1
|
Pucci M, Akıllıoğlu HG, Bevilacqua M, Abate G, Lund MN. Investigation of Maillard reaction products in plant-based milk alternatives. Food Res Int 2024; 198:115418. [PMID: 39643377 DOI: 10.1016/j.foodres.2024.115418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Over the past decade, plant-based milk alternatives (PBMAs) have gained increasing popularity. Several processing technologies, including heat treatment, are usually employed during their production in order to replicate the properties of cow's milk. These processes can trigger the Maillard reaction, producing Maillard reaction products (MRPs) and amino acid cross-links, which may alter the nutritional profile and digestibility of PBMAs. This study investigates PBMAs available in the Scandinavian market to assess their MRP and amino acid cross-link concentrations, aiming to understand the relationship between the formation of these heat-induced compounds and the specific chemical composition of individual PBMAs. Two types of UHT-treated cow's milk and ten UHT-processed PBMAs from different brands were analyzed. Quantitative analyses included early-stage MRPs (Amadori products detected as furosine), intermediate MRPs (α-dicarbonyl compounds and furans), advanced glycation end products (AGEs), acrylamide, and amino acid cross-links (lanthionine and lysinoalanine). Protein, carbohydrate, and amino acid profiles were also assessed using LC-MS and HPLC methods. PBMAs were found to differ substantially in carbohydrate and protein content, with soy-based drinks containing higher protein and rice and oat drinks having more carbohydrates. Essential amino acid (EAA) levels were found lower in all PBMAs, impacting their nutritional quality. MRP levels, such as furosine and AGEs, varied across PBMAs, indicating different heat-processing intensities. Specific α-dicarbonyl compounds, like 3-deoxyglucosone, were more concentrated in PBMAs than in UHT-treated cow's milk, and compounds like HMF, furfural, and acrylamide were also found in some PBMAs. Finally, correlations were observed between sugar content, α-dicarbonyls, and AGEs, which offer insights into possible chemical transformations in PBMAs during processing.
Collapse
Affiliation(s)
- Mariachiara Pucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Halise Gül Akıllıoğlu
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Marta Bevilacqua
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marianne Nissen Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
The Effects of Nutrition on Linear Growth. Nutrients 2022; 14:nu14091752. [PMID: 35565716 PMCID: PMC9100533 DOI: 10.3390/nu14091752] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 12/16/2022] Open
Abstract
Linear growth is a complex process and is considered one of the best indicators of children’s well-being and health. Genetics, epigenetics and environment (mainly stress and availability of nutrients) are the main regulators of growth. Nutrition exerts its effects on growth throughout the course of life with different, not completely understood mechanisms. Cells have a sophisticated sensing system, which allows growth processes to occur in the presence of an adequate nutrient availability. Most of the nutritional influence on growth is mediated by hormonal signals, in turn sensitive to nutritional cues. Both macro- and micro-nutrients are required for normal growth, as demonstrated by the impairment of growth occurring when their intake is insufficient. Clinical conditions characterized by abnormal nutritional status, including obesity and eating disorders, are associated with alterations of growth pattern, confirming the tight link between growth and nutrition. The precise molecular mechanisms connecting nutrition to linear growth are far from being fully understood and further studies are required. A better understanding of the interplay between nutrients and the endocrine system will allow one to develop more appropriate and effective nutritional interventions for optimizing child growth.
Collapse
|
3
|
Murugu DK, Onyango AN, Ndiritu AK, Osuga IM, Xavier C, Nakimbugwe D, Tanga CM. From Farm to Fork: Crickets as Alternative Source of Protein, Minerals, and Vitamins. Front Nutr 2021; 8:704002. [PMID: 34447775 PMCID: PMC8382788 DOI: 10.3389/fnut.2021.704002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Globally, there is growing interest to integrate cricket-based ingredients (flour) into food products to combat food and nutrition insecurity. However, there is lack of information on in-depth nutrient profile of the two cricket species (Scapsipedus icipe and Gryllus bimaculatus), which are the most widely consumed in Africa. Here we determined the nutrient composition of two cricket species and compared them with published records of key animal and plant sources. Our results revealed that the crude protein contents of S. icipe and G. bimaculatus were similar (56.8 and 56.9%, respectively) and comparable to those of animal protein sources. Both cricket species had balanced amino acid profiles that are superior to that of animal and plant sources, except for histidine and cysteine. The protein digestibility of S. icipe and G. bimaculatus ranged between 80 and 88%, which is comparable to that of common plant foods but slightly lower than that of animal proteins. The iron, Zinc, and potassium contents were considerably higher in both cricket species compared to that of plant and animal sources. The calcium contents of both crickets (S. icipe and G. bimaculatus) was superior to that of plant and animal origin except for kidney beans and eggs, respectively. Riboflavin, thiamine, and folic acid concentrations of S. icipe and G. bimaculatus were superior to that of the conventional sources. Vitamin A levels were significantly higher in S. icipe compared to G. bimaculatus. This implies that S. icipe and G. bimaculatus can adequately contribute to our daily required nutrient intake. Thus, integrating cricket flours into ready-to-eat food products would address some of the most pressing nutritional deficiency challenges that many developing countries have to grapple with, particularly high risk to serious health problems such as anemia, poor pregnancy outcomes, hypertension, increased risk of morbidity and mortality, stunted growth and impaired physical and cognitive development. We conclude that edible crickets present unique opportunities for improving food and nutritional insecurity status of both resource-poor and Western populations.
Collapse
Affiliation(s)
- Dorothy K Murugu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Arnold N Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Alex K Ndiritu
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.,Department of Environmental Health, University of Kabianga, Kericho, Kenya
| | - Isaac M Osuga
- Department of Animal Science, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Cheseto Xavier
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Dorothy Nakimbugwe
- Department of Food Technology and Nutrition, School of Food Technology, Nutrition and Bioengineering, Makerere University, Kampala, Uganda
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
4
|
Millward DJ. Milk protein loses its crown? Am J Clin Nutr 2020; 112:245-246. [PMID: 32438393 DOI: 10.1093/ajcn/nqaa112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
5
|
Deleaval P, Luaire B, Laffay P, Jambut-Cadon D, Stauss-Grabo M, Canaud B, Chazot C. Short-Term Effects of Branched-Chain Amino Acids–Enriched Dialysis Fluid on Branched-Chain Amino Acids Plasma Level and Mass Balance: A Randomized Cross-Over Study. J Ren Nutr 2020; 30:61-68. [DOI: 10.1053/j.jrn.2019.03.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/27/2019] [Accepted: 03/13/2019] [Indexed: 11/11/2022] Open
|
6
|
Reckman GAR, Navis GJ, Krijnen WP, van der Schans CP, Vonk RJ, Jager-Wittenaar H. Whole Body Protein Oxidation Unaffected after a Protein Restricted Diet in Healthy Young Males. Nutrients 2019; 11:E115. [PMID: 30626095 PMCID: PMC6357006 DOI: 10.3390/nu11010115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/14/2018] [Accepted: 12/29/2018] [Indexed: 01/07/2023] Open
Abstract
Protein oxidation may play a role in the balance between anabolism and catabolism. We assessed the effect of a protein restricted diet on protein oxidation as a possible reflection of whole body protein metabolism. Sixteen healthy males (23 ± 3 years) were instructed to use a 4-day isocaloric protein restricted diet (0.25 g protein/kg body weight/day). Their habitual dietary intake was assessed by a 4-day food diary. After an overnight fast, a 30 g 13C-milk protein test drink was administered, followed by 330 min breath sample collection. Protein oxidation was measured by Isotope Ratio Mass Spectrometry. To assess actual change in protein intake from 24-h urea excretion, 24-h urine was collected. During the 4-day protein restricted diet, the urinary urea:creatinine ratio decreased by 56 ± 9%, which is comparable to a protein intake of ~0.65 g protein/kg body weight/day. After the protein restricted diet, 30.5 ± 7.3% of the 30 g 13C-milk protein was oxidized over 330 min, compared to 31.5 ± 6.4% (NS) after the subject's habitual diet (1.3 ± 0.3 g protein/kg body weight/day). A large range in the effect of the diet on protein oxidation (-43.2% vs. +44.0%) was observed. The residual standard deviation of the measurements was very small (0.601 ± 0.167). This suggests that in healthy males, protein oxidation is unaffected after a protein restricted diet. It is uncertain how important the role of fluctuations in short-term protein oxidation is within whole body protein metabolism.
Collapse
Affiliation(s)
- Gerlof A R Reckman
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, AA53, PO Box 30.001, 9700 RB Groningen, The Netherlands.
- Research Group Healthy Ageing, Allied Health Care and Nursing, Centre of Expertise Healthy Ageing, Hanze University of Applied Sciences, Petrus Driessenstraat 3, 9714 CA Groningen, The Netherlands.
| | - Gerjan J Navis
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, AA53, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| | - Wim P Krijnen
- Research Group Healthy Ageing, Allied Health Care and Nursing, Centre of Expertise Healthy Ageing, Hanze University of Applied Sciences, Petrus Driessenstraat 3, 9714 CA Groningen, The Netherlands.
| | - Cees P van der Schans
- Research Group Healthy Ageing, Allied Health Care and Nursing, Centre of Expertise Healthy Ageing, Hanze University of Applied Sciences, Petrus Driessenstraat 3, 9714 CA Groningen, The Netherlands.
- Department of Rehabilitation and Health Psychology, University of Groningen, University Medical Center Groningen, CD44, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| | - Roel J Vonk
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, FB33, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| | - Harriët Jager-Wittenaar
- Research Group Healthy Ageing, Allied Health Care and Nursing, Centre of Expertise Healthy Ageing, Hanze University of Applied Sciences, Petrus Driessenstraat 3, 9714 CA Groningen, The Netherlands.
- Department of Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, BB70, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
7
|
Noguchi S, Kondo Y, Ito R, Katayama T, Kazama S, Kadota Y, Kitaura Y, Harris RA, Shimomura Y. Ca2+-dependent inhibition of branched-chain α-ketoacid dehydrogenase kinase by thiamine pyrophosphate. Biochem Biophys Res Commun 2018; 504:916-920. [DOI: 10.1016/j.bbrc.2018.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 11/26/2022]
|
8
|
Reddeman RA, Glávits R, Endres JR, Murbach TS, Hirka G, Vértesi A, Béres E, Szakonyiné IP. A Toxicological Assessment of Creatyl-l-Leucine. Int J Toxicol 2018; 37:171-187. [PMID: 29357766 DOI: 10.1177/1091581817751142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A battery of toxicological studies was conducted to investigate the genotoxicity and repeated-dose oral toxicity of creatyl-l-leucine, a synthetic compound, in rats in accordance with internationally accepted guidelines. There was no evidence of mutagenicity in a bacterial reverse mutation test and in an in vitro mammalian chromosomal aberration test. There was no genotoxic activity observed in an in vivo mammalian micronucleus test at concentrations up to the limit dose of 2,000 mg/kg bw/d. Creatyl-l-leucine did not cause mortality or toxic effects in Hsd.Han Wistar rats in a 90-day repeated-dose oral (gavage) toxicity study at doses of 1,250, 2,500, and 5,000 mg/kg bw/d. The no observed adverse effect level from the 90-day study was determined to be 5,000 mg/kg bw/d, the highest dose tested, for both male and female rats.
Collapse
|
9
|
Gender-Associated Impact of Early Leucine Supplementation on Adult Predisposition to Obesity in Rats. Nutrients 2018; 10:nu10010076. [PMID: 29329236 PMCID: PMC5793304 DOI: 10.3390/nu10010076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/15/2017] [Accepted: 01/06/2018] [Indexed: 12/14/2022] Open
Abstract
Early nutrition plays an important role in development and may constitute a relevant contributor to the onset of obesity in adulthood. The aim of this study was to evaluate the long-term impact of maternal leucine (Leu) supplementation during lactation on progeny in rats. A chow diet, supplemented with 2% Leu, was supplied during lactation (21 days) and, from weaning onwards, was replaced by a standard chow diet. Then, at adulthood (6 months of age), this was replaced with hypercaloric diets (either with high-fat (HF) or high-carbohydrate (HC) content), for two months, to induce obesity. Female offspring from Leu-supplemented dams showed higher increases in body weight and in body fat (62%) than their respective controls; whereas males were somehow protected (15% less fat than the corresponding controls). This profile in Leu-females was associated with altered neuronal architecture at the paraventricular nucleus (PVN), involving neuropeptide Y (NPY) fibers and impaired expression of neuropeptides and factors of the mTOR signaling pathway in the hypothalamus. Interestingly, leptin and adiponectin expression in adipose tissue at weaning and at the time before the onset of obesity could be defined as early biomarkers of metabolic disturbance, predisposing towards adult obesity under the appropriate environment.
Collapse
|
10
|
Drummen M, Tischmann L, Gatta-Cherifi B, Adam T, Westerterp-Plantenga M. Dietary Protein and Energy Balance in Relation to Obesity and Co-morbidities. Front Endocrinol (Lausanne) 2018; 9:443. [PMID: 30127768 PMCID: PMC6087750 DOI: 10.3389/fendo.2018.00443] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Dietary protein is effective for body-weight management, in that it promotes satiety, energy expenditure, and changes body-composition in favor of fat-free body mass. With respect to body-weight management, the effects of diets varying in protein differ according to energy balance. During energy restriction, sustaining protein intake at the level of requirement appears to be sufficient to aid body weight loss and fat loss. An additional increase of protein intake does not induce a larger loss of body weight, but can be effective to maintain a larger amount of fat-free mass. Protein induced satiety is likely a combined expression with direct and indirect effects of elevated plasma amino acid and anorexigenic hormone concentrations, increased diet-induced thermogenesis, and ketogenic state, all feed-back on the central nervous system. The decline in energy expenditure and sleeping metabolic rate as a result of body weight loss is less on a high-protein than on a medium-protein diet. In addition, higher rates of energy expenditure have been observed as acute responses to energy-balanced high-protein diets. In energy balance, high protein diets may be beneficial to prevent the development of a positive energy balance, whereas low-protein diets may facilitate this. High protein-low carbohydrate diets may be favorable for the control of intrahepatic triglyceride IHTG in healthy humans, likely as a result of combined effects involving changes in protein and carbohydrate intake. Body weight loss and subsequent weight maintenance usually shows favorable effects in relation to insulin sensitivity, although some risks may be present. Promotion of insulin sensitivity beyond its effect on body-weight loss and subsequent body-weight maintenance seems unlikely. In conclusion, higher-protein diets may reduce overweight and obesity, yet whether high-protein diets, beyond their effect on body-weight management, contribute to prevention of increases in non-alcoholic fatty liver disease NAFLD, type 2 diabetes and cardiovascular diseases is inconclusive.
Collapse
Affiliation(s)
- Mathijs Drummen
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| | - Lea Tischmann
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| | - Blandine Gatta-Cherifi
- Department of Endocrinology, Diabetology and Nutrition, Universite de Bordeaux, Bordeaux, France
| | - Tanja Adam
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| | - Margriet Westerterp-Plantenga
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
- *Correspondence: Margriet Westerterp-Plantenga
| |
Collapse
|
11
|
Sinagoga KL, Stone WJ, Schiesser JV, Schweitzer JI, Sampson L, Zheng Y, Wells JM. Distinct roles for the mTOR pathway in postnatal morphogenesis, maturation and function of pancreatic islets. Development 2017; 144:2402-2414. [PMID: 28576773 DOI: 10.1242/dev.146316] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 05/26/2017] [Indexed: 02/03/2023]
Abstract
While much is known about the molecular pathways that regulate embryonic development and adult homeostasis of the endocrine pancreas, little is known about what regulates early postnatal development and maturation of islets. Given that birth marks the first exposure to enteral nutrition, we investigated how nutrient-regulated signaling pathways influence postnatal islet development in mice. We performed loss-of-function studies of mechanistic target of rapamycin (mTOR), a highly conserved kinase within a nutrient-sensing pathway known to regulate cellular growth, morphogenesis and metabolism. Deletion of Mtor in pancreatic endocrine cells had no significant effect on their embryonic development. However, within the first 2 weeks after birth, mTOR-deficient islets became dysmorphic, β-cell maturation and function were impaired, and animals lost islet mass. Moreover, we discovered that these distinct functions of mTOR are mediated by separate downstream branches of the pathway, in that mTORC1 (with adaptor protein Raptor) is the main complex mediating the maturation and function of islets, whereas mTORC2 (with adaptor protein Rictor) impacts islet mass and architecture. Taken together, these findings suggest that nutrient sensing may be an essential trigger for postnatal β-cell maturation and islet development.
Collapse
Affiliation(s)
- Katie L Sinagoga
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - William J Stone
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Jacqueline V Schiesser
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Jamie I Schweitzer
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Leesa Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA .,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| |
Collapse
|
12
|
Nutrition, infection and stunting: the roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children. Nutr Res Rev 2017; 30:50-72. [PMID: 28112064 DOI: 10.1017/s0954422416000238] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The regulation of linear growth by nutritional and inflammatory influences is examined in terms of growth-plate endochondral ossification, in order to better understand stunted growth in children. Linear growth is controlled by complex genetic, physiological, and nutrient-sensitive endocrine/paracrine/autocrine mediated molecular signalling mechanisms, possibly including sleep adequacy through its influence on growth hormone secretion. Inflammation, which accompanies most infections and environmental enteric dysfunction, inhibits endochondral ossification through the action of mediators including proinflammatory cytokines, the activin A-follistatin system, glucocorticoids and fibroblast growth factor 21 (FGF21). In animal models linear growth is particularly sensitive to dietary protein as well as Zn intake, which act through insulin, insulin-like growth factor-1 (IGF-1) and its binding proteins, triiodothyronine, amino acids and Zn2+ to stimulate growth-plate protein and proteoglycan synthesis and cell cycle progression, actions which are blocked by corticosteroids and inflammatory cytokines. Observational human studies indicate stunting to be associated with nutritionally poor, mainly plant-based diets. Intervention studies provide some support for deficiencies of energy, protein, Zn and iodine and for multiple micronutrient deficiencies, at least during pregnancy. Of the animal-source foods, only milk has been specifically and repeatedly shown to exert an important influence on linear growth in both undernourished and well-nourished children. However, inflammation, caused by infections, environmental enteric dysfunction, which may be widespread in the absence of clean water, adequate sanitation and hygiene (WASH), and endogenous inflammation associated with excess adiposity, in each case contributes to stunting, and may explain why nutritional interventions are often unsuccessful. Current interventions to reduce stunting are targeting WASH as well as nutrition.
Collapse
|
13
|
Saberi K, Gorji Mahlabani MA, Tashayoie M, Nasiri Nejad F. The Relationship Between Creatine and Whey Protein Supplements Consumption and Anesthesia in Rats. Anesth Pain Med 2016; 6:e32648. [PMID: 27110533 PMCID: PMC4835585 DOI: 10.5812/aapm.32648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/28/2015] [Accepted: 11/14/2015] [Indexed: 12/03/2022] Open
Abstract
Background: Because the trend of pharmacotherapy is toward controlling diet rather than administration of drugs, in our study we examined the probable relationship between Creatine (Cr) or Whey (Wh) consumption and anesthesia (analgesia effect of ketamine). Creatine and Wh are among the most favorable supplements in the market. Whey is a protein, which is extracted from milk and is a rich source of amino acids. Creatine is an amino acid derivative that can change to ATP in the body. Both of these supplements result in Nitric Oxide (NO) retention, which is believed to be effective in N-Methyl-D-aspartate (NMDA) receptor analgesia. Objectives: The main question of this study was whether Wh and Cr are effective on analgesic and anesthetic characteristics of ketamine and whether this is related to NO retention or amino acids’ features Materials and Methods: We divided 30 male Wistar rats to three (n = 10) groups; including Cr, Wh and sham (water only) groups. Each group was administered (by gavage) the supplements for an intermediate dosage during 25 days. After this period, they became anesthetized using a Ketamine-Xylazine (KX) and their time to anesthesia and analgesia, and total sleep time were recorded. Results: Data were analyzed twice using the SPSS 18 software with Analysis of Variance (ANOVA) and post hoc test; first time we expunged the rats that didn’t become anesthetized and the second time we included all of the samples. There was a significant P-value (P < 0.05) for total anesthesia time in the second analysis. Bonferroni multiple comparison indicated that the difference was between Cr and Sham groups (P < 0.021). Conclusions: The data only indicated that there might be a significant relationship between Cr consumption and total sleep time. Further studies, with rats of different gender and different dosage of supplement and anesthetics are suggested.
Collapse
Affiliation(s)
- Kianoush Saberi
- Anesthesiology Department, Imam Khomeini Medical and Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding author: Kianoush Saberi, Anesthesiology Department, Imam Khomeini Medical and Research Center, Tehran University of Medical Sciences, Tehran, Iran. Tel: +98-9128984844, Fax: +98-2166581595, E-mail:
| | - Mohammad Amin Gorji Mahlabani
- Under Graduate Department, Student’s Scientific Research Center (SSRC), Exceptional Talent Development Center (ETDC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Tashayoie
- Under Graduate Department, Student’s Scientific Research Center (SSRC), Exceptional Talent Development Center (ETDC), Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
14
|
Phillips BE, Atherton PJ, Varadhan K, Limb MC, Williams JP, Smith K. Acute cocoa flavanol supplementation improves muscle macro- and microvascular but not anabolic responses to amino acids in older men. Appl Physiol Nutr Metab 2016; 41:548-56. [PMID: 27120341 DOI: 10.1139/apnm-2015-0543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anabolic effects of nutrition on skeletal muscle may depend on adequate skeletal muscle perfusion, which is impaired in older people. Cocoa flavanols have been shown to improve flow-mediated dilation, an established measure of endothelial function. However, their effect on muscle microvascular blood flow is currently unknown. Therefore, the objective of this study was to explore links between the consumption of cocoa flavanols, muscle microvascular blood flow, and muscle protein synthesis (MPS) in response to nutrition in older men. To achieve this objective, leg blood flow (LBF), muscle microvascular blood volume (MBV), and MPS were measured under postabsorptive and postprandial (intravenous Glamin (Fresenius Kabi, Germany), dextrose to sustain glucose ∼7.5 mmol·L(-1)) conditions in 20 older men. Ten of these men were studied with no cocoa flavanol intervention and a further 10 were studied with the addition of 350 mg of cocoa flavanols at the same time that nutrition began. Leg (femoral artery) blood flow was measured by Doppler ultrasound, muscle MBV by contrast-enhanced ultrasound using Definity (Lantheus Medical Imaging, Mass., USA) perflutren contrast agent and MPS using [1, 2-(13)C2]leucine tracer techniques. Our results show that although older individuals do not show an increase in LBF or MBV in response to feeding, these absent responses are apparent when cocoa flavanols are given acutely with nutrition. However, this restoration in vascular responsiveness is not associated with improved MPS responses to nutrition. We conclude that acute cocoa flavanol supplementation improves muscle macro- and microvascular responses to nutrition, independently of modifying muscle protein anabolism.
Collapse
Affiliation(s)
- Bethan E Phillips
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Philip J Atherton
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Krishna Varadhan
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Marie C Limb
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - John P Williams
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Kenneth Smith
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| |
Collapse
|
15
|
Phillips BE, Atherton PJ, Varadhan K, Limb MC, Wilkinson DJ, Sjøberg KA, Smith K, Williams JP. The effects of resistance exercise training on macro- and micro-circulatory responses to feeding and skeletal muscle protein anabolism in older men. J Physiol 2015; 593:2721-34. [PMID: 25867865 DOI: 10.1113/jp270343] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Increases in limb blood flow in response to nutrition are reduced in older age. Muscle microvascular blood flow (MBF) in response to nutrition is also reduced with advancing age and this may contribute to age-related 'anabolic resistance'. Resistance exercise training (RET) can rejuvenate limb blood flow responses to nutrition in older individuals. We report here that 20 weeks of RET also restores muscle MBF in older individuals. Restoration of MBF does not, however, enhance muscle anabolic responses to nutrition. ABSTRACT The anabolic effects of dietary protein on skeletal muscle depend on adequate skeletal muscle perfusion, which is impaired in older people. This study explores fed state muscle microvascular blood flow, protein metabolism and exercise training status in older men. We measured leg blood flow (LBF), muscle microvascular blood volume (MBV) and muscle protein turnover under post-absorptive and fed state (i.v. Glamin to double amino acids, dextrose to sustain glucose ∼7-7.5 mmol l(-1) ) conditions in two groups: 10 untrained men (72.3 ± 1.4 years; body mass index (BMI) 26.5 ± 1.15 kg m(2) ) and 10 men who had undertaken 20 weeks of fully supervised, whole-body resistance exercise training (RET) (72.8 ± 1.4 years; BMI 26.3 ± 1.2 kg m(2) ). We measured LBF by Doppler ultrasound and muscle MBV by contrast-enhanced ultrasound. Muscle protein synthesis (MPS) was measured using [1, 2-(13) C2 ] leucine with breakdown (MPB) and net protein balance (NPB) by ring-[D5 ] phenylalanine tracers. Plasma insulin was measured via ELISA and indices of anabolic signalling (e.g. Akt/mTORC1) by immunoblotting from muscle biopsies. Whereas older untrained men did not exhibit fed-state increases in LBF or MBV, the RET group exhibited increases in both LBF and MBV. Despite our hypothesis that enhanced fed-state circulatory responses would improve anabolic responses to nutrition, fed-state increases in MPS (∼50-75%; P < 0.001) were identical in both groups. Finally, whereas only the RET group exhibited fed-state suppression of MPB (∼-38%; P < 0.05), positive NPB achieved was similar in both groups. We conclude that RET enhances fed-state LBF and MBV and restores nutrient-dependent attenuation of MPB without robustly enhancing MPS or NPB.
Collapse
Affiliation(s)
- Bethan E Phillips
- University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Derby, UK
| | - Philip J Atherton
- University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Derby, UK
| | - Krishna Varadhan
- University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Derby, UK
| | - Marie C Limb
- University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Derby, UK
| | - Daniel J Wilkinson
- University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Derby, UK
| | - Kim A Sjøberg
- University of Copenhagen, Department of Exercise and Sport Sciences, Copenhagen, Denmark
| | - Kenneth Smith
- University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Derby, UK
| | - John P Williams
- University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Derby, UK
| |
Collapse
|
16
|
Verreijen AM, de Vogel-van den Bosch J, Verlaan S, Weijs PJM. Reply to AM Bernstein et al. Am J Clin Nutr 2015; 101:1098-9. [PMID: 25934867 DOI: 10.3945/ajcn.114.105916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Amely M Verreijen
- From the Department of Nutrition and Dietetics, School of Sports and Nutrition, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands (AMV, e-mail: ; PJMW) and Nutricia Research, Utrecht, The Netherlands (JdV-vdB, SV)
| | - Johan de Vogel-van den Bosch
- From the Department of Nutrition and Dietetics, School of Sports and Nutrition, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands (AMV, e-mail: ; PJMW) and Nutricia Research, Utrecht, The Netherlands (JdV-vdB, SV)
| | - Sjors Verlaan
- From the Department of Nutrition and Dietetics, School of Sports and Nutrition, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands (AMV, e-mail: ; PJMW) and Nutricia Research, Utrecht, The Netherlands (JdV-vdB, SV)
| | - Peter J M Weijs
- From the Department of Nutrition and Dietetics, School of Sports and Nutrition, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands (AMV, e-mail: ; PJMW) and Nutricia Research, Utrecht, The Netherlands (JdV-vdB, SV)
| |
Collapse
|
17
|
Park S, Park JY, Lee JH, Kim SH. Plasma levels of lysine, tyrosine, and valine during pregnancy are independent risk factors of insulin resistance and gestational diabetes. Metab Syndr Relat Disord 2014; 13:64-70. [PMID: 25419905 DOI: 10.1089/met.2014.0113] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND This study compared plasma concentrations of amino acids in pregnant women with and without gestational diabetes mellitus (GDM) and identified the association between plasma amino acid levels and GDM, insulin resistance, and insulin secretion at 24-28 weeks of pregnancy. METHODS Circulating amino acid levels were evaluated using high-performance liquid chromatography at 24-28 weeks of pregnancy in 25 non-GDM and 64 GDM women after adjusting for covariates such as maternal age, body mass index (BMI) before pregnancy, BMI and gestational age at screening GDM, and daily caloric intake. Backward stepwise logistic regression analysis was used to identify the predictors of developing GDM, and homeostatic model assessments for insulin resistance (HOMA-IR) and β-cell function (HOMA-B). RESULTS Circulating levels of amino acids except threonine and tyrosine were significantly higher in GDM women than non-GDM women. Along with the intakes of energy, protein, and fat from animal sources, the intakes of each amino acid were significantly higher in the GDM group without a direct correlation to plasma amino acid levels. The variation in GDM development was explained by maternal age, diastolic blood pressure, and plasma lysine levels (R(2)=0.691). Height, BMI before pregnancy, systolic blood pressure, and plasma tyrosine and valine levels accounted for the variation in HOMA-IR (R(2)=0.589). The 53.3% variation of HOMA-B was explained by maternal age, BMI at GDM screening, plasma insulin level at 1 h during the oral glucose tolerance test (OGTT), and plasma valine level. CONCLUSIONS Circulating concentrations of lysine, tyrosine, and valine were independently and positively associated with GDM through modifying insulin resistance and secretion.
Collapse
Affiliation(s)
- Sunmin Park
- 1 Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University , Asan, Korea
| | | | | | | |
Collapse
|
18
|
Kulkarni B, Hills AP, Byrne NM. Nutritional influences over the life course on lean body mass of individuals in developing countries. Nutr Rev 2014; 72:190-204. [PMID: 24697348 DOI: 10.1111/nure.12097] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The double burden of childhood undernutrition and adult-onset adiposity in transitioning societies poses a significant public health challenge. The development of suboptimal lean body mass (LBM) could partly explain the link between these two forms of malnutrition. This review examines the evidence on both the role of nutrition in “developmental programming” of LBM and the nutritional influences that affect LBM throughout the life course. Studies from developing countries assessing the relationship of early nutrition with later LBM provide important insights. Overall, the evidence is consistent in suggesting a positive association of early nutritional status (indicated by birth weight and growth during first 2 years) with LBM in later life. Evidence on the impact of maternal nutritional supplementation during pregnancy on later LBM is inconsistent. In addition, the role of nutrients (protein, zinc, calcium, vitamin D) that can affect LBM throughout the life course is described. Promoting optimal intakes of these important nutrients throughout the life course is important for reducing childhood undernutrition as well as for improving the LBM of adults.
Collapse
|
19
|
Martens EA, Tan SY, Mattes RD, Westerterp-Plantenga MS. No protein intake compensation for insufficient indispensable amino acid intake with a low-protein diet for 12 days. Nutr Metab (Lond) 2014; 11:38. [PMID: 25183991 PMCID: PMC4147096 DOI: 10.1186/1743-7075-11-38] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/19/2014] [Indexed: 01/21/2023] Open
Abstract
Background Protein quality evaluation aims to determine the capacity of food sources and diets to meet protein and indispensable amino acid (IAA) requirements. This study determined whether nitrogen balance was affected and whether dietary IAA were adequately obtained from the ad libitum consumption of diets at three levels of protein from different primary sources for 12 days. Methods Two 12-day randomized crossover design trials were conducted in healthy subjects [n = 70/67 (M/F); age: 19-70 y; BMI: 18.2-38.7 kg/m2]. The relative dietary protein content was lower than [5% of energy (En%)], similar to (15En%), and higher than (30En%) customary diets. These diets had a limited variety of protein sources, containing wheat protein as a single protein source (5En%-protein diet) or 5En% from wheat protein with 10En% (15En%-protein diets) or 25En% (30En%-protein diets) added from whey with α-lactalbumin, soy or beef protein. Results There was a dose-dependent increase in nitrogen excretion with increasing dietary protein content, irrespective of the protein sources (P = 0.001). Nitrogen balance was maintained on the 5En%-protein diet, and was positive on the 15En%- and 30En%-protein diets (P < 0.001) over 12 days. Protein intake from the 5En%-protein diet did not reach the amount necessary to meet the calculated minimal IAA requirements, but IAA were sufficiently obtained from the 15En%- and 30En%-protein diets. In the 15En%- and 30En%-protein conditions, a higher protein intake from the soy-containing diets than from the whey with α-lactalbumin or beef containing diets was needed to meet the minimal IAA requirements. Conclusion Protein intake did not compensate for an insufficient indispensable amino acid intake with a low-protein diet for 12 days. Trial registration These trials were registered at clinicaltrials.gov as NCT01320189 and NCT01646749.
Collapse
Affiliation(s)
- Eveline A Martens
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, PO Box 616, 6200, MD Maastricht, The Netherlands
| | - Sze-Yen Tan
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47905, USA
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47905, USA
| | - Margriet S Westerterp-Plantenga
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, PO Box 616, 6200, MD Maastricht, The Netherlands
| |
Collapse
|
20
|
Phillips BE, Atherton PJ, Varadhan K, Wilkinson DJ, Limb M, Selby AL, Rennie MJ, Smith K, Williams JP. Pharmacological enhancement of leg and muscle microvascular blood flow does not augment anabolic responses in skeletal muscle of young men under fed conditions. Am J Physiol Endocrinol Metab 2014; 306:E168-76. [PMID: 24280127 DOI: 10.1152/ajpendo.00440.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle anabolism associated with postprandial plasma aminoacidemia and insulinemia is contingent upon amino acids (AA) and insulin crossing the microcirculation-myocyte interface. In this study, we hypothesized that increasing muscle microvascular blood volume (flow) would enhance fed-state anabolic responses in muscle protein turnover. We studied 10 young men (23.2 ± 2.1 yr) under postabsorptive and fed [iv Glamin (∼10 g AA), glucose ∼7.5 mmol/l] conditions. Methacholine was infused into the femoral artery of one leg to determine, via bilateral comparison, the effects of feeding alone vs. feeding plus pharmacological vasodilation. We measured leg blood flow (LBF; femoral artery) by Doppler ultrasound, muscle microvascular blood volume (MBV) by contrast-enhanced ultrasound (CEUS), muscle protein synthesis (MPS) and breakdown (MPB; a-v balance modeling), and net protein balance (NPB) using [1,2-(13)C2]leucine and [(2)H5]phenylalanine tracers via gas chromatography-mass spectrometry (GC-MS). Indexes of anabolic signaling/endothelial activation (e.g., Akt/mTORC1/NOS) were assessed using immunoblotting techniques. Under fed conditions, LBF (+12 ± 5%, P < 0.05), MBV (+25 ± 10%, P < 0.05), and MPS (+129 ± 33%, P < 0.05) increased. Infusion of methacholine further enhanced LBF (+126 ± 12%, P < 0.05) and MBV (+79 ± 30%, P < 0.05). Despite these radically different blood flow conditions, neither increases in MPS in response to feeding (0.04 ± 0.004 vs. 0.08 ± 0.01%/h, P < 0.05) nor improvements in NPB (-4.4 ± 2.4 vs. 16.4 ± 5.7 nmol Phe·100 ml leg(-1)·min(-1), P < 0.05) were affected by methacholine infusion (MPS 0.07 ± 0.01%/h; NPB 24.0 ± 7.7 nmol Phe·100 ml leg(-1)·min(-1)), whereas MPB was unaltered by either feeding or infusion of methacholine. Thus, enhancing LBF/MBV above that occurring naturally with feeding alone does not improve muscle anabolism.
Collapse
Affiliation(s)
- Bethan E Phillips
- Division of Medical Science and Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom; and
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The use of protein:energy ratios for defining protein requirements, allowances and dietary protein contents. Public Health Nutr 2013; 16:763-8. [DOI: 10.1017/s1368980013000396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Protein and amino acid supplementation in older humans. Amino Acids 2013; 44:1493-509. [DOI: 10.1007/s00726-013-1480-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 01/09/2023]
|
23
|
Kimura T, Bier DM, Taylor CL. Summary of workshop discussions on establishing upper limits for amino acids with specific attention to available data for the essential amino acids leucine and tryptophan. J Nutr 2012; 142:2245S-2248S. [PMID: 23077196 DOI: 10.3945/jn.112.160846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The morning of the first day of the 8th Amino Acid Assessment Workshop was organized and co-sponsored by the International Council on Amino Acid Science (ICAAS) and the International Life Sciences Institute Research Foundation and was focused on the International Life Sciences Institute Research Foundation's approach to establishing upper limits of nutrients. The remainder of d 1 and all of d 2 were focused on the safety of leucine and tryptophan, with special emphasis on determining the upper level of the safe range of intake. It was recognized that some toxicological frameworks, mainly the key-events dose response framework, might be applicable to amino acids and provide appropriate assistance to regulators in establishing upper limits for amino acids as a group of nutrients used in dietary supplements. ICAAS-funded projects for determining the upper intake limits for the essential amino acid leucine provided the main pool of leucine data discussed at the workshop. The acute clinical study suggests 500 mg/(kg · d) as a possible upper limit for leucine in healthy humans, but the safety margin needed to widen this limit to the general population has not been determined. For tryptophan, the workshop participants found less ground for consensus. Older efficacy studies suggested that tryptophan at 8-15 g/d was well tolerated, but human research was abruptly terminated in the late 1980s and no new data are available. Animal results obtained in pigs and rodents were discussed and 2 possible strategies for applying those outcomes to humans were described.
Collapse
|
24
|
Abstract
Nutritional interventions that might influence sarcopenia, as indicated by literature reporting on sarcopenia per se as well as dynapenia and frailty, are reviewed in relation to potential physiological aetiological factors, i.e. inactivity, anabolic resistance, inflammation, acidosis and vitamin D deficiency. As sarcopenia occurs in physically active and presumably well-nourished populations, it is argued that a simple nutritional aetiology is unlikely and unequivocal evidence for any nutritional influence is extremely limited. Dietary protein is probably the most widely researched nutrient but only for frailty is there one study showing evidence of an aetiological influence and most intervention studies with protein or amino acids have proved ineffective with only a very few exceptions. Fish oil has been shown to attenuate anabolic resistance of muscle protein synthesis in one study. There is limited evidence for a protective influence of antioxidants and inducers of phase 2 proteins on sarcopenia, dynapenia and anabolic resistance in human and animal studies. Also fruit and vegetables may protect against acidosis-induced sarcopenia through their provision of dietary potassium. While severe vitamin D deficiency is associated with dynapenia and sarcopenia, the evidence for a beneficial influence of increasing vitamin D status above the severe deficiency level is limited and controversial, especially in men. On this basis there is insufficient evidence for any more specific nutritional advice than that contained in the general healthy lifestyle–healthy diet message: i.e. avoiding inactivity and low intakes of food energy and nutrients and maintain an active lifestyle with a diet providing a rich supply of fruit and vegetables and frequent oily fish.
Collapse
|