1
|
Zakowicz P, Skibińska M, Waśniewski F, Skulimowski B, Pawlak J. Plasma biomarkers in adolescents with schizophrenia-spectrum disorder. Early Interv Psychiatry 2023; 17:1154-1161. [PMID: 37041682 DOI: 10.1111/eip.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/03/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
AIM Schizophrenia onset in the developmental age has a strong neurodevelopmental burden and is associated with a poorer prognosis. The approach to diagnosis is still based on symptomatic description without objective validation. In this study, we aimed to compare the peripheral blood levels of hypothesized biomarker proteins: brain-derived neurotrophic factor (BDNF), proBDNF, p75 neurotrophin receptor (p75NTR ) and S100B between early-onset schizophrenia-spectrum adolescents (n = 45) and healthy controls (n = 34). METHODS Clinical assessment of the participants encompassed symptomatic description with the use of structured interviews and executive function objective measurement. Plasma levels of BDNF protein were significantly lower in schizophrenia patients than in controls both at admission (p = .003) and 6-8 weeks follow-up (p = .007). RESULTS We observed significant correlations between BDNF, proBDNF and p75NTR levels and positive and negative symptoms scale (PANSS) scores, p75NTR and S100B levels and suicidal parameters, as well as a correlation of BDNF plasma level with the risky decision-making style in Iowa Gambling Task (IGT). CONCLUSIONS The results indicate a potential value of studied proteins as a biomarker in the diagnosis and monitoring of the disease's course.
Collapse
Affiliation(s)
- Przemysław Zakowicz
- Department of Genetics in Psychiatry, Poznań University of Medical Sciences, Poznań, Poland
- Children and Adolescent Treatment Centre in Zabór, University of Zielona Góra, Zielona Góra, Poland
| | - Maria Skibińska
- Department of Genetics in Psychiatry, Poznań University of Medical Sciences, Poznań, Poland
| | - Filip Waśniewski
- Department of Genetics in Psychiatry, Poznań University of Medical Sciences, Poznań, Poland
| | - Bartosz Skulimowski
- Department of Genetics in Psychiatry, Poznań University of Medical Sciences, Poznań, Poland
| | - Joanna Pawlak
- Department of Genetics in Psychiatry, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
2
|
Agh F, Hasani M, Khazdouz M, Amiri F, Heshmati J, Aryaeian N. The Effect of Zinc Supplementation on Circulating Levels of Brain-Derived Neurotrophic Factor (BDNF): A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int J Prev Med 2022; 13:117. [PMID: 36276891 PMCID: PMC9580557 DOI: 10.4103/ijpvm.ijpvm_478_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/08/2021] [Indexed: 11/04/2022] Open
Abstract
Background There are randomized controlled trials (RCTs) about the zinc supplementation effect on circulating levels of brain-derived neurotrophic factor (BDNF). However, the findings of these studies are inconsistent. The purpose of this systematic review and meta-analysis was to determine the zinc supplementation effect on BDNF and zinc levels in published RCTs. Methods We searched PubMed/Medline, Cochrane, Scopus, ISI Web of Science, EMBASE, "Clinicaltrials.gov", "Cochrane Register of Controlled Trials", "IRCT" and also key journals up to 2019. RCTs with two intervention (zinc) and control (placebo) groups that evaluated zinc supplementation efficacy on BDNF levels were included. Study heterogeneity was assessed, and then, meta-analysis was performed using the fixed-effects model. Results Four studies were included in the present secondary analysis. Compared with placebo, zinc supplementation significantly enhanced circulating levels of BDNF [(SMD): 0.31, 95% confidence interval (CI): (0.22, 0.61)] and zinc [(SMD): 0.88, 95% CI: (0.54, 1.22)] with no considerable heterogeneity among the studies [(Q = 3.46; P = 0.32; I2% = 13.4); (Q = 2.01; P = 0, 37; I2% = 0.5), respectively]. Conclusions Our results propose that zinc supplementation can increase the circulating levels of BDNF and zinc. This study was registered at PROSPERO as CRD42020149513.
Collapse
Affiliation(s)
- Fahimeh Agh
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Motahareh Hasani
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Khazdouz
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amiri
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naheed Aryaeian
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran,Address for correspondence: Dr. Naheed Aryaeian, Department of Nutrition, School of Health, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, Iran. E-mail:
| |
Collapse
|
3
|
Do W, Baik J, Jeon S, You CM, Kang D, Jung YH, Lee J, Kim HK. Increased Brain-Derived Neurotrophic Factor Levels in Cerebrospinal Fluid During the Acute Phase in TBI-Induced Mechanical Allodynia in the Rat Model. J Pain Res 2022; 15:229-239. [PMID: 35125890 PMCID: PMC8809523 DOI: 10.2147/jpr.s344110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background The present study aimed to develop a rat model for mechanical allodynia after traumatic brain injury (TBI) and to investigate the expression of brain-derived neurotrophic factor (BDNF) in the cerebrospinal fluid (CSF) using this model. Methods A total of 180 rats were randomly allocated into three groups: a control group (group C), a sham-operated group (group S), and a controlled cortical impact induced TBI group (group T), 60 in each group. Von Frey test was performed to evaluate mechanical withdrawal thresholds. An enzyme-linked immunosorbent assay was performed to quantify BDNF level in CSF. Results The 50% withdrawal thresholds of group T were lower than those of group C and group S at all measuring points except for the preoperative period (P = 0.026, <0.001, and <0.001 for POD1, POD7, and POD14, respectively). The BDNF level of group T was higher than those of group C and group S at POD1 (P = 0.005). Conclusion Upregulation of the BDNF expression in CSF was observed in rats who developed mechanical allodynia on the day after TBI. Based on our findings, to elucidate the relationship between TBI-induced neuropathic pain and BDNF expression in CSF, further research should be carried out through a multifaceted approach to a broad spectrum of pain behavior models.
Collapse
Affiliation(s)
- Wangseok Do
- Department of Anesthesia and Pain Medicine and Biomedical Research Institute Pusan National University Hospital, Busan, Republic of Korea
| | - Jiseok Baik
- Department of Anesthesia and Pain Medicine and Biomedical Research Institute Pusan National University Hospital, Busan, Republic of Korea
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Republic of Korea
- Correspondence: Jiseok Baik, Department of Anesthesia and Pain Medicine and Biomedical Research Institute Pusan National University Hospital, 179 Gudeok-Ro, Seo-gu, Busan, 49241, Republic of Korea, Tel +82-51-240-7499, Fax +82-51-242-7466, Email
| | - Soeun Jeon
- Department of Anesthesia and Pain Medicine and Biomedical Research Institute Pusan National University Hospital, Busan, Republic of Korea
| | - Chang-Min You
- Department of Anesthesia and Pain Medicine and Biomedical Research Institute Pusan National University Hospital, Busan, Republic of Korea
| | - Dahyun Kang
- Department of Anesthesia and Pain Medicine and Biomedical Research Institute Pusan National University Hospital, Busan, Republic of Korea
| | - Young-Hoon Jung
- Department of Anesthesia and Pain Medicine and Biomedical Research Institute Pusan National University Hospital, Busan, Republic of Korea
| | - Jiyoon Lee
- Department of Anesthesia and Pain Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hae-Kyu Kim
- Department of Anesthesia and Pain Medicine and Biomedical Research Institute Pusan National University Hospital, Busan, Republic of Korea
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
4
|
Perry BI, Bowker N, Burgess S, Wareham NJ, Upthegrove R, Jones PB, Langenberg C, Khandaker GM. Evidence for Shared Genetic Aetiology Between Schizophrenia, Cardiometabolic, and Inflammation-Related Traits: Genetic Correlation and Colocalization Analyses. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac001. [PMID: 35156041 PMCID: PMC8827407 DOI: 10.1093/schizbullopen/sgac001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Schizophrenia commonly co-occurs with cardiometabolic and inflammation-related traits. It is unclear to what extent the comorbidity could be explained by shared genetic aetiology. METHODS We used GWAS data to estimate shared genetic aetiology between schizophrenia, cardiometabolic, and inflammation-related traits: fasting insulin (FI), fasting glucose, glycated haemoglobin, glucose tolerance, type 2 diabetes (T2D), lipids, body mass index (BMI), coronary artery disease (CAD), and C-reactive protein (CRP). We examined genome-wide correlation using linkage disequilibrium score regression (LDSC); stratified by minor-allele frequency using genetic covariance analyzer (GNOVA); then refined to locus-level using heritability estimation from summary statistics (ρ-HESS). Regions with local correlation were used in hypothesis prioritization multi-trait colocalization to examine for colocalisation, implying common genetic aetiology. RESULTS We found evidence for weak genome-wide negative correlation of schizophrenia with T2D (rg = -0.07; 95% C.I., -0.03,0.12; P = .002) and BMI (rg = -0.09; 95% C.I., -0.06, -0.12; P = 1.83 × 10-5). We found a trend of evidence for positive genetic correlation between schizophrenia and cardiometabolic traits confined to lower-frequency variants. This was underpinned by 85 regions of locus-level correlation with evidence of opposing mechanisms. Ten loci showed strong evidence of colocalization. Four of those (rs6265 (BDNF); rs8192675 (SLC2A2); rs3800229 (FOXO3); rs17514846 (FURIN)) are implicated in brain-derived neurotrophic factor (BDNF)-related pathways. CONCLUSIONS LDSC may lead to downwardly-biased genetic correlation estimates between schizophrenia, cardiometabolic, and inflammation-related traits. Common genetic aetiology for these traits could be confined to lower-frequency common variants and involve opposing mechanisms. Genes related to BDNF and glucose transport amongst others may partly explain the comorbidity between schizophrenia and cardiometabolic disorders.
Collapse
Affiliation(s)
- Benjamin I Perry
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Nicholas Bowker
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Golam M Khandaker
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
5
|
Huo L, Zheng Z, Lu X, Wu F, Ning Y, Zhang XY. Decreased Peripheral BDNF Levels and Cognitive Impairment in Late-Life Schizophrenia. Front Psychiatry 2021; 12:641278. [PMID: 34239458 PMCID: PMC8257950 DOI: 10.3389/fpsyt.2021.641278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/14/2021] [Indexed: 02/04/2023] Open
Abstract
Objectives: There are relatively few studies on mechanisms of cognitive deficits in late-life schizophrenia (LLS). Brain-derived neurotrophic factor (BDNF), as an important neuroplastic molecule, has been reported to be involved in neurocognitive impairment in schizophrenia. This study aimed to examine whether peripheral BDNF levels were associated with cognitive deficits in LLS, which has not been explored yet. Methods: Forty-eight LLS patients and 45 age-matched elderly controls were recruited. We measured all participants on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) for cognition and serum BDNF levels. Psychopathological symptoms in patients were assessed by the Positive and Negative Syndrome Scale (PANSS). Results: The levels of BDNF in LLS patients were significantly lower than those in healthy controls (8.80 ± 2.30 vs. 12.63 ± 5.08 ng/ml, p < 0.001). The cognitive performance of LLS patients was worse than that of the controls on RBANS total score and scores of immediate memory, attention, language, and delayed memory (all p ≤ 0.005). BDNF was positively associated with attention in LLS patients (r = 0.338, p = 0.019). Conclusion: Our findings suggest that older patients with schizophrenia exhibit lower BDNF levels and more cognitive deficits than older controls, supporting the accelerated aging hypothesis of schizophrenia. Moreover, decreased BDNF is related to attention deficits, indicating that BDNF might be a candidate biomarker of cognitive impairments in LLS patients.
Collapse
Affiliation(s)
- Lijuan Huo
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zhiwei Zheng
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Lu
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Fengchun Wu
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuping Ning
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiang Yang Zhang
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Gharipour M, Barekatain M, Sung J, Emami N, Sadeghian L, Dianatkhah M, Sarrafzadegan N, Jahanfar S. The Epigenetic Overlap between Obesity and Mood Disorders: A Systematic Review. Int J Mol Sci 2020; 21:ijms21186758. [PMID: 32942585 PMCID: PMC7555814 DOI: 10.3390/ijms21186758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 01/19/2023] Open
Abstract
(1) Background: Obesity and mood disorders are considered as the most prevalent morbidities in many countries. We suppose that epigenetic mechanisms may induce higher rates of obesity in subjects who suffer from mood disorders. In this systematic review, we focused on the potential roles of DNA methylation on mood disorders and obesity development. (2) Methods: This systematic review was conducted in accordance with the PRISMA statement and registered in Prospero. A systematic search was conducted in MEDLINE, Scopus, Web of Science, Cochrane Central database, EMBASE, and CINHAL. We also conducted a Grey literature search, such as Google Scholar. (3) Results: After deduplication, we identified 198 potentially related citations. Finally, ten unique studies met our inclusion criteria. We have found three overlap genes that show significant DNA methylation changes, both in obesity and depression. Pathway analysis interaction for TAPBP, BDNF, and SORBS2 confirmed the relation of these genes in both obesity and mood disorders. (4) Conclusions: While mechanisms linking both obesity and mood disorders to epigenetic response are still unknown, we have already known chronic inflammation induces a novel epigenetic program. As the results of gene enrichment, pathways analysis showed that TAPBP, BDNF, and SORBS2 linked together by inflammatory pathways. Hypermethylation in these genes might play a crucial rule in the co-occurrence of obesity and mood disorders.
Collapse
Affiliation(s)
- Mojgan Gharipour
- Isfahan Cardiovascular Research Center, Genetics and Epigenetics Department, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Majid Barekatain
- Department of Psychiatry, School of Medicine and Behavioral Science Research Center, Isfahan University of Medical Science, Isfahan 8174673461, Iran;
| | - Johoon Sung
- Department Public Health Science, Genome & Health Big Data, Seoul National University, Seoul 05649, Korea;
| | - Naghmeh Emami
- Research Department, Interventional Cardiology Research Center, Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Ladan Sadeghian
- Research Department, Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Minoo Dianatkhah
- Research Department, Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Shayesteh Jahanfar
- MPH Program, School of Public Health, Central Michigan University, Mount Pleasant, MI 48859, USA
- Correspondence: ; Tel.: +98-313-611-5116; Fax: +98-313-611-5303
| |
Collapse
|
7
|
Lin CC, Huang TL. Brain-derived neurotrophic factor and mental disorders. Biomed J 2020; 43:134-142. [PMID: 32386841 PMCID: PMC7283564 DOI: 10.1016/j.bj.2020.01.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that modulates neuroplasticity in the brain, and is one of the most widely investigated molecule in psychiatric disorders. The researches of BDNF emcompassed the advance of investigative techniques of past decades. BDNF researches ranged from protein quantilization, to RNA expression measurements, to DNA sequencing, and lately but not lastly, epigenetic studies. In this review, we will briefly address findings on BDNF protein levels, mRNA expression, Val66Met polymorphism, and epigenetic modifications, in schizophrenia, major depressive disorder (MDD), and bipolar disorder.
Collapse
Affiliation(s)
- Chin-Chuen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Sandrini L, Di Minno A, Amadio P, Ieraci A, Tremoli E, Barbieri SS. Association between Obesity and Circulating Brain-Derived Neurotrophic Factor (BDNF) Levels: Systematic Review of Literature and Meta-Analysis. Int J Mol Sci 2018; 19:ijms19082281. [PMID: 30081509 PMCID: PMC6121551 DOI: 10.3390/ijms19082281] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 01/07/2023] Open
Abstract
Reduction in brain-derived neurotrophic factor (BDNF) expression in the brain as well as mutations in BDNF gene and/or of its receptor are associated to obesity in both human and animal models. However, the association between circulating levels of BDNF and obesity is still not defined. To answer this question, we performed a meta-analysis carrying out a systematic search in electronic databases. Ten studies (307 obese patients and 236 controls) were included in the analysis. Our data show that obese patients have levels of BDNF similar to those of controls (SMD: 0.01, 95% CI: −0.28, 0.30, p = 0.94). The lack of difference was further confirmed both in studies in which BDNF levels were assessed in serum (MD: −0.93 ng/mL, 95% CI: −3.34, 1.48, p = 0.45) and in plasma (MD: 0.15 ng/mL, 95% CI: −0.09, 0.39, p = 0.23). Data evaluation has shown that some bias might affect BDNF measurements (e.g., subject recruitment, procedures of sampling, handling, and storage), leading to a difficult interpretation of the results. Standardization of the procedures is still needed to reach strong, affordable, and reliable conclusions.
Collapse
Affiliation(s)
- Leonardo Sandrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy.
| | | | | | - Alessandro Ieraci
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Elena Tremoli
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy.
| | | |
Collapse
|
9
|
Saitoh K, Furihata R, Kaneko Y, Suzuki M, Takahashi S, Uchiyama M. Association of serum BDNF levels and the BDNF Val66Met polymorphism with the sleep pattern in healthy young adults. PLoS One 2018; 13:e0199765. [PMID: 29944703 PMCID: PMC6019675 DOI: 10.1371/journal.pone.0199765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is widely expressed in the brain and plays an important role in neuronal maintenance, plasticity, and neurogenesis. Prior studies have found that decreased serum BDNF levels are associated with perceived stress, depression, or sleep disturbances in humans. STUDY OBJECTIVES To elucidate whether the serum BDNF levels and BDNF genotype were associated with the sleep pattern in healthy young adults. METHODS The study group consisted of 79 healthy paid volunteers (45 men, 34 women) aged 20 to 29 years. Serum BDNF levels were measured with an enzyme-linked immunosorbent assay, and a single-nucleotide polymorphism (Val66Met) in the BDNF gene was assessed with a TaqMan assay. Details of the sleep pattern were obtained from 1-week sleep/wake records. RESULTS Serum BDNF levels were significantly associated with sleep parameters on weekends, whereas no such association was found on weekdays. On weekends, longer total sleep time and time in bed, and later mid-sleep time were associated with lower serum BDNF levels. The difference between mid-sleep time on weekdays and that on weekends, otherwise known as social jetlag, was negatively associated with serum BDNF levels. Met/Met homozygotes of the BDNF Val66Met polymorphism had significantly longer time in bed on weekends than Val/Val homozygotes. Heterozygotes did not differ from Val/Val homozygotes. CONCLUSIONS We first found that serum BDNF levels and the BDNF Val66Met polymorphism in healthy young adults were associated with the sleep pattern on weekends but not with that on weekdays, suggesting that the systems involved in BDNF control may be linked to endogenous sleep characteristics rather than the socially constrained sleep schedule in healthy young adults.
Collapse
Affiliation(s)
- Kaori Saitoh
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| | - Ryuji Furihata
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Kaneko
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| | - Masahiro Suzuki
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| | - Sakae Takahashi
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| | - Makoto Uchiyama
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Lv F, Chen S, Wang L, Jiang R, Tian H, Li J, Yao Y, Zhuo C. The role of microbiota in the pathogenesis of schizophrenia and major depressive disorder and the possibility of targeting microbiota as a treatment option. Oncotarget 2017; 8:100899-100907. [PMID: 29246029 PMCID: PMC5725071 DOI: 10.18632/oncotarget.21284] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/26/2017] [Indexed: 12/22/2022] Open
Abstract
The importance of interactions between the brain and the gastrointestinal tract has been increasingly recognized in recent years. It has been proposed that dysregulation and abnormalities in the brain-gut axis contribute to the etiology of a variety of central nervous system disorders. Particularly, dysbiosis, or impaired microbiota, has been implicated in multiple neurological and psychological disorders. The present paper reviews current evidence and theories concerning the possible mechanisms by which microbiota dysfunction contributes to the pathogenesis of schizophrenia and major depressive disorder. Clinical trials that investigated the possibility of treating both illnesses by correcting and rebalancing microbiota with probiotics are also reviewed. Overall, despite the accumulated knowledge in this field, more studies are warranted and required to further our understanding of the brain-gut axis and the possibility of targeting microbiota as a treatment option for schizophrenia and major depressive disorder.
Collapse
Affiliation(s)
- Fengli Lv
- The department of rehabilition, The Second Affiliated Hosptial of Tianjin Medical University, Tianjin, China
| | - Suling Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, China
| | - Lina Wang
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin, China
| | - Ronghuan Jiang
- Department of Psychological Medicine, Chinese People's Liberation Army, General Hospital, Chinese People's Liberation Army Medical School, Beijing, China
| | - Hongjun Tian
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin, China
| | - Jie Li
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin, China
| | - Yudong Yao
- Department of Pharmacology and Physiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, China.,Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin, China
| |
Collapse
|
11
|
A meta-analysis of peripheral blood nerve growth factor levels in patients with schizophrenia. Mol Psychiatry 2017; 22:1306-1312. [PMID: 28070123 DOI: 10.1038/mp.2016.235] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022]
Abstract
Neurotrophins particularly brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are crucial modulators in the neurodevelopment and maintenance of central and peripheral nervous systems. Neurotrophin hypothesis of schizophrenia (SCZ) postulated that the changes in the brains of SCZ patients are the result of disturbances of developing processes involving neurotrophic factors. This hypothesis was mainly supported by the abnormal regulation of BDNF in SCZ, especially the decreased peripheral blood BDNF levels in SCZ patients validated by several meta-analyses. However, the regulation of NGF in SCZ remains unclear because of the inconsistent findings from the clinical studies. Therefore, we undertook, to the best of our knowledge, the first systematic review with a meta-analysis to quantitatively summarize the peripheral blood NGF data in SCZ patients compared with healthy control (HC) subjects. A systematic search of Pubmed, PsycINFO and Web of Science identified 13 articles encompassing a sample of 1693 individuals for the meta-analysis. Random-effects meta-analysis showed that patients with SCZ had significantly decreased peripheral blood levels of NGF when compared with the HC subjects (Hedges's g=-0.633, 95% confidence interval (CI)=-0.948 to -0.318, P<0.001). Subgroup analyses revealed reduced NGF levels both in serum (Hedges's g=-0.671, 95% CI=-1.259 to -0.084, P=0.025) and plasma (Hedges's g=-0.621, 95% CI=-0.980 to -0.261, P<0.001) of the patients, and in drug-free (Hedges's g=-0.670, 95% CI=-1.118 to -0.222, P=0.003) and medicated (Hedges's g=-0.357, 95% CI=-0.592 to -0.123, P=0.003) patients with SCZ. Furthermore, meta-regression analyses showed that age, gender and sample size had no moderating effects on the outcome of the meta-analysis, whereas disease severity might be a confounding factor for the meta-analysis. These results demonstrated that patients with SCZ are accompanied by the decreased peripheral blood NGF levels, strengthening the clinical evidence of an abnormal neurotrophin profile in the patients with SCZ.
Collapse
|
12
|
Brain-Derived Neurotrophic Factor Expression in Individuals With Schizophrenia and Healthy Aging: Testing the Accelerated Aging Hypothesis of Schizophrenia. Curr Psychiatry Rep 2017; 19:36. [PMID: 28534294 DOI: 10.1007/s11920-017-0794-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Schizophrenia has been hypothesized to be a syndrome of accelerated aging. Brain plasticity is vulnerable to the normal aging process and affected in schizophrenia: brain-derived neurotrophic factor (BDNF) is an important neuroplasticity molecule. The present review explores the accelerated aging hypothesis of schizophrenia by comparing changes in BDNF expression in schizophrenia with aging-associated changes. RECENT FINDINGS Individuals with schizophrenia show patterns of increased overall mortality, metabolic abnormalities, and cognitive decline normally observed later in life in the healthy population. An overall decrease is observed in BDNF expression in schizophrenia compared to healthy controls and in older individuals compared to a younger cohort. There is a marked decrease in BDNF levels in the frontal regions and in the periphery among older individuals and those with schizophrenia; however, data for BDNF expression in the occipital, parietal, and temporal cortices and the hippocampus is inconclusive. Accelerated aging hypothesis is supported based on frontal regions and peripheral studies; however, further studies are needed in other brain regions.
Collapse
|
13
|
Lin CC, Hung YY, Tsai MC, Huang TL. Increased serum brain-derived neurotrophic factor in male schizophrenic patients with metabolic syndrome. Medicine (Baltimore) 2017; 96:e7089. [PMID: 28562580 PMCID: PMC5459745 DOI: 10.1097/md.0000000000007089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increased prevalence of metabolic syndrome was found in patients with schizophrenia. Brain-derived neurotrophic factor (BDNF) was involved in energy metabolism and the pathophysiology of schizophrenia, but differently in males and females. We aimed to investigate the serum BDNF levels in patients with schizophrenia with and without metabolic syndrome.Patients with schizophrenia were recruited. Their demographic data were collected. Metabolic profiles and serum BDNF levels were measured. Clinical symptoms were evaluated with Positive and Negative Syndrome Scale. Metabolic syndrome was determined with the criteria provided by Ministry of Health and Welfare of Taiwan. Framingham Risk Score (FRS) for estimate of 10-year risk for coronary heart disease was provided by National Institutes of Health.Of the 81 participants, 40.7% had metabolic syndrome. Those with metabolic syndrome had higher FRS. Using analysis of covariance adjusted for age and body mass index, male patients with schizophrenia with metabolic syndrome had higher serum BDNF levels than those without (4.6 ± 4.7 vs 3.3 ± 3.8 ng/mL, P = .022). No statistical difference was found between female patients with and without metabolic syndrome.Significant differences of serum BDNF levels were found between male patients with schizophrenia with and without metabolic syndrome, but not in females. This finding suggested the gender difference behind the mechanism of BDNF in metabolic syndrome in schizophrenia.
Collapse
|