1
|
Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res 2021; 70:29-49. [PMID: 33231704 PMCID: PMC7684853 DOI: 10.1007/s00011-020-01425-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
AIM AND OBJECTIVE Emerging translational evidence suggests that epigenetic alterations (DNA methylation, miRNA expression, and histone modifications) occur after external stimuli and may contribute to exacerbated inflammation and the risk of suffering several diseases including diabetes, cardiovascular diseases, cancer, and neurological disorders. This review summarizes the current knowledge about the harmful effects of high-fat/high-sugar diets, micronutrient deficiencies (folate, manganese, and carotenoids), obesity and associated complications, bacterial/viral infections, smoking, excessive alcohol consumption, sleep deprivation, chronic stress, air pollution, and chemical exposure on inflammation through epigenetic mechanisms. Additionally, the epigenetic phenomena underlying the anti-inflammatory potential of caloric restriction, n-3 PUFA, Mediterranean diet, vitamin D, zinc, polyphenols (i.e., resveratrol, gallic acid, epicatechin, luteolin, curcumin), and the role of systematic exercise are discussed. METHODS Original and review articles encompassing epigenetics and inflammation were screened from major databases (including PubMed, Medline, Science Direct, Scopus, etc.) and analyzed for the writing of the review paper. CONCLUSION Although caution should be exercised, research on epigenetic mechanisms is contributing to understand pathological processes involving inflammatory responses, the prediction of disease risk based on the epigenotype, as well as the putative design of therapeutic interventions targeting the epigenome.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain.
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Madrid, Spain
| |
Collapse
|
2
|
Mau T, Eckley SS, Bergin IL, Saund K, Villano JS, Vendrov KC, Snitkin ES, Young VB, Yung R. Outbreak of Murine Infection with Clostridium difficile Associated with the Administration of a Pre- and Perinatal Methyl Donor Diet. mSphere 2019; 4:e00138-19. [PMID: 30894434 PMCID: PMC6429045 DOI: 10.1128/mspheredirect.00138-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Between October 2016 and June 2017, a C57BL/6J mouse colony that was undergoing a pre- and perinatal methyl donor supplementation diet intervention to study the impact of parental nutrition on offspring susceptibility to disease was found to suffer from an epizootic of unexpected deaths. Necropsy revealed the presence of severe colitis, and further investigation linked these outbreak deaths to a Clostridium difficile strain of ribotype 027 that we term 16N203. C. difficile infection (CDI) is associated with antibiotic use in humans. Current murine models of CDI rely on antibiotic pretreatment to establish clinical phenotypes. In this report, the C. difficile outbreak occurs in F1 mice linked to alterations in the parental diet. The diagnosis of CDI in the affected mice was confirmed by cecal/colonic histopathology, the presence of C. difficile bacteria in fecal/colonic culture, and detection of C. difficile toxins. F1 mice from parents fed the methyl supplementation diet also had significantly reduced survival (P < 0.0001) compared with F1 mice from parents fed the control diet. When we tested the 16N203 outbreak strain in an established mouse model of antibiotic-induced CDI, we confirmed that this strain is pathogenic. Our serendipitous observations from this spontaneous outbreak of C. difficile in association with a pre- and perinatal methyl donor diet suggest the important role that diet may play in host defense and CDI risk factors.IMPORTANCEClostridium difficile infection (CDI) has become the leading cause of infectious diarrhea in hospitals worldwide, owing its preeminence to the emergence of hyperendemic strains, such as ribotype 027 (RT027). A major CDI risk factor is antibiotic exposure, which alters gut microbiota, resulting in the loss of colonization resistance. Current murine models of CDI also depend on pretreatment of animals with antibiotics to establish disease. The outbreak that we report here is unique in that the CDI occurred in mice with no antibiotic exposure and is associated with a pre- and perinatal methyl supplementation donor diet intervention study. Our investigation subsequently reveals that the outbreak strain that we term 16N203 is an RT027 strain, and this isolated strain is also pathogenic in an established murine model of CDI (with antibiotics). Our report of this spontaneous outbreak offers additional insight into the importance of environmental factors, such as diet, and CDI susceptibility.
Collapse
Affiliation(s)
- Theresa Mau
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Samantha S Eckley
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- In-Vivo Animal Core, University of Michigan, Ann Arbor, Michigan, USA
| | - Katie Saund
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S Villano
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kimberly C Vendrov
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Evan S Snitkin
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Raymond Yung
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Geriatric Research, Education, and Clinical Care Center, VA Ann Arbor Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Rychlik KA, Sillé FCM. Environmental exposures during pregnancy: Mechanistic effects on immunity. Birth Defects Res 2019; 111:178-196. [PMID: 30708400 DOI: 10.1002/bdr2.1469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
In human studies, it is well established that exposures during embryonic and fetal development periods can influence immune health. Coupled with genetic predisposition, these exposures can alter lifetime chronic and infectious disease trajectory, and, ultimately, life expectancy. Fortunately, as research advances, mechanisms governing long-term effects of prenatal exposures are coming to light and providing the opportunity for intervention and risk reduction. For instance, human association studies have provided a foundation for the association of prenatal exposure to particulate matter with early immunosuppression and later allergic disease in the offspring. Only recently, the mechanisms mediating this response have been revealed and there is much we have yet to discover. Although cellular immune response is understood for many exposure scenarios, molecular pathways are still unidentified. This review will provide commentary and synthesis of the current literature regarding environmental exposures during pregnancy and mechanisms determining immune outcomes. Shared mechanistic features and current gaps in the state of the science are identified and discussed. To such purpose, we address exposures by their immune effect type: immunosuppression, autoimmunity, inflammation and tissue damage, hypersensitivity, and general immunomodulation.
Collapse
Affiliation(s)
- Kristal A Rychlik
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
4
|
Eyring KR, Pedersen BS, Maclean KN, Stabler SP, Yang IV, Schwartz DA. Methylene-tetrahydrofolate reductase contributes to allergic airway disease. PLoS One 2018; 13:e0190916. [PMID: 29329322 PMCID: PMC5766142 DOI: 10.1371/journal.pone.0190916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 12/22/2017] [Indexed: 12/01/2022] Open
Abstract
Rationale Environmental exposures strongly influence the development and progression of asthma. We have previously demonstrated that mice exposed to a diet enriched with methyl donors during vulnerable periods of fetal development can enhance the heritable risk of allergic airway disease through epigenetic changes. There is conflicting evidence on the role of folate (one of the primary methyl donors) in modifying allergic airway disease. Objectives We hypothesized that blocking folate metabolism through the loss of methylene-tetrahydrofolate reductase (Mthfr) activity would reduce the allergic airway disease phenotype through epigenetic mechanisms. Methods Allergic airway disease was induced in C57BL/6 and C57BL/6Mthfr-/- mice through house dust mite (HDM) exposure. Airway inflammation and airway hyperresponsiveness (AHR) were measured between the two groups. Gene expression and methylation profiles were generated for whole lung tissue. Disease and molecular outcomes were evaluated in C57BL/6 and C57BL/6Mthfr-/- mice supplemented with betaine. Measurements and main results Loss of Mthfr alters single carbon metabolite levels in the lung and serum including elevated homocysteine and cystathionine and reduced methionine. HDM-treated C57BL/6Mthfr-/- mice demonstrated significantly less airway hyperreactivity (AHR) compared to HDM-treated C57BL/6 mice. Furthermore, HDM-treated C57BL/6Mthfr-/- mice compared to HDM-treated C57BL/6 mice have reduced whole lung lavage (WLL) cellularity, eosinophilia, and Il-4/Il-5 cytokine concentrations. Betaine supplementation reversed parts of the HDM-induced allergic airway disease that are modified by Mthfr loss. 737 genes are differentially expressed and 146 regions are differentially methylated in lung tissue from HDM-treated C57BL/6Mthfr-/- mice and HDM-treated C57BL/6 mice. Additionally, analysis of methylation/expression relationships identified 503 significant correlations. Conclusion Collectively, these findings indicate that the loss of folate as a methyl donor is a modifier of allergic airway disease, and that epigenetic and expression changes correlate with this modification. Further investigation into the mechanisms that drive this observation is warranted.
Collapse
Affiliation(s)
- Kenneth R. Eyring
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, United States of America
| | - Brent S. Pedersen
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, United States of America
| | - Kenneth N. Maclean
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, United States of America
| | - Sally P. Stabler
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, United States of America
| | - Ivana V. Yang
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, United States of America
| | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, United States of America
- Department of Immunology, School of Medicine, University of Colorado, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
5
|
Smith BL, Reyes TM. Offspring neuroimmune consequences of maternal malnutrition: Potential mechanism for behavioral impairments that underlie metabolic and neurodevelopmental disorders. Front Neuroendocrinol 2017; 47:109-122. [PMID: 28736323 PMCID: PMC8600507 DOI: 10.1016/j.yfrne.2017.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022]
Abstract
Maternal malnutrition significantly increases offspring risk for both metabolic and neurodevelopmental disorders. Animal models of maternal malnutrition have identified behavioral changes in the adult offspring related to executive function and reward processing. Together, these changes in executive and reward-based behaviors likely contribute to the etiology of both metabolic and neurodevelopmental disorders associated with maternal malnutrition. Concomitant with the behavioral effects, maternal malnutrition alters offspring expression of reward-related molecules and inflammatory signals in brain pathways that control executive function and reward. Neuroimmune pathways and microglial interactions in these specific brain circuits, either in early development or later in adulthood, could directly contribute to the maternal malnutrition-induced behavioral phenotypes. Understanding these mechanisms will help advance treatment strategies for metabolic and neurodevelopmental disorders, especially noninvasive dietary supplementation interventions.
Collapse
Affiliation(s)
- B L Smith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati OH, USA
| | - T M Reyes
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati OH, USA.
| |
Collapse
|
6
|
Abstract
Pyrosequencing is a technique that uses a sequencing-by-synthesis system which is designed to quantify single-nucleotide polymorphisms (SNPs). Artificial C/T SNP creation via bisulfite modification permits measurement of DNA methylation locally and globally in real time. Alteration in DNA methylation has been implicated in aging, as well as aging-related conditions such as cancer, as well as cardiovascular, neurodegenerative, and autoimmune diseases. Considering its ubiquitous presence in divergent clinical pathologies, quantitative analysis of DNA CpG methylation both globally and at individual genes helps to elucidate the regulation of genes involved in pathophysiological conditions. The ability to detect and quantify the methylation pattern of DNA has the potential to serve as an early detection marker and potential drug target for several diseases. Here, we provide a detailed technical protocol for pyrosequencing supplemented by critical information about assay design and nuances of the system that provides a strong foundation for beginners in the field.
Collapse
Affiliation(s)
- Colin Delaney
- Department of Internal Medicine, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Sanjay K Garg
- Department of Internal Medicine, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Raymond Yung
- Department of Internal Medicine, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
O'Neill RJ, Vrana PB, Rosenfeld CS. Maternal methyl supplemented diets and effects on offspring health. Front Genet 2014; 5:289. [PMID: 25206362 PMCID: PMC4143751 DOI: 10.3389/fgene.2014.00289] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022] Open
Abstract
Women seeking to become pregnant and pregnant women are currently advised to consume high amounts of folic acid and other methyl donors to prevent neural tube defects in their offspring. These diets can alter methylation patterns of several biomolecules, including nucleic acids, and histone proteins. Limited animal model data suggests that developmental exposure to these maternal methyl supplemented (MS) diets leads to beneficial epimutations. However, other rodent and humans studies have yielded opposing findings with such diets leading to promiscuous epimutations that are likely associated with negative health outcomes. Conflict exists to whether these maternal diets are preventative or exacerbate the risk for Autism Spectrum Disorders (ASD) in children. This review will discuss the findings to date on the potential beneficial and aversive effects of maternal MS diets. We will also consider how other factors might influence the effects of MS diets. Current data suggest that there is cause for concern as maternal MS diets may lead to epimutations that underpin various diseases, including neurobehavioral disorders. Further studies are needed to explore the comprehensive effects maternal MS diets have on the offspring epigenome and subsequent overall health.
Collapse
Affiliation(s)
- Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA ; Institute for Systems Genomics, University of Connecticut Storrs, CT, USA
| | - Paul B Vrana
- Peromyscus Genetic Stock Center, University of South Carolina Columbia, SC, USA ; Department of Biological Sciences, University of South Carolina Columbia, SC, USA
| | - Cheryl S Rosenfeld
- Department of Biomedical Sciences, Bond Life Sciences Center, University of Missouri Columbia, MO, USA ; Bond Life Sciences Center, University of Missouri Columbia, MO, USA ; Genetics Area Program Faculty Member, Bond Life Sciences Center, University of Missouri Columbia, MO, USA
| |
Collapse
|
8
|
Garg SK, Delaney C, Toubai T, Ghosh A, Reddy P, Banerjee R, Yung R. Aging is associated with increased regulatory T-cell function. Aging Cell 2014; 13:441-8. [PMID: 24325345 PMCID: PMC4032602 DOI: 10.1111/acel.12191] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2013] [Indexed: 12/13/2022] Open
Abstract
Regulatory T-cell (Treg, CD4(+) CD25(+)) dysfunction is suspected to play a key role in immune senescence and contributes to increased susceptibility to diseases with age by suppressing T-cell responses. FoxP3 is a master regulator of Treg function, and its expression is under control of several epigenetically labile promoters and enhancers. Demethylation of CpG sites within these regions is associated with increased FoxP3 expression and development of a suppressive phenotype. We examined differences in FoxP3 expression between young (3-4 months) and aged (18-20 months) C57BL/6 mice. DNA from CD4(+) T cells is hypomethylated in aged mice, which also exhibit increased Treg numbers and FoxP3 expression. Additionally, Treg from aged mice also have greater ability to suppress effector T-cell (Teff) proliferation in vitro than Tregs from young mice. Tregs from aged mice exhibit greater redox remodeling-mediated suppression of Teff proliferation during coculture with DCs by decreasing extracellular cysteine availability to a greater extent than Tregs from young mice, creating an adverse environment for Teff proliferation. Tregs from aged mice produce higher IL-10 levels and suppress CD86 expression on DCs more strongly than Tregs from young mice, suggesting decreased T-cell activity. Taken together, these results reveal a potential mechanism of higher Treg-mediated activity that may contribute to increased immune suppression with age.
Collapse
Affiliation(s)
- Sanjay K Garg
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
| | - Colin Delaney
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
| | - Tomomi Toubai
- Division of Hematology and Oncology, Department of Internal MedicineAnn Arbor, MI-48109, USA
| | - Amiya Ghosh
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
| | - Pavan Reddy
- Division of Hematology and Oncology, Department of Internal MedicineAnn Arbor, MI-48109, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical SchoolAnn Arbor, MI-48109, USA
| | - Raymond Yung
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
- Geriatrics Research, Education and Clinical Care Center (GRECC), VA Ann Arbor Healthcare System, 2215 Fuller RoadAnn Arbor, MI-48105, USA
| |
Collapse
|
9
|
Abstract
Adipose tissue historically was believed to be an inert tissue, functioning primarily in the storage of energy and thermal homeostasis. However, recent discoveries point toward a critical role for adipocytes in endocrine function as well as immune regulation. Excess body fat, accumulated through aging and/or a calorie-rich diet, is associated with many chronic metabolic and inflammatory diseases. Within the stromal vascular fraction of adipose tissue, macrophages and T cells accumulate with increasing tissue mass, secreting pro- or anti-inflammatory cytokines. In this review we discuss the current understanding of immune cell function in both diet-induced and age-related obesity. In both models of obesity, the classically activated, pro-inflammatory (M1) subtype takes precedence over the alternatively activated, anti-inflammatory (M2) macrophages, causing tissue necrosis and releasing pro-inflammatory cytokines like interleukin-6. Other distinct adipose tissue macrophage subtypes have been identified by surface marker expression and their functions characterized. Adipose tissue T cell recruitment to adipose tissue is also different between aging- and diet-induced obesity. Under both conditions, T cells exhibit restricted T-cell receptor diversity and produce higher levels of pro-inflammatory signals like interferon-γ and granzyme B relative to young or healthy mice. However, numbers of regulatory T cells are dramatically different between the 2 models of obesity. Taken together, these findings suggest models of age- and diet-induced obesity may be more distinct than previously thought, with many questions yet to be resolved in this multidimensional disease.
Collapse
Affiliation(s)
- Sanjay K Garg
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Colin Delaney
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Hang Shi
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Raymond Yung
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
10
|
Strickland FM, Hewagama A, Wu A, Sawalha AH, Delaney C, Hoeltzel MF, Yung R, Johnson K, Mickelson B, Richardson BC. Diet influences expression of autoimmune-associated genes and disease severity by epigenetic mechanisms in a transgenic mouse model of lupus. ARTHRITIS AND RHEUMATISM 2013; 65:1872-81. [PMID: 23576011 PMCID: PMC3735138 DOI: 10.1002/art.37967] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/02/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Lupus flares occur when genetically predisposed individuals encounter appropriate environmental agents. Current evidence indicates that the environment contributes by inhibiting T cell DNA methylation, causing overexpression of normally silenced genes. DNA methylation depends on both dietary transmethylation micronutrients and ERK-regulated DNA methyltransferase 1 (DNMT-1) levels. We used transgenic mice to study the effect of interactions between diet, DNMT-1 levels, and genetic predisposition on the development and severity of lupus. METHODS A doxycycline-inducible ERK defect was bred into lupus-resistant (C57BL/6) and lupus-susceptible (C57BL/6 × SJL) mouse strains. Doxycycline-treated mice were fed a standard commercial diet for 18 weeks and then switched to a transmethylation micronutrient-supplemented (MS) or -restricted (MR) diet. Disease severity was assessed by examining anti-double-stranded DNA (anti-dsDNA) antibody levels, the presence of proteinuria and hematuria, and by histopathologic analysis of kidney tissues. Pyrosequencing was used to determine micronutrient effects on DNA methylation. RESULTS Doxycycline induced modest levels of anti-dsDNA antibodies in C57BL/6 mice and higher levels in C57BL/6 × SJL mice. Doxycycline-treated C57BL/6 × SJL mice developed hematuria and glomerulonephritis on the MR and standard diets but not the MS diet. In contrast, C57BL/6 mice developed kidney disease only on the MR diet. Decreasing ERK signaling and methyl donors also caused demethylation and overexpression of the CD40lg gene in female mice, consistent with demethylation of the second X chromosome. Both the dietary methyl donor content and the duration of treatment influenced methylation and expression of the CD40lg gene. CONCLUSION Dietary micronutrients that affect DNA methylation can exacerbate or ameliorate disease in this transgenic murine lupus model, and contribute to lupus susceptibility and severity through genetic-epigenetic interactions.
Collapse
|
11
|
Delaney C, Garg SK, Fernandes C, Hoeltzel M, Allen RH, Stabler S, Yung R. Maternal diet supplemented with methyl-donors protects against atherosclerosis in F1 ApoE(-/-) mice. PLoS One 2013; 8:e56253. [PMID: 23437105 PMCID: PMC3578836 DOI: 10.1371/journal.pone.0056253] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/07/2013] [Indexed: 01/05/2023] Open
Abstract
Atherosclerosis is an inflammatory condition of the arterial wall mediated by cells of both innate and adaptive immunity. T lymphocytes play an important role in orchestrating the pathogenic immune response involved in the acceleration of atherosclerosis. Previously, we have shown that a prenatal methyl-donor supplementation diet (MS), when fed to dams during pregnancy and lactation, decreased the T cell-mediated pro-inflammatory cytokine and chemokine response in F1 mice. In the current study, we report feeding Apolipoprotein E (ApoE−/−) deficient dams with the MS diet during pregnancy reduces atherosclerotic plaques in F1 mice that were fed high fat diet (HFD) after weaning. F1 mice from dams on the MS diet exhibited increased global T cell DNA methylation. T-cell chemokines and their receptors (in particular CCR2, CCR5, and CXCR3) play important roles in the inflammatory cell recruitment to vascular lesions. MS diet significantly reduced Ccr2 mRNA and protein expression in CD3+ T cells but not in CD11b+ monocytes in MS F1 mice relative to controls. F1 litter size, HFD consumption, body weight, and body fat were similar between control and MS diet groups. Moreover, serum thiol metabolite levels were similar between the two groups. However, MS diet is associated with significantly higher serum HDL and lower LDL+VLDL levels in comparison to F1 mice from dams on the control diet. Inflammatory cytokines (IL-17, TNF-α, IL-6) were also lower in MS F1 mice serum and conditioned media from T-cell culture. Altogether, these data suggest that the MS diet ameliorates development of atherosclerosis by inhibiting the T-cell Ccr2 expression, reducing inflammatory cytokines production and increasing serum HDL:LDL ratio.
Collapse
Affiliation(s)
- Colin Delaney
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sanjay K. Garg
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Chris Fernandes
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mark Hoeltzel
- Department of Pediatrics, Children’s Mercy Hospitals and Clinics, Kansas City, Missouri, United States of America
| | - Robert H. Allen
- University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Sally Stabler
- University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Raymond Yung
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
12
|
Lupu DS, Tint D, Niculescu MD. Perinatal epigenetic determinants of cognitive and metabolic disorders. Aging Dis 2012; 3:444-453. [PMID: 23251850 PMCID: PMC3522511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 09/19/2012] [Accepted: 09/19/2012] [Indexed: 06/01/2023] Open
Abstract
Multiple cues from the environment of our indirect and immediate ancestors, which often persist throughout the prenatal period and adulthood, are shaping our phenotypes through either direct, parent-to-child influences, or transgenerational inheritance. These effects are due to gene-environment interactions, which are intended to be a predictive tool and a mechanism of quick adaptation to the environment, as compared with genetic variations that are inherited over many generations. In certain circumstances the influences induced by the gene-environment interactions can have deleterious effects upon the health status, in the context of a radical change in the environment that does not fit with the predicted conditions, via epigenetic alterations. Conversely the best fit to the expected environment might have a delayed aging process and a longer life span. This review will touch upon the Developmental Origins of Health and Disease (DoHAD) concept, while discussing recent advances in the understanding of metabolic and cognitive disruptions, with a focus on epigenetic factors, their transgenerational effects, and the consequences they might have upon the onset of chronic disease and premature exitus.
Collapse
Affiliation(s)
- Daniel S. Lupu
- UNC Nutrition Research Institute, Department of Nutrition, University of
North Carolina at Chapel Hill, Kannapolis, NC, U.S.A
| | - Diana Tint
- School of Medicine, Transilvania University in Brasov, Brasov, Romania
| | - Mihai D. Niculescu
- UNC Nutrition Research Institute, Department of Nutrition, University of
North Carolina at Chapel Hill, Kannapolis, NC, U.S.A
| |
Collapse
|