1
|
Hamade A. Fish consumption benefits and PFAS risks: Epidemiology and public health recommendations. Toxicol Rep 2024; 13:101736. [PMID: 39391711 PMCID: PMC11465044 DOI: 10.1016/j.toxrep.2024.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Finfish and shellfish intake (collectively referred to as fish) has been associated with health benefits, although fish often have chemical contaminants that are separately associated with health risks. The presence of chemical contaminants, however, does not inherently pose a health risk and optimizing the benefits is desirable for individual and population health. Reference doses (RfDs) and other comparison values that estimate contaminant or pollutant safety thresholds typically do not account for the benefits of the foods that carry them (e.g., fish, eggs, fruit, vegetables). Rather, these numbers are typically applied uniformly for various media such as food, soil, and water. This paper summarizes principal epidemiology studies on per- and polyfluoroalkyl substances (PFAS)-associated noncancer health indicators used by the United States Environmental Protection Agency (EPA) to develop RfDs for PFAS and compares these with the same health outcomes associated with seafood intake. Moreover, it frames these findings in relation to varying human PFAS exposures, fish intake amount, and fish type when the information is available. Further, it presents brief overviews of both general population temporal PFAS exposure trends and PFAS fish contaminant data in the United States. Finally, it discusses approaches that risk assessors and policy makers can consider in developing their fish consumption recommendations in relation to PFAS. In brief, epidemiology studies show that the benefits of fish intake generally counter the risks of PFAS exposure based on four noncancer health endpoints that EPA identified as having the greatest strength of evidence for PFAS health effects.
Collapse
Affiliation(s)
- Ali Hamade
- Oregon Health Authority, Portland, OR, USA
| |
Collapse
|
2
|
Lee DW, Oh J, Lee YM, Bae HJ, Lim YH. Association between heavy metal exposure and biomarkers for non-alcoholic fatty liver disease in Korean adolescents. Heliyon 2024; 10:e37840. [PMID: 39386834 PMCID: PMC11462472 DOI: 10.1016/j.heliyon.2024.e37840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Objectives The global prevalence of non-alcoholic fatty liver disease (NAFLD) in adolescents has increased. In addition to childhood obesity, environmental risk factors, such as heavy metals that are known to be involved in hepatotoxicity, play role in NAFLD occurrence. However, their association with NAFLD remains unclear. This study aimed to investigate the association between heavy metal exposure and NAFLD biomarkers in adolescents. Methods In this cross-sectional study, we used the data of a total of 1505 adolescents aged 12-17 years who participated in the Korean National Environmental Health Survey III (2015-2017) and IV (2018-2020). The presence of blood lead (BPb), blood mercury (BHg), urinary mercury (UHg), and urinary cadmium (UCd) were measured. Liver enzymes including serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT) were evaluated. For NAFLD biomarkers, the hepatic steatosis index (HSI) was calculated. Multivariate linear regression models, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) model were used to investigate the association between heavy metals and NAFLD biomarkers. Results Among heavy metals, mercury presence showed a significant association with NAFLD biomarkers. Two-fold increases in BHg and UHg were associated with 0.21 points (95 % confidence interval [CI]: 0.08-0.35) and 0.19 points (95 % CI: 0.09-0.30) higher HSI, respectively. In the WQS model, heavy metal mixture was significantly associated with increased HSI (β = 0.06, 95 % CI: 0.01-0.11). Similarly, in the BKMR model, heavy metal mixture was positively associated with NAFLD biomarkers, and BHg was the most important contributor in the association. Conclusions BHg and UHg were significantly associated with NAFLD biomarkers in adolescents, indicating that organic and inorganic mercury exposure could potentially be a risk factor for NAFLD. To mitigate and address the risk of NAFLD associated with heavy metal exposure, it is imperative to take measure to reduce avoidable mercury exposure is necessary.
Collapse
Affiliation(s)
- Dong-Wook Lee
- Department of Occupational and Environmental Medicine, Inha University Hospital, Inha University, Incheon, Republic of Korea
| | - Jongmin Oh
- Institute of Ewha-SCL for Environmental Health (IESEH), Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Yu Min Lee
- Department of Occupational and Environmental Medicine, Severance Hospital, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Hyun-Joo Bae
- Korea Environment Institute, Sejong, Republic of Korea
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Kort S, Wickliffe J, Shankar A, Covert HH, Lichtveld M, Zijlmans W. Association between Liver and Kidney Function and Birth Outcomes in Pregnant Surinamese Women Exposed to Mercury and Lead in the Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH) Environmental Epidemiologic Cohort Study. J Xenobiot 2024; 14:1051-1063. [PMID: 39189174 PMCID: PMC11348017 DOI: 10.3390/jox14030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Exposure to mercury (Hg) and lead (Pb), in combination with liver and kidney impairment, may result in adverse birth outcomes. From 408 women in the age range of 16 to 46 years, living in rural and urban areas in the interior of Suriname, we looked at the association between adverse birth outcomes and exposure to Hg and Pb in combination with liver and kidney function. This group of women represented a subcohort of pregnant women who participated in the Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH)-Meki Tamara study. Liver function was assessed by measuring aspartate amino transferase (AST), alanine amino transferase (ALT), and gamma-glutamyl transferase (GGT). Kidney function was assessed by measuring creatinine, urea, and cystatin C. We defined preterm births as birth before 37 weeks of gestation, low birthweight as birthweight < 2500 g, and low Apgar score as a score < 7 at 5 min, and these were used as indicators for adverse birth outcomes. Small size for gestational age was defined as gestational age < -2SD weight for GA. We found significant statistical associations between biomarkers for liver and kidney functions and adverse birth outcomes Apgar score and gestational age. No significant association was found between heavy metals Hg and lead and adverse birth outcomes.
Collapse
Affiliation(s)
- Sheila Kort
- Faculty of Medical Sciences, Anton de Kom University of Suriname, P.O. Box 9212 Paramaribo, Suriname;
| | - Jeffrey Wickliffe
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Arti Shankar
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Hannah H. Covert
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (H.H.C.); (M.L.)
| | - Maureen Lichtveld
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (H.H.C.); (M.L.)
| | - Wilco Zijlmans
- Faculty of Medical Sciences, Anton de Kom University of Suriname, P.O. Box 9212 Paramaribo, Suriname;
| |
Collapse
|
4
|
Ibañez AE, Mills WF, Bustamante P, Morales LM, Torres DS, D' Astek B, Mariano-Jelicich R, Phillips RA, Montalti D. Deleterious effects of mercury contamination on immunocompetence, liver function and egg volume in an antarctic seabird. CHEMOSPHERE 2024; 346:140630. [PMID: 37939926 DOI: 10.1016/j.chemosphere.2023.140630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/16/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Mercury (Hg) is a globally important pollutant that can negatively impact metabolic, endocrine and immune systems of marine biota. Seabirds are long-lived marine top predators and hence are at risk of bioaccumulating high Hg concentrations from their prey. Here, we measured blood total mercury (THg) concentrations and relationships with physiology and breeding parameters of breeding brown skuas (Stercorarius antarcticus) (n = 49 individuals) at Esperanza/Hope Bay, Antarctic Peninsula. Mean blood THg concentrations were similar in males and females despite the differences in body size and breeding roles, but differed between study years. Immune markers (hematocrit, Immunoglobulin Y [IgY] and albumin) were negatively correlated with blood THg concentrations, which likely indicates a disruptive effect of Hg on immunity. Alanine aminotransferase (GPT) activity, reflecting liver dysfunction, was positively associated with blood THg. Additionally, triacylglycerol and albumin differed between our study years, but did not correlate with Hg levels, and so were more likely to reflect changes in diet and nutritional status rather than Hg contamination. Egg volume correlated negatively with blood THg concentrations. Our study provides new insights into the sublethal effects of Hg contamination on immunity, liver function and breeding parameters in seabirds. In this Antarctic species, exposure to sublethal Hg concentrations reflects the short-term risks which could make individuals more susceptible to environmental stressors, including ongoing climatic changes.
Collapse
Affiliation(s)
- Andrés E Ibañez
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina.
| | - William F Mills
- Department of Geography and Environmental Science, University of Reading, Reading, UK
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Lara M Morales
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Diego S Torres
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Beatriz D' Astek
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Rocío Mariano-Jelicich
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, UK
| | - Diego Montalti
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina; Instituto Antártico Argentino, San Martin, Buenos Aires, Argentina
| |
Collapse
|
5
|
Ozoani H, Ezejiofor AN, Okolo KO, Orish CN, Cirovic A, Cirovic A, Orisakwe OE. Selenium and zinc alleviate hepatotoxicity induced by heavy metal mixture (cadmium, mercury, lead and arsenic) via attenuation of inflammo-oxidant pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:156-171. [PMID: 37676925 DOI: 10.1002/tox.23966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Heavy metals (HM) are believed to be injurious to humans. Man is exposed to them on daily basis unknowingly, with no acceptable protocol to manage its deleterious effects. These metals occur as mixture of chemicals with varying concentrations in our atmosphere. There are growing calls for the use of essential metals in mitigating the injurious effects induced by heavy metals exposure to man; therefore, the aim of this study was to evaluate the protective effects of essential metals (Zinc and Selenium) in a mixture of heavy metal toxicity. In this study, except for negative controls, all other groups were treated with lead (PbCl2 , 20 mg kg-1 ); cadmium (CdCl2 , 1.61 mg kg-1 ); mercury (HgCl2 , 0.40 mg kg-1 ), and arsenic (NaAsO3, 10 mg kg-1 ) that were formed in distilled water. Pb, Cd, As, and Hg were administered as mixtures to 35, 6 weeks old rats weighing between 80 to 100 g for 60 days. Group I served as normal control without treatment, group II positive control received HM mixture, while groups III to V received HMM with Zn, Se, and Zn + Se respectively. Animal and liver weights, HM accumulation in the liver, food intake (FI), water intake (WI), liver function test, malondialdehyde (MDA), and inflammatory/transcription factor/apoptosis markers were checked. Also, antioxidant enzymes, and histological studies were carried out. Metal mixture accumulated in the liver and caused toxicities which were ameliorated by Zn and Se administration. HM caused significant decrease in FI, WI and distorted the level of liver enzymes, lipid peroxidation, inflammatory markers, antioxidants and architecture of the liver. Co administration with Zn or Se or both reversed the distortions. This study lays credence to the evolving research on the public health implications of low dose metal mixtures and the possible ameliorative properties of Zn and Se.
Collapse
Affiliation(s)
- Harrison Ozoani
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
| | - Kenneth O Okolo
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Port Harcourt, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
- Toxicology Division, Provictoire Research Institute, Port Harcourt, Nigeria
| |
Collapse
|
6
|
Tinkov AA, Aschner M, Santamaria A, Bogdanov AR, Tizabi Y, Virgolini MB, Zhou JC, Skalny AV. Dissecting the role of cadmium, lead, arsenic, and mercury in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. ENVIRONMENTAL RESEARCH 2023; 238:117134. [PMID: 37714366 DOI: 10.1016/j.envres.2023.117134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The objective of the present study was to review the existing epidemiological and laboratory findings supporting the role of toxic metal exposure in non-alcoholic fatty liver disease (NAFLD). The existing epidemiological studies demonstrate that cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg) exposure was associated both with an increased risk of NAFLD and altered biochemical markers of liver injury. Laboratory studies demonstrated that metal exposure induces hepatic lipid accumulation resulting from activation of lipogenesis and inhibition of fatty acid β-oxidation due to up-regulation of sterol regulatory element-binding protein 1 (SREBP-1), carbohydrate response element binding protein (ChREBP), peroxisome proliferator-activated receptor γ (PPARγ), and down-regulation of PPARα. Other metabolic pathways involved in this effect may include activation of reactive oxygen species (ROS)/extracellular signal-regulated kinase (ERK) and inhibition of AMP-activated protein kinase (AMPK) signaling. The mechanisms of hepatocyte damage during development of metal-induced hepatic steatosis were shown to involve oxidative stress, endoplasmic reticulum stress, pyroptosis, ferroptosis, and dysregulation of autophagy. Induction of inflammatory response contributing to progression of NAFLD to non-alcoholic steatohepatitis (NASH) upon toxic metal exposure was shown to be mediated by up-regulation of nuclear factor κB (NF-κB) and activation of NRLP3 inflammasome. Moreover, epigenetic effects of the metals, as well as their effect on gut microbiota and gut wall integrity were also shown to mediate their role in NAFLD development. Despite being demonstrated for Cd, Pb, and As, the contribution of these mechanisms into Hg-induced NAFLD is yet to be estimated. Therefore, further studies are required to clarify the intimate mechanisms underlying the relationship between heavy metal and metalloid exposure and NAFLD/NASH to reveal the potential targets for treatment and prevention of metal-induced NAFLD.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Alfred R Bogdanov
- Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Russian State Social University, 129226, Moscow, Russia; Municipal State Hospital No. 13 of the Moscow City Health Department, 115280, Moscow, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Miriam B Virgolini
- Departamento de Farmacología Otto Orsingher, Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| |
Collapse
|
7
|
Chi Y, Park JT, Na S, Kwak K. Environment-wide association study of elevated liver enzymes: results from the Korean National Environmental Health Survey 2018-2022. Ann Occup Environ Med 2023; 35:e27. [PMID: 37701484 PMCID: PMC10493370 DOI: 10.35371/aoem.2023.35.e27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/27/2023] [Accepted: 06/11/2023] [Indexed: 09/14/2023] Open
Abstract
Background Environmental exposure is characterized by low concentration, chronic, and complex exposure. Traditional epidemiological studies show limitations in reflecting these characteristics since they usually focus on a single or very limited number of exposure factors at a time. In this study, we adopted the methodology of environment-wide association study (EWAS) to figure out the association of human liver function with various environmentally hazardous substances. Methods We analyzed 2,961 participants from the Korean National Environmental Health Survey Cycle 4 (2018-2020). Using generalized linear model (GLM) analysis, we analyzed the association of 72 variables with 3 liver function indices (aspartate aminotransferase [AST], alanine aminotransferase [ALT], and gamma glutamyl transferase [GGT]). Finally, we visualized our results with Manhattan plot. Results In GLM analysis, perfluorooctanesulfonate were positively associated with ALT (odds ratio [OR]: 2.2; 95% confidence interval [CI]: 1.39-3.46; p adjusted = 0.0147) and perfluorodecanoic acid showed positive association with GGT (OR: 2.73; 95% CI: 1.36-5.5; p adjusted = 0.0256). Plasma mercury showed positive association with GGT (OR: 1.45; 95% CI: 1.14-1.84; p adjusted = 0.0315). Using a plastic container while keeping food in the refrigerator was associated with elevated GGT compared to using a glass container (OR: 1.51; 95% CI: 1.16-1.95; p adjusted = 0.0153). 2-ethyl-5-oxohexyl phthalate, showed a negative trend with all 3 indices, with AST (OR: 0.54; 95% CI: 0.39-0.73; p adjusted = 0.00357), ALT (OR: 0.5; 95% CI: 0.34-0.75; p adjusted = 0.036), GGT (OR: 0.55; 95% CI: 0.4-0.76; p adjusted = 0.00697). Bisphenol S and frequent use of sunblock cream showed negative association with ALT (OR: 0.77; 95% CI: 0.66-0.89), and GGT (OR: 0.25; 95% CI: 0.11-0.55), respectively. Conclusions We conducted an exploratory study on environmental exposure and human liver function. By using EWAS methodology, we identified 7 factors that could have potential association with liver function.
Collapse
Affiliation(s)
- Youngchan Chi
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Jong-Tae Park
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Sewhan Na
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
- Department of Environmental Health Sciences, Seoul National University Graduate School of Public Health, Seoul, Korea
| | - Kyeongmin Kwak
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
| |
Collapse
|
8
|
Li W, Li X, Su J, Chen H, Zhao P, Qian H, Gao X, Ye Q, Zhang G, Li X. Associations of blood metals with liver function: Analysis of NHANES from 2011 to 2018. CHEMOSPHERE 2023; 317:137854. [PMID: 36649900 DOI: 10.1016/j.chemosphere.2023.137854] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Heavy metals have been reported to affect liver function. However, there is currently little and inconsistent knowledge about the effects of combined and individual blood metals on specific parameters of liver function in the general population. Hence, this study aimed to elucidate their associations. METHODS Data from National Health and Nutrition Examination Survey (NHANES) 2011-2018 were used in this cross-sectional study. Multivariate linear, and a quantile-based g-computation (qgcomp) were applied to explore the associations between blood metals [mercury (Hg), manganese (Mn), lead (Pb), cadmium (Cd), selenium (Se)], alone and in combination, and liver function parameters [alanine transaminase (ALT), aspartate transaminase (AST), ALT/AST, alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT) and serum total bilirubin (TBIL)]. RESULTS A total of 15,328 were included. Multivariate linear models indicated that liver function was significantly associated with blood heavy metals. The most significant relationship was found between Se and AST (β 5.09, 95%CI (3.28,6.91), p<0.001), Mn and ALT (β 1.24, 95%CI (0.57, 1.91), p<0.001). Furthermore, the qgcomp analysis showed that the combination of five blood metals was positively associated with AST, ALT, GGT, TBIL and HSI. Cd contributed the most to the correlation of AST (weight = 0.447), Se contributed the most to the association of ALT (weight = 0.438) and HSI (weight = 0.570), Pb contributed the most to the association of GGT (weight = 0.421) and Hg contributed the most to the correlation of TBIL (weight = 0.331). CONCLUSIONS Blood heavy metal levels were significantly associated with liver function parameters. Further studies are required to clarify the relationship between heavy metals and liver function.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Xinyan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Jing Su
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China; Department of Gastroenterology, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, 221009, China.
| | - Han Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Ping Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Haisheng Qian
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Xin Gao
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Qiang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Xuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| |
Collapse
|
9
|
Chung JW, Acharya D, Singh JK, Sakong J. Association of Blood Mercury Level with Liver Enzymes in Korean Adults: An Analysis of 2015-2017 Korean National Environmental Health Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3290. [PMID: 36833981 PMCID: PMC9962598 DOI: 10.3390/ijerph20043290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Increased liver enzymes as a result of exposure to mercury and their toxic effects are not well understood in Korea at the population level. The effect of blood mercury concentration on alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was evaluated after adjusting for sex, age, obesity, alcohol consumption habit, smoking, and exercise parameters in 3712 adults. The risk of abnormal liver function was measured using a multiple logistic regression analysis. Blood mercury concentration was divided into quartiles, and liver enzyme levels were compared for each quartile. ALT and AST levels were 10-20% higher in the second, third, and fourth quartiles compared to the first quartile. The risk of liver dysfunction or elevated liver enzymes was significantly higher in the second, third, and fourth quartiles than in the first quartile. As blood mercury levels increased, liver enzymes and mercury-induced hepatotoxicity increased. The increase in liver enzymes caused by mercury was more pronounced in the low-mercury concentration range. To reduce the long-standing problem of abnormal liver enzymes and liver function in Korea and other similar settings, it is important to decrease exposure to mercury through effective implementation of specific health and environmental strategies.
Collapse
Affiliation(s)
- Jin-Wook Chung
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Keimyung University Dongsan Medical Center, Daegu 41931, Republic of Korea
| | - Dilaram Acharya
- Department of Management, Evaluation and Health Policy, School of Public Health, Université de Montréal, Montréal, QC H3N 1X9, Canada
- Medical Affairs and Innovation, Héma-Québec, Montréal, QC H4R 2W7, Canada
| | - Jitendra Kumar Singh
- Department of Community Medicine, Janaki Medical College, Tribhuvan University, Janakpur 456000, Nepal
| | - Joon Sakong
- Department of Preventive Medicine and Public Health, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| |
Collapse
|
10
|
Asif MZ, Umair M, Shehryar M. Letter to the editor: In utero exposure to mercury is associated with increased susceptibility to liver injury and inflammation in childhood. Hepatology 2023; 77:E38. [PMID: 36054063 DOI: 10.1002/hep.32768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 01/28/2023]
|
11
|
Guo Y, Lv Y, Liu X, Wang G. Association between heavy metal mercury in body fluids and tissues and diabetes mellitus: a systematic review and meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:114. [PMID: 36819500 PMCID: PMC9929836 DOI: 10.21037/atm-22-6404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023]
Abstract
Background Recent studies have shown that the relationship between mercury exposure and diabetes is controversial. The aim of this study is to determine the relationship between mercury exposure and diabetes using a systematic review and meta-analysis approach. Methods We systematically searched PubMed, Web of Science, Cochrane, and Embase databases for cross-sectional, case-control, or cohort studies assessing the correlation between mercury exposure and diabetes in any population. Details of each included study were extracted using a pre-designed Excel spreadsheet. Quality assessment of cohort and case-control studies used the Newcastle-Ottawa Scale (NOS), whereas cross-sectional studies were assessed by the Agency for Healthcare Research and Quality (AHRQ) scale. Meta-analyses were performed using random-effects models to calculate the pooled odds ratio (OR), standardized mean difference (SMD), and their 95% confidence intervals (CIs). Subgroup and sensitivity analyses were employed to assess heterogeneity sources. Begg's and Egger's tests were used to evaluate publication bias. Results Our meta-analysis included 8 eligible articles, comprising a total of 40,891 subjects, reporting mercury OR and/or concentrations. Among the included studies, one was a case control, one was a cohort study, and the rest were cross-sectional studies. Two studies were rated as high quality and six as medium quality. The results revealed no link between mercury exposure and diabetes (OR: 1.11, 95% CI: 0.80, 1.55, n=6, I2=73.7%; and SMD: 0.41, 95% CI: -0.32, 1.14, n=3, I2=88.7%). In the stratified male and female subgroups, the pooled OR was 0.71 (95% CI: 0.57, 0.90, n=3, I2=0.0%), 1.11 (95% CI: 0.69, 1.79, n=3, I2=67.7%). The Begg's test results revealed no significant publication bias (P=0.06), but the Egger's test results did (P=0.013). The sensitivity analysis confirmed the stability of our results. Conclusions No significant relationship was observed between mercury and diabetes mellitus. However, more well-designed studies on mercury exposure and diabetes risk are still needed, particularly on the type of mercury (i.e., elemental, inorganic, and organic), exposure time and dose, type of biological specimen, and the population's sex and age.
Collapse
Affiliation(s)
- Yunran Guo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xinming Liu
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Yan J, Zhang H, Niu J, Luo B, Wang H, Tian M, Li X. Effects of lead and cadmium co-exposure on liver function in residents near a mining and smelting area in northwestern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4173-4189. [PMID: 35037141 DOI: 10.1007/s10653-021-01177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Chronic exposure to environmental cadmium (Cd) and lead (Pb) may have adverse effects on the human health. In this study, we aimed to determine the primary and interactive effects of Cd and Pb exposure on liver function in residents near a mining and smelting area in northwestern China. A total of 451 subjects were recruited, from which blood samples were collected to determine the levels of Cd, Pb, and liver function indices. Additionally, the association between the levels of exposure markers and liver function indices was analysed. Cd and Pb levels were significantly higher in subjects living in the polluted area than in those living in the non-polluted reference area. The liver function levels of subjects in the polluted area were poor compared with those in the reference area. In addition, Cd and Pb levels in the blood were positively associated with gamma glutamyl transpeptidase (GGT) levels and negatively associated with direct bilirubin (DBil) levels. Cd and Pb may be risk factors for abnormal liver function. The risk of abnormal liver function was higher in subjects with moderate Cd and Pb levels, high Cd levels, high Pb levels, and high Cd and Pb levels than in those with low Cd and Pb levels. Our data show that exposure to Cd and/or Pb can cause abnormal liver function. Cd and Pb may have an antagonistic effect on liver function, and high Cd exposure alone has a more profound effect on abnormal liver function compared with co-exposure to Pb and Cd.
Collapse
Affiliation(s)
- Jun Yan
- Department of General Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Chengguan District, Lanzhou, 730030, Gansu, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Honglong Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jingping Niu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Bin Luo
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Haiping Wang
- Department of General Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Chengguan District, Lanzhou, 730030, Gansu, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Meng Tian
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Chengguan District, Lanzhou, 730030, Gansu, People's Republic of China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China.
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
13
|
Nguyen HD, Kim MS. Cadmium, lead, and mercury mixtures interact with non-alcoholic fatty liver diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119780. [PMID: 35841990 DOI: 10.1016/j.envpol.2022.119780] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
There is a scarcity of studies on the interactions between heavy metals and non-alcoholic fatty liver disease (NAFLD). Using a variety of statistical approaches, we investigated the impact of three common heavy metals on liver enzymes and NAFLD markers in a Korean adult population. We observed that cadmium, mercury, and lead all demonstrated positive correlations with liver enzymes and NAFLD indices. Our findings were mostly robust in secondary analysis, which included three novel mixture modeling approaches (WQS, qgcomp, and BKMR) as well as in silico investigation of molecular mechanisms (genes, miRNAs, biological processes, pathways, and illnesses). The 16 genes interacted with a mixture of heavy metals, which was linked to the development of NAFLD. Co-expression was discovered in nearly half of the interactions between the 18 NAFLD-linked genes. Key molecular pathways implicated in the pathogenesis of NAFLD generated by the heavy metal combination include activated oxidative stress, altered lipid metabolism, and increased cytokines and inflammatory response. Heavy metal exposure levels were related to liver enzymes and NAFLD indices, and cutoff criteria were revealed. More studies are needed to validate our findings and gain knowledge about the effects of chronic combined heavy metal exposure on adult and child liver function and the likelihood of developing NAFLD. To reduce the occurrence of NAFLD, early preventative and regulatory actions (half-yearly screening of workers at high-risk facilities; water filtration; avoiding excessive amounts of seafood, etc.) should be taken.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea.
| |
Collapse
|
14
|
Zhou X, Feng Y, Gong Z. Associations between lead, cadmium, mercury, and arsenic exposure and alanine aminotransferase elevation in the general adult population: an exposure-response analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53633-53641. [PMID: 35292896 DOI: 10.1007/s11356-022-19698-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Cadmium, lead, mercury, and arsenic are among the most toxic environmental contaminants. Serum alanine aminotransferase (ALT) is the most common liver biomarker. This analysis aimed to explore the associations between blood cadmium, lead, mercury, urinary total arsenic, and dimethylarsinic acid and ALT elevation in adults. Data were extracted from 5 National Health and Nutrition Examination Survey cycles (NHANES) 2007-2016. Patients with chronic viral hepatitis and excessive alcohol consumption were excluded. ALT elevation was defined according to the 2017 American College of Gastroenterology Clinical Guideline. Logistic models and restricted cubic splines were adopted to assess the exposure-response relationships. Comparing the highest to lowest quintile of exposure, the multivariable-adjusted odds ratios (95% confidence intervals) of ALT elevation were 1.38 (1.07-1.78) for blood lead (Pfor trend = 0.01), 1.37 (1.16-1.62) for blood mercury (Pfor trend < 0.01), 0.94 (0.78-1.14) for blood cadmium (Pfor trend = 0.64), 1.07 (0.79-1.45) for urinary total arsenic (Pfor trend = 0.81), and 1.25 (0.94-1.66) for urinary dimethylarsinic acid (Pfor trend = 0.18). The associations between blood lead and mercury and ALT elevation were only observed in women. In addition, the associations between urinary total arsenic [1.53 (1.02-2.29), Pfor trend = 0.02] and dimethylarsinic acid [2.17 (1.05-4.49), Pfor trend = 0.02] and ALT elevation were also observed in women. Dose-response analysis showed that there was no safe exposure threshold of blood lead and mercury's toxic effect on ALT elevation, respectively. In conclusion, lead, mercury and arsenic were associated with ALT elevation in adults, and the associations were mainly observed in women.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Department of Center Office, Kunshan Centers for Disease Control and Prevention, Kunshan, 215300, Jiangsu, China
| | - Yijun Feng
- Department of Center Office, Kunshan Centers for Disease Control and Prevention, Kunshan, 215300, Jiangsu, China.
- Department of Nursing, Zhouzhuang People's Hospital, Kunshan Centers for Disease Control and Prevention, No. 567, South Tongcheng Road, Kunshan, 215300, Jiangsu, China.
| | - Zonglin Gong
- Department of Center Office, Kunshan Centers for Disease Control and Prevention, Kunshan, 215300, Jiangsu, China
| |
Collapse
|
15
|
Moon MK, Lee I, Lee A, Park H, Kim MJ, Kim S, Cho YH, Hong S, Yoo J, Cheon GJ, Choi K, Park YJ, Park J. Lead, mercury, and cadmium exposures are associated with obesity but not with diabetes mellitus: Korean National Environmental Health Survey (KoNEHS) 2015-2017. ENVIRONMENTAL RESEARCH 2022; 204:111888. [PMID: 34403664 DOI: 10.1016/j.envres.2021.111888] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Associations of heavy metal exposures with obesity and obesity-related traits have been suggested, while those with nonalcoholic fatty liver disease (NAFLD) and diabetes mellitus (DM) are often inconsistent. METHODS This study included 3787 adults aged ≥19 years who participated in the Korean National Environmental Health Survey 2015-2017, and investigated the association of toxic heavy metals with metabolic diseases. Lead (Pb), mercury (Hg), and cadmium (Cd) were measured either in urine (uHg, uCd) or total blood (bPb, bHg). Body mass index (BMI) was calculated, and DM cases were identified through a self-answered medication history. Hepatic Steatosis Index (HSI) as a surrogating index of NAFLD, was calculated using hepatic enzyme measurements, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT). RESULTS Adults in the highest quartile of bPb, bHg, and uHg showed significantly elevated odds of obesity (BMI ≥25 kg/m2), compared to the lowest quartile (OR 1.58 for bPb, 1.92 for bHg, and 1.81 for uHg). HSI was positively correlated with bHg, uHg, and uCd concentrations. The odds of NAFLD (HSI ≥36) were also increased with increasing quartile of bHg, uHg, and uCd concentrations. For DM, bPb showed a significant negative association, while bHg and uCd exhibited non-monotonic and inconclusive associations. CONCLUSIONS Among the general adult population of Korea, both Pb and Hg exposures were associated with an increased risk of obesity. In addition, both Hg and Cd exposures were associated with increased odds of NAFLD. These metals, however, were not associated with an increased risk of DM.
Collapse
Affiliation(s)
- Min Kyong Moon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Division of Endocrinology, Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Inae Lee
- School of Public Health, Seoul National University, Seoul, South Korea
| | - Aram Lee
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, South Korea
| | - Hyunwoong Park
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Min Joo Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Sunmi Kim
- School of Public Health, Seoul National University, Seoul, South Korea; Chemical Safety Research Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Yoon Hee Cho
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Sooyeon Hong
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Jiyoung Yoo
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, South Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Jeongim Park
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, South Korea.
| |
Collapse
|
16
|
Shirkhanloo H, Golbabaei F, Vahid A, Faghihi Zarandi A. A novel nano-palladium embedded on the mesoporous silica nanoparticles for mercury vapor removal from air by the gas field separation consolidation process. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Stratakis N, Golden-Mason L, Margetaki K, Zhao Y, Valvi D, Garcia E, Maitre L, Andrusaityte S, Basagana X, Borràs E, Bustamante M, Casas M, Fossati S, Grazuleviciene R, Haug LS, Heude B, McEachan RR, Meltzer HM, Papadopoulou E, Roumeliotaki T, Robinson O, Sabidó E, Urquiza J, Vafeiadi M, Varo N, Wright J, Vos MB, Hu H, Vrijheid M, Berhane KT, Conti DV, McConnell R, Rosen HR, Chatzi L. In Utero Exposure to Mercury Is Associated With Increased Susceptibility to Liver Injury and Inflammation in Childhood. Hepatology 2021; 74:1546-1559. [PMID: 33730435 PMCID: PMC8446089 DOI: 10.1002/hep.31809] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) is the most prevalent cause of liver disease in children. Mercury (Hg), a ubiquitous toxic metal, has been proposed as an environmental factor contributing to toxicant-associated fatty liver disease. APPROACH AND RESULTS We investigated the effect of prenatal exposure to Hg on childhood liver injury by combining epidemiological results from a multicenter mother-child cohort with complementary in vitro experiments on monocyte cells that are known to play a key role in liver immune homeostasis and NAFLD. We used data from 872 mothers and their children (median age, 8.1 years; interquartile range [IQR], 6.5-8.7) from the European Human Early-Life Exposome cohort. We measured Hg concentration in maternal blood during pregnancy (median, 2.0 μg/L; IQR, 1.1-3.6). We also assessed serum levels of alanine aminotransferase (ALT), a common screening tool for pediatric NAFLD, and plasma concentrations of inflammation-related cytokines in children. We found that prenatal Hg exposure was associated with a phenotype in children that was characterized by elevated ALT (≥22.1 U/L for females and ≥25.8 U/L for males) and increased concentrations of circulating IL-1β, IL-6, IL-8, and TNF-α. Consistently, inflammatory monocytes exposed in vitro to a physiologically relevant dose of Hg demonstrated significant up-regulation of genes encoding these four cytokines and increased concentrations of IL-8 and TNF-α in the supernatants. CONCLUSIONS These findings suggest that developmental exposure to Hg can contribute to inflammation and increased NAFLD risk in early life.
Collapse
Affiliation(s)
- Nikos Stratakis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lucy Golden-Mason
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Katerina Margetaki
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yinqi Zhao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Erika Garcia
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Léa Maitre
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Xavier Basagana
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Eva Borràs
- Universitat Pompeu Fabra, Barcelona, Spain,Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mariona Bustamante
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Maribel Casas
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Serena Fossati
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | | | | | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Rosemary R.C. McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | | | | | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Oliver Robinson
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Eduard Sabidó
- Universitat Pompeu Fabra, Barcelona, Spain,Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose Urquiza
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Nerea Varo
- Laboratorio de Bioquímica, Clínica Universidad de Navarra, Pamplona, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Miriam B. Vos
- Department of Pediatrics, School of Medicine and Nutrition Health Sciences, Emory University, Atlanta, GA,Children’s Healthcare of Atlanta, Atlanta, GA
| | - Howard Hu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Martine Vrijheid
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Kiros T. Berhane
- Mailman School of Public Health, Columbia University, New York, NY
| | - David V. Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Hugo R. Rosen
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
18
|
Yang YJ, Yang EJ, Park K, Oh S, Kim T, Hong YP. Association between Blood Mercury Levels and Non-Alcoholic Fatty Liver Disease in Non-Obese Populations: The Korean National Environmental Health Survey (KoNEHS) 2012-2014. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126412. [PMID: 34199270 PMCID: PMC8296250 DOI: 10.3390/ijerph18126412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 12/04/2022]
Abstract
Mercury is widely distributed in the environment, and a plausible association between mercury exposure and hepatic damage has been reported. Non-alcoholic fatty liver disease (NAFLD), which comprises a spectrum of liver diseases, has recently been recognized in non-obese subjects. However, there have been no studies on the relationship between internal mercury levels and NAFLD in non-obese individuals. Therefore, we investigated the association between blood mercury levels and NAFLD in non-obese subjects. Cross-sectional data (n = 5919) were obtained from the Korean National Environmental Health Survey (2012–2014). NAFLD was defined using the hepatic steatosis index (HSI). Blood mercury levels were log-transformed and divided into quartiles based on a weighted sample distribution. The association between blood mercury levels and NAFLD was analyzed using a multivariate logistic analysis after body mass index stratification. The geometric mean of blood mercury in the overweight group was significantly higher than that of the non-obese group (p < 0.001). The weighted frequencies of patients with NAFLD based on the HSI were 3.0–7.2% for the non-obese subjects and 52.3–63.2% for the overweight subjects. In the multivariate analysis, blood mercury levels were positively associated with NAFLD for both the overweight and non-obese groups (all p for trend < 0.001). Increased blood mercury levels are closely associated with NAFLD. In particular, mercury could be a risk factor for NAFLD in the non-obese population.
Collapse
Affiliation(s)
- Yun-Jung Yang
- Institute of Biomedical Science, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Korea;
| | - Eun-Jung Yang
- Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Kyongjin Park
- College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (K.P.); (S.O.); (T.K.)
| | - Subin Oh
- College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (K.P.); (S.O.); (T.K.)
| | - Taehyen Kim
- College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (K.P.); (S.O.); (T.K.)
| | - Yeon-Pyo Hong
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
- Correspondence: ; Tel.: +82-2-820-5667
| |
Collapse
|
19
|
Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol 2021; 12:643972. [PMID: 33927623 PMCID: PMC8078867 DOI: 10.3389/fphar.2021.643972] [Citation(s) in RCA: 647] [Impact Index Per Article: 215.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
The industrial activities of the last century have caused massive increases in human exposure to heavy metals. Mercury, lead, chromium, cadmium, and arsenic have been the most common heavy metals that induced human poisonings. Here, we reviewed the mechanistic action of these heavy metals according to the available animal and human studies. Acute or chronic poisonings may occur following exposure through water, air, and food. Bioaccumulation of these heavy metals leads to a diversity of toxic effects on a variety of body tissues and organs. Heavy metals disrupt cellular events including growth, proliferation, differentiation, damage-repairing processes, and apoptosis. Comparison of the mechanisms of action reveals similar pathways for these metals to induce toxicity including ROS generation, weakening of the antioxidant defense, enzyme inactivation, and oxidative stress. On the other hand, some of them have selective binding to specific macromolecules. The interaction of lead with aminolevulinic acid dehydratase and ferrochelatase is within this context. Reactions of other heavy metals with certain proteins were discussed as well. Some toxic metals including chromium, cadmium, and arsenic cause genomic instability. Defects in DNA repair following the induction of oxidative stress and DNA damage by the three metals have been considered as the cause of their carcinogenicity. Even with the current knowledge of hazards of heavy metals, the incidence of poisoning remains considerable and requires preventive and effective treatment. The application of chelation therapy for the management of metal poisoning could be another aspect of heavy metals to be reviewed in the future.
Collapse
Affiliation(s)
- Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Kobra Naseri
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zoya Tahergorabi
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
20
|
Chung SM, Moon JS, Yoon JS, Won KC, Lee HW. The sex-specific effects of blood lead, mercury, and cadmium levels on hepatic steatosis and fibrosis: Korean nationwide cross-sectional study. J Trace Elem Med Biol 2020; 62:126601. [PMID: 32634767 DOI: 10.1016/j.jtemb.2020.126601] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/02/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
AIM The potential effects of heavy metals on non-alcoholic fatty liver disease (NAFLD) remain unknown. We investigated the sex-specific relationships of blood lead (BPb), mercury (BHg), and cadmium (BCd) levels with hepatic steatosis (HS) and fibrosis (HF). METHOD We included 4420 participants from the 2016-2017 Korea National Health and Nutrition Examination Survey. High-risk alcoholics and patients with chronic hepatitis B or C infections or liver cirrhosis were excluded. We calculated the hepatic steatosis index (HSI) and fibrosis-4 index (FIB-4) values; we defined the presence of HS and HF as an HSI ≥ 36 and FIB-4 score >2.67, respectively. We adjusted for age, smoking and alcohol consumption statuses, hypertension, obesity, diabetes, hypertriglyceridemia, and BPb, BHg, and BCd levels. RESULT In males (n = 1860), the HSI was correlated negatively with the BPb level and positively with the BHg level (both p < 0.01). The FIB-4 score was correlated positively with the BPb and BCd levels (both p < 0.01). In females (n = 2560), the HSI and FIB-4 score were correlated positively with the BPb, BHg, and BCd levels (all p < 0.01). After adjustments, the BHg level increased the risk of HS in both males (OR = 1.065, p = 0.003) and females (OR = 1.061, p = 0.048), and the BCd level increased the risk of HF in females (OR = 1.668, p = 0.012). CONCLUSION Blood heavy metal levels were generally correlated positively with the HSI and FIB4 score, more so in females than males. The BHg level was associated with HS in males and females, and the BCd level was associated with HF in females. Further studies on NAFLD progression according to heavy metal status and sex are warranted.
Collapse
Affiliation(s)
- Seung Min Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam College of Medicine, Daegu, Republic of Korea.
| | - Jun Sung Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam College of Medicine, Daegu, Republic of Korea.
| | - Ji Sung Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam College of Medicine, Daegu, Republic of Korea.
| | - Kyu Chang Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam College of Medicine, Daegu, Republic of Korea.
| | - Hyoung Woo Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
21
|
Sivapandi K, Velumani A, Kallathiyan K, Iyer S, Sinkar P. Blood mercury and liver enzymes: A pan-India retrospective correlation study. Toxicol Ind Health 2020; 36:1019-1023. [PMID: 33200688 DOI: 10.1177/0748233720970437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mercury (Hg) is a toxic heavy metal, and the reported effects of exposure on liver function continue to be inconsistent. The objective of our study was to identify correlations between high blood Hg levels and liver enzymes in a pan-India population including adults ≥19 years of age. This retrospective study analyzed the data from 95,398 individuals tested for blood Hg levels and liver enzymes in our national laboratory. Testing for blood Hg was done by inductively coupled plasma-mass spectrometry, while testing for liver enzymes-aspartate aminotransferase (AST/SGOT), alanine aminotransferase (ALT/SGPT), and gamma-glutamyl transferase-was done by automated photometry systems. Data from all the individuals inclusive of 52,497 males and 42,901 females were studied. The frequency of high blood Hg levels (>5 µg/L) was found to be 0.6%, and the difference between males and females was not found to be significant. Further correlation by linear regression analysis found no relationship between high blood Hg levels and liver enzymes among females. However, among males, there was a significant correlation between high blood Hg levels, and increased AST as well as ALT. Our report suggested that for males but not females, Hg exposure may be one of the differentials for elevated liver enzymes.
Collapse
Affiliation(s)
- Krishnakumar Sivapandi
- Analytical Chemistry Division, Thyrocare Technologies Limited, Navi Mumbai, Maharashtra, India
| | - Amruta Velumani
- Analytical Chemistry Division, Thyrocare Technologies Limited, Navi Mumbai, Maharashtra, India
| | | | - Sandhya Iyer
- Analytical Chemistry Division, Thyrocare Technologies Limited, Navi Mumbai, Maharashtra, India
| | - Prachi Sinkar
- Analytical Chemistry Division, Thyrocare Technologies Limited, Navi Mumbai, Maharashtra, India
| |
Collapse
|
22
|
Philibert A, Fillion M, Mergler D. Mercury exposure and premature mortality in the Grassy Narrows First Nation community: a retrospective longitudinal study. Lancet Planet Health 2020; 4:e141-e148. [PMID: 32353294 DOI: 10.1016/s2542-5196(20)30057-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Little is known about the influence of toxic exposures on reduced life expectancy in First Nations people in Canada. The Grassy Narrows First Nation community have lived with the consequences of one of the worst environmental disasters in Canadian history. In the early 1960s, 10 000 kg of mercury (Hg) was released into their aquatic ecosystem. Although Hg concentration in fish, their dietary staple, decreased over time, it remains high. We aimed to examine whether elevated Hg exposure over time contributes to premature mortality (younger than 60 years) in this community. METHODS We did longitudinal and case-control analyses with data for individuals of the Grassy Narrows First Nation community. In 2019, the community obtained their historical Hg biomarker data from a government surveillance programme, which was then shared with the authors. A matched-pair approach allowed us to compare longitudinal hair Hg concentration between cases (individuals who died aged younger than 60 years) and controls (individuals who lived beyond 60 years). Matching criteria included year of birth (allowing 2 years either side), sex, and a minimum of four hair Hg concentration measures, of which at least two were in the same year. Analyses included change-point detection, interrupted time series, mixed models, and Cox survival models. FINDINGS We analysed data collected between Jan 1, 1970, and Jan 31, 1997, for 657 individuals (319 women and 338 men, born between 1884 and 1991) for whom we assembled a retrospective database of yearly measures of hair Hg concentration (n=3603). Hair Hg concentration decreased over time. A subgroup of 222 individuals (107 women and 115 men) reached or could have reached 60 years old by August, 2019. There was an increased risk of dying at a younger age among those with at least one hair Hg measure of 15 μg/g or more (adjusted hazard ratio 1·55, 95% CI 1·11-2·16; p=0·0088). Among the deceased individuals (n=154), longevity decreased by 1 year with every 6·25 μg/g (4·35-14·29) increase in hair Hg concentration. Analyses of 36 matched pairs showed that hair Hg concentration of those who died aged younger than 60 years was 4·7 times higher (3·4-5·9) than controls. INTERPRETATION The consistent findings between our different analyses support an association between long-term Hg exposure from freshwater fish consumption and premature mortality in this First Nation community. There is a need to do risk-benefit analyses of freshwater fish consumption in environmentally contaminated regions. FUNDING Canadian Institutes of Health Research.
Collapse
Affiliation(s)
- Aline Philibert
- Université du Québec à Montréal, Centre de recherche interdisciplinaire sur le bien-être, la santé, la société et l'environnement (Cinbiose), Montréal, QC, Canada
| | - Myriam Fillion
- Université du Québec à Montréal, Centre de recherche interdisciplinaire sur le bien-être, la santé, la société et l'environnement (Cinbiose), Montréal, QC, Canada; Département Science et Technologie, Université TÉLUQ, Montréal, QC, Canada
| | - Donna Mergler
- Université du Québec à Montréal, Centre de recherche interdisciplinaire sur le bien-être, la santé, la société et l'environnement (Cinbiose), Montréal, QC, Canada.
| |
Collapse
|
23
|
Jamadagni S, Jamadagni P, Angom B, Mondal D, Upadhyay S, Gaidhani S, Hazra J. Tissue distribution of mercury and copper after Aarogyavardhini Vati treatment in rat model of CCl 4 induced chronic hepatotoxicity. J Ayurveda Integr Med 2020; 11:508-514. [PMID: 32035767 PMCID: PMC7772489 DOI: 10.1016/j.jaim.2019.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022] Open
Abstract
Background Aarogyavardhini Vati is a classical Ayurvedic herbomineral formulation. It contains mercury and copper compounds as principal minerals along with other minerals and herbal ingredients. Aarogyavardhini Vati is indicated in chronic liver ailments. However, safety concerns are often raised regarding the use of mercury containing ayurvedic drugs in disease conditions due to the risk of mercury and copper toxicity. Objective This study was performed to address the safety concerns regarding mercury and copper toxicity from Ayurvedic herbomineral formulations by investigating accumulation of these minerals in tissues and subsequent toxicity in chronic hepatotoxicity rat model. Materials and methods Quantification of mercury and copper in Aarogyavardhini Vati was done. Chronic hepatotoxicity was induced in the Wistar rats by repeated administration of CCl4 for 8 weeks. Animals were treated with Aarogyavardhini Vati for various durations. Post treatment of 8 weeks, serum biochemical marker estimations was done. Estimation of mercury and copper from the liver, kidney and brain tissues was done after animal sacrifice. Histopathology evaluation of visceral organs was also performed. Results Treatment with Aarogyavardhini Vati exhibited significant accumulation of mercury in the kidney but not in the brain and liver. Similarly, no significant accumulation of copper was observed in liver, kidney, and brain due to the treatment of Aarogyavardhini Vati. Serum biochemical and histopathological changes were not affected by the treatment with Aarogyavardhini Vati. Conclusion Aarogyavardhini Vati did not show any biologically significant potential to cause toxicity due to its mercury and copper content when administered for prolonged duration to rats with chronic hepatotoxicity.
Collapse
Affiliation(s)
- Shrirang Jamadagni
- Regional Ayurveda Institute for Fundamental Research, Nehru Garden, Gandhi Bhawan Road, Kothrud, Pune, 411038, India.
| | - Pallavi Jamadagni
- Regional Ayurveda Institute for Fundamental Research, Nehru Garden, Gandhi Bhawan Road, Kothrud, Pune, 411038, India
| | - Binita Angom
- Central Ayurveda Research Institute of Drug Development, 4CN, Sector -5, Bidhannagar, Kolkata, 700091, India
| | - Dhirendranath Mondal
- Central Ayurveda Research Institute of Drug Development, 4CN, Sector -5, Bidhannagar, Kolkata, 700091, India
| | - Sachchidanand Upadhyay
- Central Ayurveda Research Institute of Drug Development, 4CN, Sector -5, Bidhannagar, Kolkata, 700091, India
| | - Sudesh Gaidhani
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Govt. of India, 61-65, Institutional Area, Opposite D Block, Janakpuri, New Delhi, 110058, India
| | - Jayram Hazra
- Central Ayurveda Research Institute of Drug Development, 4CN, Sector -5, Bidhannagar, Kolkata, 700091, India
| |
Collapse
|
24
|
Kershaw JL, Hall AJ. Mercury in cetaceans: Exposure, bioaccumulation and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133683. [PMID: 31394330 DOI: 10.1016/j.scitotenv.2019.133683] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 05/27/2023]
Abstract
The fate and transportation of mercury in the marine environment are driven by a combination of anthropogenic atmospheric and aquatic sources, as well as natural geological inputs. Mercury biomagnifies up the food chain, resulting in the bioaccumulation of toxic concentrations in higher trophic organisms even when concentrations in their habitat remain below the threshold level for direct toxicity. As a result, mercury exposure has been recognised as a health concern for both humans and top marine predators, including cetaceans. There appears to be no overall trend in the global measured concentrations reported in cetaceans between 1975 and 2010, although differences between areas show that the highest concentrations in recent decades have been measured in the tissues of Mediterranean odontocetes. There is increasing concern for the impacts of mercury on the Arctic marine ecosystem with changes in water temperatures, ocean currents, and prey availability, all predicted to affect exposure. The accumulation of mercury in various tissues has been linked to renal and hepatic damage as well as reported neurotoxic, genotoxic, and immunotoxic effects. These effects have been documented through studies on stranded and by-caught cetaceans as well as in vitro cell culture experiments. Demethylation of methylmercury and protection by selenium have been suggested as possible mercury detoxification mechanisms in cetaceans that may explain the very high concentrations measured in tissues of some species with no apparent acute toxicity. Thus, the ratio of selenium to mercury is of importance when aiming to determine the impact of the contaminant load at an individual level. The long-term population level effects of mercury exposure are unknown, and continued monitoring of odontocete populations in particular is advised in order to predict the consequences of mercury uptake on marine food chains in the future.
Collapse
Affiliation(s)
- Joanna L Kershaw
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK.
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
| |
Collapse
|
25
|
Chen R, Xu Y, Xu C, Shu Y, Ma S, Lu C, Mo X. Associations between mercury exposure and the risk of nonalcoholic fatty liver disease (NAFLD) in US adolescents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31384-31391. [PMID: 31473923 DOI: 10.1007/s11356-019-06224-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Little is known regarding the effects of environmental mercury (Hg) exposure on liver dysfunction in adolescents. We aimed to explore the association between Hg exposure and the risk of nonalcoholic fatty liver disease (NAFLD) in the adolescent population. The cross-sectional associations between blood Hg concentrations and serum alanine aminotransferase (ALT) levels, a surrogate for suspected NAFLD, were evaluated using data from adolescents (aged 12-17 years old) who participated in the National Health and Nutrition Examination Survey (NHANES), 1999-2014. A final sample of 6389 adolescents was analysed. Elevated ALT was defined as > 25 IU/L and > 22 IU/L for boys and girls ≤ 17 years old, respectively. Odds ratios (ORs) of Hg levels in association with serum ALT levels were estimated using a logistic regression after adjusting for gender, age, ethnicity, serum cotinine, body mass index, the poverty income ratio, and NHANES cycles. The median blood Hg level was 0.73 ± 0.91 μg/L amongst US adolescents. In the adjusted model, the ORs of elevated ALT levels of those in the 4th quartile were higher amongst non-Hispanic white adolescents (OR = 1.76, 95% CI 1.20, 2.59; P = 0.035) and those who were normal or underweight (OR = 1.41, 95% CI 1.08, 1.85; P = 0.020). No association was observed for the other variables. Our results indicate that the positive association between blood Hg exposure and the risk of NAFLD in US adolescents is the highest amongst non-Hispanic white and those who are normal or underweight, regardless of ethnicity. More research is necessary to confirm this association and to clarify the potential mechanisms.
Collapse
Affiliation(s)
- Runsen Chen
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yang Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Cheng Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yaqin Shu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Siyu Ma
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Changgui Lu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
26
|
Oliveira CS, Nogara PA, Ardisson-Araújo DMP, Aschner M, Rocha JBT, Dórea JG. Neurodevelopmental Effects of Mercury. ADVANCES IN NEUROTOXICOLOGY 2018; 2:27-86. [PMID: 32346667 PMCID: PMC7188190 DOI: 10.1016/bs.ant.2018.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The toxicology of mercury (Hg) is of concern since this metal is ubiquitously distributed in the environment, and living organisms are routinely exposed to Hg at low to high levels. The toxic effects of Hg are well studied and it is known that they may differ depending on the Hg chemical species. In this chapter, we emphasize the neurotoxic effects of Hg during brain development. The immature brain is more susceptible to Hg exposure, since all the Hg chemical forms, not only the organic ones, can harm it. The possible consequences of Hg exposure during the early stages of development, the additive effects with other co-occurring neurotoxicants, and the known mechanisms of action and targets will be addressed in this chapter.
Collapse
Affiliation(s)
- Cláudia S Oliveira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Pablo A Nogara
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniel M P Ardisson-Araújo
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Laboratório de Virologia de Insetos, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - José G Dórea
- Professor Emeritus, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|