
- Diagnostics Research Department, Life innovation Research Institute, Denka innovation center, Denka Co., Ltd., 3-5-1 Asahi-Machi, Machida-City, Tokyo, 194-8560, Japan
| | - Keisuke Kodama
- Diagnostics Research Department, Life innovation Research Institute, Denka innovation center, Denka Co., Ltd., 3-5-1 Asahi-Machi, Machida-City, Tokyo, 194-8560, Japan
| | - Mitsutaka Nakada
- Diagnostics Research Department, Life innovation Research Institute, Denka innovation center, Denka Co., Ltd., 3-5-1 Asahi-Machi, Machida-City, Tokyo, 194-8560, Japan
| | - Julie Tse
- KEW, Inc, 840 Memorial Drive, 4th floor, Cambridge, MA, 02139, USA
| | - Meaghan Russell
- KEW, Inc, 840 Memorial Drive, 4th floor, Cambridge, MA, 02139, USA
| | - Joerg Heyer
- KEW, Inc, 840 Memorial Drive, 4th floor, Cambridge, MA, 02139, USA
| | - Winslow Powers
- KEW, Inc, 840 Memorial Drive, 4th floor, Cambridge, MA, 02139, USA
| | - Ruobai Sun
- KEW, Inc, 840 Memorial Drive, 4th floor, Cambridge, MA, 02139, USA
| | - Jennifer E Ring
- KEW, Inc, 840 Memorial Drive, 4th floor, Cambridge, MA, 02139, USA
| | - Kazuaki Takabe
- Breast Surgery, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA.,Department of Surgery, University at Buffalo, The State University of New York, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | | | - Yiwei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan.
| | - Stephen Lyle
- KEW, Inc, 840 Memorial Drive, 4th floor, Cambridge, MA, 02139, USA. .,University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA.
| |
Collapse
|
19
|
Jahan M, Wynn PC, Wang B. Molecular characterization of the level of sialic acids N-acetylneuraminic acid, N-glycolylneuraminic acid, and ketodeoxynonulosonic acid in porcine milk during lactation. J Dairy Sci 2016; 99:8431-8442. [PMID: 27423948 DOI: 10.3168/jds.2016-11187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/07/2016] [Indexed: 11/19/2022]
Abstract
Sialic acids (Sia) are key monosaccharide constituents of sialylated glycoproteins (Sia-GP), human sialylated milk oligosaccharide (Sia-MOS), and gangliosides. Human milk sialylated glycoconjugates (Sia-GC) are bioactive compounds known to act as prebiotics and promote neurodevelopment, immune function, and gut maturation in newborns. Only limited data are available on the Sia content of porcine milk. The objective of this study was to quantitatively determine the total level of Sia N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), and ketodeoxynonulosonic acid (KDN) in porcine milk and to compare these levels in gilt and sow milk during lactation. Milk from 8 gilts and 22 sows was collected at 3 stages of lactation (colostrum, transition, and mature milk). Standard and experimental samples were derivatized using 1,2-diamino-4,5-methylenedioxy-benzene and analyzed by ultra-high-performance liquid chromatography using a fluorescence detector. The following new findings are reported: (1) Gilt and sow milk contained significant levels of total Sia, with the highest concentration in colostrum (1,238.5 mg/L), followed by transition milk (778.3 mg/L) and mature milk (347.2 mg/L); (2) during lactation, the majority of Sia was conjugated to Sia-GP (41-46%), followed by Sia-MOS (31-42%) and a smaller proportion in gangliosides (12-28%); (3) Neu5Ac was the major form of Sia (93-96%), followed by Neu5Gc (3-6%) and then KDN (1-2%), irrespective of milk fraction or stage of lactation; (4) the concentration of Sia in Sia-GP and Sia-MOS showed a significant decline during lactation, but the level of ganglioside Sia remained relatively constant; (5) mature gilt milk contained a significantly higher concentration of Sia-GP than sow milk. The high concentration of total Sia in porcine milk suggests that Sia-GC are important nutrients that contribute to the optimization of neurodevelopment, immune function, and growth and development in piglets. These findings provide an important rationale for the inclusion of Sia-GC in pig milk replacers to mimic porcine milk composition for the optimal growth and development of piglets.
Collapse
Affiliation(s)
- M Jahan
- EH Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - P C Wynn
- EH Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - B Wang
- EH Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
20
|
Anti-Helicobacter pylori activity of crude N-acetylneuraminic acid isolated from glycomacropeptide of whey. Lab Anim Res 2016; 32:99-104. [PMID: 27382378 PMCID: PMC4931043 DOI: 10.5625/lar.2016.32.2.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori colonizes the gastric mucosa of about half of the world's population, causing chronic gastritis and gastric cancer. An increasing emergence of antibiotic-resistant H. pylori arouses demand on alternative non-antibiotic-based therapies. In this study, we freshly prepared crude N-acetylneuraminic acid obtained from glycomacropeptide (G-NANA) of whey through a neuraminidase-mediated reaction and evaluated its antibacterial ability against H. pylori and H. felis. Overnight cultures of the H. pylori were diluted with fresh media and different concentrations (1-150 mg/mL) of crude G-NANA were added directly to the culture tube. Bacterial growth was evaluated by measuring the optical density of the culture medium and the number of viable bacteria was determined by a direct count of the colony forming units (CFU) on agar plates. For the in vivo study, mice were orally infected with 100 µL (5×10(8) cfu/mL) of H. felis four times at a day's interval, accompanied by a daily administration of crude G-NANA or vehicle. A day after the last infection, the mice were daily administered the crude G-NANA (0, 75, and 300 mg/mL) for 10 days and euthanized. Their stomachs were collected and bacterial colonization was determined by quantitative real-time PCR. Crude G-NANA inhibited H. pylori's growth and reduced the number of viable bacteria in a dose-dependent manner. Furthermore, crude G-NANA inhibited bacterial colonization in the mice. These results showed that crude G-NANA has antibacterial activity against Helicobacter and demonstrated its therapeutic potential for the prevention of chronic gastritis and gastric carcinogenesis induced by Helicobacter infection in humans.
Collapse
|
21
|
Chuang SY, Lin CH, Fang JY. Natural compounds and aging: between autophagy and inflammasome. BIOMED RESEARCH INTERNATIONAL 2014; 2014:297293. [PMID: 25298963 PMCID: PMC4179937 DOI: 10.1155/2014/297293] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/21/2014] [Indexed: 12/14/2022]
Abstract
Aging, a natural physiological process, is characterized by a progressive loss of physiological integrity. Loss of cellular homeostasis in the aging process results from different sources, including changes in genes, cell imbalance, and dysregulation of the host-defense systems. Innate immunity dysfunctions during aging are connected with several human pathologies, including metabolic disorders and cardiovascular diseases. Recent studies have clearly indicated that the decline in autophagic capacity that accompanies aging results in the accumulation of dysfunctional mitochondria, reactive oxygen species (ROS) production, and further process dysfunction of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation in the macrophages, which produce the proinflammatory cytokines. These factors impair cellular housekeeping and expose cells to higher risk in many age-related diseases, such as atherosclerosis and type 2 diabetes. In this review, we investigated the relationship between dysregulation of the inflammasome activation and perturbed autophagy with aging as well as the possible molecular mechanisms. We also summarized the natural compounds from food intake, which have potential to reduce the inflammasome activation and enhance autophagy and can further improve the age-related diseases discussed in this paper.
Collapse
Affiliation(s)
- Shih-Yi Chuang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan 333, Taiwan
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
| | - Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan 333, Taiwan
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| |
Collapse
|
22
|
Deep-sea water containing selenium provides intestinal protection against duodenal ulcers through the upregulation of Bcl-2 and thioredoxin reductase 1. PLoS One 2014; 9:e96006. [PMID: 24984066 PMCID: PMC4077573 DOI: 10.1371/journal.pone.0096006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/02/2014] [Indexed: 02/06/2023] Open
Abstract
Deep-sea water (DSW), which is rich in micronutrients and minerals and with antioxidant and anti-inflammatory qualities, may be developed as marine drugs to provide intestinal protection against duodenal ulcers. We determined several characteristics in the modified DSW. We explored duodenal pressure, oxygenation, microvascular blood flow, and changes in pH and oxidative redox potential (ORP) values within the stomach and duodenum in response to tap water (TW, hardness: 2.48 ppm), DSW600 (hardness: 600 ppm), and DSW1200 (hardness: 1200 ppm) in Wistar rats and analyzed oxidative stress and apoptosis gene expressions by cDNA and RNA microarrays in the duodenal epithelium. We compared the effects of drinking DSW, MgCl2, and selenium water on duodenal ulcers using pathologic scoring, immunohistochemical analysis, and Western blotting. Our results showed DSW has a higher pH value, lower ORP value, higher scavenging H2O2 and HOCl activity, higher Mg2+ concentrations, and micronutrients selenium compared with TW samples. Water infusion significantly increased intestinal pressure, O2 levels, and microvascular blood flow in DSW and TW groups. Microarray showed DSW600, DSW1200, selenium water upregulated antioxidant and anti-apoptotic genes and downregulated pro-apoptotic gene expression compared with the TW group. Drinking DSW600, DSW1200, and selenium water but not Mg2+ water significantly enhanced Bcl-2 and thioredoxin reductase 1 expression. Bax/Bcl-2/caspase 3/poly-(ADP-ribose)-polymerase signaling was activated during the pathogenesis of duodenal ulceration. DSW drinking reduced ulcer area as well as apoptotic signaling in acetic acid-induced duodenal ulcers. DSW, which contains selenium, provides intestinal protection against duodenal ulcers through the upregulation of Bcl-2 and thioredoxin reductase 1.
Collapse
|
23
|
Yang CC, Yao CA, Yang JC, Chien CT. Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling. Toxicol Sci 2014; 141:155-65. [PMID: 24973090 DOI: 10.1093/toxsci/kfu121] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharides (LPS) through Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) activation induce systemic inflammation where oxidative damage plays a key role in multiple organ failure. Because of the neutralization of LPS toxicity by sialic acid (SA), we determined its effect and mechanisms on repurified LPS (rLPS)-evoked acute renal failure. We assessed the effect of intravenous SA (10 mg/kg body weight) on rLPS-induced renal injury in female Wistar rats by evaluating blood and kidney reactive oxygen species (ROS) responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. SA can interact with rLPS through a high binding affinity. rLPS dose- and time-dependently reduced arterial blood pressure, renal microcirculation and blood flow, and increased vascular resistance in the rats. rLPS enhanced monocyte/macrophage (ED-1) infiltration and ROS production and impaired kidneys by triggering p-IRE1α/p-JNK/CHOP/GRP78/ATF4-mediated endoplasmic reticulum (ER) stress, Bax/PARP-mediated apoptosis, Beclin-1/Atg5-Atg12/LC3-II-mediated autophagy, and caspase 1/IL-1β-mediated pyroptosis in the kidneys. SA treatment at 30 min, but not 60 min after rLPS stimulation, gp91 siRNA and protein kinase C-α (PKC) inhibitor efficiently rescued rLPS-induced acute renal failure via inhibition of TLR4/PKC/NADPH oxidase gp91-mediated ER stress, apoptosis, autophagy and pyroptosis in renal proximal tubular cells, and rat kidneys. In response to rLPS or IFNγ, the enhanced Atg5, FADD, LC3-II, and PARP expression can be inhibited by Atg5 siRNA. Albumin (10 mg/kg body weight) did not rescue rLPS-induced injury. In conclusion, early treatment (within 30 min) of SA attenuates rLPS-induced renal failure via the reduction in LPS toxicity and subsequently inhibiting rLPS-activated TLR4/PKC/gp91/ER stress/apoptosis/autophagy/pyroptosis signaling.
Collapse
Affiliation(s)
- Chih-Ching Yang
- Department of Internal Medicine, National Yang-Ming University, Taipei 11221, Taiwan Department of Family Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chien-An Yao
- National Taiwan University Hospital and College of Medicine, Taipei 10016, Taiwan
| | - Jyh-Chin Yang
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiang-Ting Chien
- Department of Planning, Ministry of Health and Welfare, Executive Yuan, Taipei 11558, Taiwan
| |
Collapse
|
24
|
Anti-inflammatory mechanism of polyunsaturated fatty acids in Helicobacter pylori-infected gastric epithelial cells. Mediators Inflamm 2014; 2014:128919. [PMID: 24987192 PMCID: PMC4060060 DOI: 10.1155/2014/128919] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/16/2014] [Indexed: 01/29/2023] Open
Abstract
Helicobacter pylori is an important risk factor for gastric inflammation, which is mediated by multiple signaling pathways. The aim of this study was to investigate the effects of polyunsaturated fatty acids (PUFAs), such as linoleic acid (LA), alpha-linolenic acid (ALA), and docosahexaenoic acid (DHA), on the expression of the proinflammatory chemokine interleukin-8 (IL-8) in H. pylori-infected gastric epithelial AGS cells. To investigate whether PUFAs modulate H. pylori-induced inflammatory signaling, we determined the activation of epidermal growth factor receptor (EGFR), protein kinase C-δ (PKC δ), mitogen-activated protein kinases (MAPKs), nuclear factor-kappa B (NF- κB), and activator protein-1 (AP-1) as well as IL-8 expression in H. pylori-infected gastric epithelial cells that had been treated with or without PUFAs. We found that PUFAs inhibited IL-8 mRNA and protein expression in H. pylori-infected cells. ω-3 fatty acids (ALA, and DHA) suppressed the activation of EGFR, PKC δ, MAPK, NF- κB, and AP-1 in these infected cells. LA did not prevent EGFR transactivation and exhibited a less potent inhibitory effect on IL-8 expression than did ALA and DHA. In conclusion, PUFAs may be beneficial for prevention of H. pylori-associated gastric inflammation by inhibiting proinflammatory IL-8 expression.
Collapse
|
25
|
ten Bruggencate SJM, Bovee-Oudenhoven IMJ, Feitsma AL, van Hoffen E, Schoterman MHC. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr Rev 2014; 72:377-89. [PMID: 24828428 DOI: 10.1111/nure.12106] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human milk is a rich source of oligosaccharides. Acidic oligosaccharides, such as sialyllactose (SL), contain sialic acid (SA) residues. In human milk, approximately 73% of SA is bound to oligosaccharides, whereas only 3% is present in free form. Oligosaccharides are highly resistant to hydrolysis in the gastrointestinal tract. Only a small portion of the available oligosaccharides in breast milk is absorbed in the neonatal small intestine. SL and sialylated oligosaccharides are thought to have significant health benefits for the neonate, because of their roles in supporting resistance to pathogens, gut maturation, immune function, and cognitive development. The need for SA to allow proper development during the neonatal period is thought to exceed the endogenous synthesis. Therefore, these structures are important nutrients for the neonate. Based on the potential benefits, SL and sialylated oligosaccharides may be interesting components for application in infant nutrition. Once the hurdle of limited availability of these oligosaccharides has been overcome, their functionality can be explored in more detail, and supplementation of infant formula may become feasible.
Collapse
|
26
|
Yang JC, Lu CW, Lin CJ. Treatment of Helicobacter pylori infection: current status and future concepts. World J Gastroenterol 2014; 20:5283-93. [PMID: 24833858 PMCID: PMC4017043 DOI: 10.3748/wjg.v20.i18.5283] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/28/2013] [Accepted: 01/19/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is highly associated with the occurrence of gastrointestinal diseases, including gastric inflammation, peptic ulcer, gastric cancer, and gastric mucosa-associated lymphoid-tissue lymphoma. Although alternative therapies, including phytomedicines and probiotics, have been used to improve eradication, current treatment still relies on a combination of antimicrobial agents, such as amoxicillin, clarithromycin, metronidazole, and levofloxacin, and antisecretory agents, such as proton pump inhibitors (PPIs). A standard triple therapy consisting of a PPI and two antibiotics (clarithromycin and amoxicillin/metronidazole) is widely used as the first-line regimen for treatment of infection, but the increased resistance of H. pylori to clarithromycin and metronidazole has significantly reduced the eradication rate using this therapy and bismuth-containing therapy or 10-d sequential therapy has therefore been proposed to replace standard triple therapy. Alternatively, levofloxacin-based triple therapy can be used as rescue therapy for H. pylori infection after failure of first-line therapy. The increase in resistance to antibiotics, including levofloxacin, may limit the applicability of such regimens. However, since resistance of H. pylori to amoxicillin is generally low, an optimized high dose dual therapy consisting of a PPI and amoxicillin can be an effective first-line or rescue therapy. In addition, the concomitant use of alternative medicine has the potential to provide additive or synergistic effects against H. pylori infection, though its efficacy needs to be verified in clinical studies.
Collapse
|
27
|
The possible roles of vitamin D and curcumin in treating gonorrhea. Med Hypotheses 2013; 81:131-5. [DOI: 10.1016/j.mehy.2013.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/01/2013] [Accepted: 04/08/2013] [Indexed: 11/21/2022]
|
28
|
Cozens D, Read RC. Anti-adhesion methods as novel therapeutics for bacterial infections. Expert Rev Anti Infect Ther 2013; 10:1457-68. [PMID: 23253323 DOI: 10.1586/eri.12.145] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anti-adhesion therapies for bacterial infections offer an alternative to antibiotics, with those therapies bacteria are not killed but are prevented from causing harm to a host by inhibiting adherence to host cells and tissues, a prerequisite for the majority of infectious diseases. The mechanisms of these potential therapeutic agents include inhibition of adhesins and their host receptors, vaccination with adhesins or analogs, use of probiotics and dietary supplements that interfere with receptor-adhesin interactions, subminimal inhibitory concentrations of antibiotics and manipulation of hydrophobic interactions. Once developed, these drugs will contribute to the arsenal for fighting infectious disease in the future, potentially subverting antibiotic resistance.
Collapse
Affiliation(s)
- Daniel Cozens
- Department of Infection & Immunity, K Floor, Royal Hallamshire Hospital, Sheffield School of Medicine & Biomedical Science, University of Sheffield, Sheffield, S10 3JF, UK
| | | |
Collapse
|
29
|
Catechins and Sialic Acid Attenuate Helicobacter pylori-Triggered Epithelial Caspase-1 Activity and Eradicate Helicobacter pylori Infection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:248585. [PMID: 23653660 PMCID: PMC3638598 DOI: 10.1155/2013/248585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/25/2013] [Accepted: 02/07/2013] [Indexed: 02/07/2023]
Abstract
The inflammasome/caspase-1 signaling pathway in immune cells plays a critical role in bacterial pathogenesis; however, the regulation of this pathway in the gastric epithelium during Helicobacter pylori infection is yet to be elucidated. Here, we investigated the effect of catechins (CAs), sialic acid (SA), or combination of CA and SA (CASA) on H. pylori-induced caspase-1-mediated epithelial damage, as well as H. pylori colonization in vitro (AGS cells) and in vivo (BALB/c mice). Our results indicate that the activity of caspase-1 and the expression of its downstream substrate IL-1β were upregulated in H. pylori-infected AGS cells. In addition, we observed increased oxidative stress, NADPH oxidase gp91phox, CD68, caspase-1/IL-1β, and apoptosis, but decreased autophagy, in the gastric mucosa of H. pylori-infected mice. We have further demonstrated that treatment with CASA led to synergistic anti-H. pylori activity and was more effective than treatment with CA or SA alone. In particular, treatment with CASA for 10 days eradicated H. pylori infection in up to 95% of H. pylori-infected mice. Taken together, we suggest that the pathogenesis of H. pylori involves a gastric epithelial inflammasome/caspase-1 signaling pathway, and our results show that CASA was able to attenuate this pathway and effectively eradicate H. pylori infection.
Collapse
|
30
|
Brown JC, Jiang X. Activities of muscadine grape skin and polyphenolic constituents against Helicobacter pylori. J Appl Microbiol 2013; 114:982-91. [PMID: 23294280 DOI: 10.1111/jam.12129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/13/2012] [Accepted: 12/20/2012] [Indexed: 12/30/2022]
Abstract
AIMS To identify active phenolic constituents in muscadine grape skin (MGS) extracts and determine interactions among compounds while further exploring their anti-Helicobacter pylori potential in vitro. METHODS AND RESULTS The inhibitory effects of quercetin and resveratrol, active polyphenols identified in MGS extracts, against H. pylori were investigated. Quercetin and resveratrol significantly (P < 0.05) reduced H. pylori counts regardless of pH with minimal bactericidal concentrations of 256 and 128 μg ml(-1), respectively. MGS extracts displayed the highest efficacy, suggesting additional unidentified compounds not determined in this study. Time-course viability experiments showed a dose-dependent anti-H. pylori response to quercetin and resveratrol. Interestingly, neither quercetin nor resveratrol affected H. pylori outer membrane (OM) integrity as determined by 1-N-phenylnaphthylamine (NPN) uptake assays. However, treatment with MGS extract did increase NPN uptake, indicating OM destabilization possibly by additional unknown components. Furthermore, quercetin was found to enter H. pylori as measured by HPLC supporting intracellular drug accumulation. CONCLUSIONS Quercetin and resveratrol possess strong anti-H. pylori activity in vitro and are independent of pH. Our results also suggest that these compounds do not affect H. pylori OM integrity as previously hypothesized and that the primary antimicrobial activity of quercetin may be linked to interactions with intracellular components. SIGNIFICANCE AND IMPACT OF THE STUDY The anti-H. pylori effects of quercetin and resveratrol suggest that these compounds may be useful in the dietary prevention and/or treatment of H. pylori infection.
Collapse
Affiliation(s)
- J C Brown
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
31
|
Yu CC, Yang JC, Chang YC, Chuang JG, Lin CW, Wu MS, Chow LP. VCP phosphorylation-dependent interaction partners prevent apoptosis in Helicobacter pylori-infected gastric epithelial cells. PLoS One 2013; 8:e55724. [PMID: 23383273 PMCID: PMC3561343 DOI: 10.1371/journal.pone.0055724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/29/2012] [Indexed: 12/26/2022] Open
Abstract
Previous studies have demonstrated that valosin-containing protein (VCP) is associated with H. pylori-induced gastric carcinogenesis. By identifying the interactome of VCP overexpressed in AGS cells using a subtractive proteomics approach, we aimed to characterize the cellular responses mediated by VCP and its functional roles in H. pylori-associated gastric cancer. VCP immunoprecipitations followed by proteomic analysis identified 288 putative interacting proteins, 18 VCP-binding proteins belonged to the PI3K/Akt signaling pathway. H. pylori infection increased the interaction between Akt and VCP, Akt-dependent phosphorylation of VCP, levels of ubiquitinated proteins, and aggresome formation in AGS cells. Furthermore, phosphorylated VCP co-localized with the aggresome, bound ubiquitinated proteins, and increased the degradation of cellular regulators to protect H. pylori-infected AGS cells from apoptosis. Our study demonstrates that VCP phosphorylation following H. pylori infection promotes both gastric epithelial cell survival, mediated by the PI3K/Akt pathway, and the degradation of cellular regulators. These findings provide novel insights into the mechanisms of H. pylori infection induced gastric carcinogenesis.
Collapse
Affiliation(s)
- Cheng-Chou Yu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jyh-Chin Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ching Chang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiing-Guang Chuang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Wu Lin
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
32
|
Welsh J. Cellular and molecular effects of vitamin D on carcinogenesis. Arch Biochem Biophys 2012; 523:107-14. [PMID: 22085499 PMCID: PMC3295909 DOI: 10.1016/j.abb.2011.10.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/31/2011] [Indexed: 12/12/2022]
Abstract
Epidemiologic data suggest that the incidence and severity of many types of cancer inversely correlates with indices of vitamin D status. The vitamin D receptor (VDR) is highly expressed in epithelial cells at risk for carcinogenesis including those resident in skin, breast, prostate and colon, providing a direct molecular link by which vitamin D status impacts on carcinogenesis. Consistent with this concept, activation of VDR by its ligand 1,25-dihydroxyvitamin D (1,25D) triggers comprehensive genomic changes in epithelial cells that contribute to maintenance of the differentiated phenotype, resistance to cellular stresses and protection of the genome. Many epithelial cells also express the vitamin D metabolizing enzyme CYP27B1 which enables autocrine generation of 1,25D from the circulating vitamin D metabolite 25-hydroxyvitamin D (25D), critically linking overall vitamin D status with cellular anti-tumor actions. Furthermore, pre-clinical studies in animal models has demonstrated that dietary supplementation with vitamin D or chronic treatment with VDR agonists decreases tumor development in skin, colon, prostate and breast. Conversely, deletion of the VDR gene in mice alters the balance between proliferation and apoptosis, increases oxidative DNA damage, and enhances susceptibility to carcinogenesis in these tissues. Because VDR expression is retained in many human tumors, vitamin D status may be an important modulator of cancer progression in persons living with cancer. Collectively, these observations have reinforced the need to further define the molecular actions of the VDR and the human requirement for vitamin D in relation to cancer development and progression.
Collapse
Affiliation(s)
- JoEllen Welsh
- Cancer Research Center, University at Albany, Rensselaer, NY 12144, USA.
| |
Collapse
|
33
|
Lawal TO, Adeniyi BA, Moody JO, Mahady GB. Combination Studies of Eucalyptus torelliana F. Muell. Leaf Extracts and Clarithromycin on Helicobacter pylori. Phytother Res 2012; 26:1393-8. [DOI: 10.1002/ptr.3719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 10/06/2011] [Accepted: 11/02/2011] [Indexed: 01/15/2023]
Affiliation(s)
- Temitope O. Lawal
- Department of Pharmaceutical Microbiology; University of Ibadan; Ibadan; Nigeria
| | - Bolanle A. Adeniyi
- Department of Pharmaceutical Microbiology; University of Ibadan; Ibadan; Nigeria
| | - Jones O. Moody
- Department of Pharmacognosy; University of Ibadan; Ibadan; Nigeria
| | - Gail B. Mahady
- Department of Pharmacy Practice, PAHO/WHO Collaborating Centre for Traditional Medicine, College of Pharmacy; University of Illinois Chicago; Illinois; 60612; USA
| |
Collapse
|
34
|
Abstract
A wealth of scientific evidence supports a role for vitamin D in decreasing colorectal cancer incidence, and possibly mortality. This reduction in risk is related to inhibition of cellular proliferation and stimulation of differentiation. The minimal amount and duration needed to bring about these effects necessitate additional studies. Furthermore, a critical evaluation of physiologically relevant biomarkers of vitamin D status, including 25-hydroxyvitamin D, is needed. Several dietary components and the balance between energy intake and expenditure influence vitamin D metabolism. Scientists need to identify confounders and modifiers of the biological response to vitamin D, including dietary factors, lifestyle factors such as exercise, race or ethnicity, and genetic background.
Collapse
Affiliation(s)
- Cindy D Davis
- Nutritional Sciences Research Group, Division of Cancer Prevention, National Cancer Institute, 6130 Executive Blvd, Suite 3159, MSC 7328, Rockville, MD 20892-7328, USA.
| | | |
Collapse
|
35
|
Kim SY, Kwon WJ, Kang SM. The Antibiotic Effect of Acetic acid on Helicobacter pylori. ACTA ACUST UNITED AC 2010. [DOI: 10.3839/jabc.2010.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Rheem DS, Baylink DJ, Olafsson S, Jackson CS, Walter MH. Prevention of colorectal cancer with vitamin D. Scand J Gastroenterol 2010; 45:775-84. [PMID: 20367197 DOI: 10.3109/00365521003734125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The fact that colorectal cancer (CRC) is the second leading cause of cancer mortality in the United States emphasizes the need for more effective preventive and therapeutic modalities. There is growing evidence that vitamin D may reduce the incidence of CRC. Results of epidemiologic, in vitro, in vivo animal and clinical studies suggest that a low serum vitamin D level may be a serious risk factor for CRC and a high serum vitamin D level may reduce the risk of CRC. On a molecular level, vitamin D suppresses CRC development and growth by affecting cell proliferation, differentiation, apoptosis, and angiogenesis. Vitamin D insufficiency and CRC are common in the elderly population. Vitamin D insufficiency is simple to screen for and treatable with vitamin D supplementation. Serum 25-hydroxyvitamin D (calcidiol) is the best measure of vitamin D status and should be checked routinely for individuals with risk factors for CRC. Maintaining serum concentrations of calcidiol above 32 ng/ml (80 nmol/l) in individuals whose serum calcidiol level is low may help prevent CRC as well as osteoporosis, fractures, infections, and cardiovascular disease. Daily calcidiol intake of 1000 International Units can increase serum vitamin D to sufficient levels in most elderly persons and, based on available data, may substantially lower the incidence of CRC with minimal risks.
Collapse
Affiliation(s)
- Dae S Rheem
- Department of Gastroenterology, Loma Linda University Medical Center, Loma Linda 92354, USA
| | | | | | | | | |
Collapse
|
37
|
Marinangeli CPF, Jones PJH. Functional food ingredients as adjunctive therapies to pharmacotherapy for treating disorders of metabolic syndrome. Ann Med 2010; 42:317-33. [PMID: 20486826 DOI: 10.3109/07853890.2010.484026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract Information regarding the use of functional foods and nutraceuticals (FFN) in combating disease is rarely communicated to health care practitioners as medicinal strategies for patients. Metabolic syndrome (MetS) is an ideal paradigm for demonstrating the therapeutic properties of FFN. Encompassing multiple etiologies, including atherogenic dyslipidemia, insulin resistance, and hypertension, MetS affects over a third of American adults. However, as disease-related risk factors accumulate over time, guidelines for treating disorders of MetS progressively de-emphasize the use of FFN. Using marine omega-3 fatty acids, plant sterols, fiber, and tomato extract as examples, the purpose of this review is to endorse FFN as long-term adjunctive therapies to pharmaceutical treatment for disorders and risk factors for MetS. An additional goal is to compare physiological and molecular targets of FFN against corresponding prescription medications. Results reveal that FFN are viable treatment strategies for disorders of MetS, complementing pharmacological interventions by targeting and improving the biological processes that foster the development of disease. Thus, efficacious FFN therapies should be emphasized throughout all stages of treatment as adjuncts to pharmacotherapy for disorders of MetS. Accordingly, new developments in FFN research must be implemented into clinical guidelines with the prospect of improving disease prognoses as accessories to prescription medications.
Collapse
Affiliation(s)
- Christopher P F Marinangeli
- The Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | | |
Collapse
|
38
|
Pastene E, Speisky H, García A, Moreno J, Troncoso M, Figueroa G. In vitro and in vivo effects of apple peel polyphenols against Helicobacter pylori. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7172-7179. [PMID: 20486708 DOI: 10.1021/jf100274g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The inhibitory effects of a standarized apple peel polyphenol-rich extract (APPE) against Helicobacter pylori infection and vacuolating bacterial toxin (VacA) induced vacuolation were investigated. Apple peel polyphenols significantly prevented vacuolation in HeLa cells with an IC(50) value of 390 microg of gallic acid equivalents (GAE)/mL. APPE also displayed an in vitro antiadhesive effect against H. pylori. A significant inhibition was observed with a 20-60% reduction of H. pylori attachment at concentrations between 0.250 and 5 mg of GAE/mL. In a short-term infection model (C57BL6/J mice), two levels of APPE doses (150 and 300 mg/kg/day) showed an inhibitory effect on H. pylori attachment. Orally administered apple peel polyphenols also showed an anti-inflammatory effect on H. pylori-associated gastritis, lowering malondialdehyde levels and gastritis scores.
Collapse
Affiliation(s)
- Edgar Pastene
- Laboratory of Pharmacognosy, Department of Pharmacy, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
BACKGROUND Within the framework of Codex Alimentarius, attempts are being made at international level to establish guidelines for use of nutrition and health claims. An important issue that has to be addressed is the process of scientific substantiating of claims on foods. OBJECTIVE To provide an insight into the current step procedure of the proposed draft recommendations on the scientific basis of health claims. These Codex recommendations are intended to facilitate governments' own evaluation of health claims made by the industry. METHODS Review of comments of governments, observers and non-governmental organizations (NGOs) and relevant references to the proposed draft recommendations of the last sessions of the Codex Committee on Nutrition and Food for Special Dietary Uses (CCNFSDU). A literature search was performed using the PubMed database. RESULTS/CONCLUSIONS Several proposed draft recommendations on the scientific substantiation of health claims have been considered and amended by the CCNFSDU in recent years but the work is not yet complete. The current work draws on the work of FUFOSE and PASSCLAIM and also on that of WHO and FDA. Given the important role of Codex in food safety, the draft recommendations emphasize circumstances where additional evaluation of safety or nutritional safety needs to be considered. High quality human intervention studies are the prime evidence needed to substantiate claims but there is recognition that, in some cases, only observational studies may be available. Animal and in vitro studies will also be evaluated as part of the totality of the evidence. It has been suggested that the recommendations should include re-evaluation of claims after a certain time period, or if new evidence calls into question the scientific validity underpinning the claims. Setting out a common approach for the substantiation of health claims is an important step in the use of health claims around the world. There is a need to reflect emerging as well as consensus science. The substantiating evidence should be proportionate to the claim. Further progress in the elaboration of this relevant Codex text is needed to reach consensus.
Collapse
Affiliation(s)
- Rolf Grossklaus
- Federal Institute for Risk Assessment, Thielallee 88-92, 14198, Berlin, Germany
| |
Collapse
|
40
|
Schauer R. Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 2009; 19:507-14. [PMID: 19699080 PMCID: PMC7127376 DOI: 10.1016/j.sbi.2009.06.003] [Citation(s) in RCA: 517] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 05/20/2009] [Accepted: 06/24/2009] [Indexed: 12/16/2022]
Abstract
The wide occurrence of sialic acids (Sia) in various chemical forms linked as monomers or polymers in an outstanding position in a multitude of complex carbohydrates of animals and microorganisms renders them as most versatile function modulators in cell biology and pathology. A survey is presented of recent advances in the study of the influences that Sias have as bulky hydrophilic and electronegatively charged monosaccharides on animal cells and on their interaction with microorganisms. Some highlights are: sialylation leads to increased anti-inflammatory activity of IgG antibodies, facilitates the escape of microorganisms from the host's immune system, and in polymeric form is involved in the regulation of embryogenesis and neuronal growth and function. The role of siglecs in immunoregulation, the dynamics of lymphocyte binding to selectins and the interactions of toxins, viruses, and other microorganisms with the host's Sia are now better understood. N-Glycolylneuraminic acid from food is antigenic in man and seems to have pathogenic potential. Sia O-acetylation mediated by various eukaryotic and prokaryotic O-acetyltransferases modulates the affinity of these monosaccharides to mammalian and microbial receptors and hinders apoptosis. The functionally versatile O-acetylated ganglioside GD3 is an onco-fetal antigen.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität, Olshausenstr. 40, D-24098 Kiel, Germany.
| |
Collapse
|
41
|
Prevention of colorectal cancer by combining early detection and chemoprevention. CURRENT COLORECTAL CANCER REPORTS 2009. [DOI: 10.1007/s11888-009-0008-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|