1
|
Lin Y, Cheng W, Chang J, Wu Y, Hsieh M, Liu C. Astragaloside IV reduces mutant Ataxin-3 levels and supports mitochondrial function in Spinocerebellar Ataxia Type 3. Sci Rep 2024; 14:25979. [PMID: 39472629 PMCID: PMC11522510 DOI: 10.1038/s41598-024-77763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
This study investigated the therapeutic effects of astragaloside IV (AST) on spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), a neurodegenerative disorder. Human neuroblastoma SK-N-SH cells expressing mutant ataxin-3 protein with 78 CAG repeats (MJD78) were employed as an in vitro model. Protein expression analysis demonstrated that AST treatment reduced mutant ataxin-3 protein expression and aggregation by enhancing the autophagic process in MJD78 cells. Elevated oxidative stress levels in MJD78 cells were significantly reduced following AST treatment, which also enhanced antioxidant capacity, as evidenced by flow cytometry and antioxidant enzyme activity assays. Furthermore, AST treatment ameliorated mitochondrial dysfunction in MJD78 cells, including improvements in mitochondrial membrane potential, respiration, and mitochondrial dynamics. In conclusion, AST administration increased antioxidant capacity, reduced both cellular and mitochondrial oxidative stress, and improved mitochondrial quality control processes through fusion, fission, and autophagy. These mechanisms collectively reduced intracellular mutant ataxin-3 protein aggregation, thereby achieving therapeutic efficacy in the SCA3 model.
Collapse
Affiliation(s)
- Yongshiou Lin
- Vascular and Genomic Center, Institute of ATPChanghua Christian Hospital, Changhua, Taiwan
| | - Wenling Cheng
- Vascular and Genomic Center, Institute of ATPChanghua Christian Hospital, Changhua, Taiwan
| | - Juichih Chang
- Center of Regenerative Medicine and Tissue Repair, Institute of ATPChanghua Christian Hospital, Changhua, Taiwan
- General Research Laboratory of Research Department, Changhua Christian Hospital, Changhua, Taiwan
| | - Yuling Wu
- Cardiovascular and Mitochondrial Related Disease Research CenterHualien Tzu Chi HospitalBuddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Mingli Hsieh
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Chinsan Liu
- Vascular and Genomic Center, Institute of ATPChanghua Christian Hospital, Changhua, Taiwan.
- Department of Neurology, Changhua Christian Hospital, 7F., No.235, Syuguang Rd., Changhua, Taiwan.
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
- Department of Post-Baccalaureate MedicineCollege of Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Tan B, Wu X, Yu J, Chen Z. The Role of Saponins in the Treatment of Neuropathic Pain. Molecules 2022; 27:molecules27123956. [PMID: 35745079 PMCID: PMC9227328 DOI: 10.3390/molecules27123956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain is a chronic pain caused by tissue injury or disease involving the somatosensory nervous system, which seriously affects the patient's body function and quality of life. At present, most clinical medications for the treatment of neuropathic pain, including antidepressants, antiepileptic drugs, or analgesics, often have limited efficacy and non-negligible side effects. As a bioactive and therapeutic component extracted from Chinese herbal medicine, the role of the effective compounds in the prevention and treatment of neuropathic pain have gradually become a research focus to explore new analgesics. Notably, saponins have shown analgesic effects in a large number of animal models. In this review, we summarized the most updated information of saponins, related to their analgesic effects in neuropathic pain, and the recent progress on the research of therapeutic targets and the potential mechanisms. Furthermore, we put up with some perspectives on future investigation to reveal the precise role of saponins in neuropathic pain.
Collapse
Affiliation(s)
- Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
| | - Xueqing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
- Correspondence: ; Tel.: +86-571-88208228
| |
Collapse
|
3
|
Oral Administration of East Asian Herbal Medicine for Peripheral Neuropathy: A Systematic Review and Meta-Analysis with Association Rule Analysis to Identify Core Herb Combinations. Pharmaceuticals (Basel) 2021; 14:ph14111202. [PMID: 34832984 PMCID: PMC8622183 DOI: 10.3390/ph14111202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
This review aimed to comprehensively assess the efficacy and safety of oral East Asian herbal medicine (EAHM) for overall peripheral neuropathy (PN). In addition, an Apriori algorithm-based association rule analysis was performed to identify the core herb combination, thereby further generating useful hypotheses for subsequent drug discovery. A total of 10 databases were searched electronically from inception to July 2021. Randomized clinical trials (RCTs) comparing EAHM with conventional analgesic medication or usual care for managing PN were included. The RCT quality was appraised using RoB 2.0, and the random effects model was used to calculate the effect sizes of the included RCTs. The overall quality of evidence was evaluated according to the Grading of Recommendations Assessment, Development, and Evaluation. By analyzing the constituent herb data, the potential association rules of core herb combinations were explored. A total of 67 RCTs involving 5753 patients were included in this systematic review. In a meta-analysis, EAHM monotherapy and combined EAHM and western medicine therapy demonstrated substantially improved sensory nerve conduction velocity, motor nerve conduction velocity, and response rate. Moreover, EAHM significantly improved the incidence rate, pain intensity, Toronto clinical scoring system, and Michigan diabetic neuropathy score. The evidence grade was moderate to low due to the substantial heterogeneity among the studies. Nine association rules were identified by performing the association rule analysis on the extraction data of 156 EAHM herbs. Therefore, the constituents of the herb combinations with consistent association rules were Astragali Radix, Cinnamomi Ramulus, and Spatholobi Calulis. This meta-analysis supports the hypothesis that EAHM monotherapy and combined therapy may be beneficial for PN patients, and follow-up research should be conducted to confirm the precise action target of the core herb.
Collapse
|
4
|
Yow YY, Goh TK, Nyiew KY, Lim LW, Phang SM, Lim SH, Ratnayeke S, Wong KH. Therapeutic Potential of Complementary and Alternative Medicines in Peripheral Nerve Regeneration: A Systematic Review. Cells 2021; 10:cells10092194. [PMID: 34571842 PMCID: PMC8472132 DOI: 10.3390/cells10092194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the progressive advances, current standards of treatments for peripheral nerve injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should be considered. Complementary and alternative medicines (CAMs) are widely explored for their therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated. The present systematic review, designed according to guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions, and their respective natural products. The available literature on CAMs associated with peripheral nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science. According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied. Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in the management of peripheral nerve injury.
Collapse
Affiliation(s)
- Yoon-Yen Yow
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| | - Tiong-Keat Goh
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Ke-Ying Nyiew
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Lee-Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, L4 Laboratory Block, Hong Kong
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| | - Siew-Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Shyamala Ratnayeke
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Kah-Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| |
Collapse
|
5
|
Kim YJ, Kim KJ, Lee JH, Park SU, Cho SY. Effect of herbal extracts on peripheral nerve regeneration after microsurgery of the sciatic nerve in rats. BMC Complement Med Ther 2021; 21:162. [PMID: 34088292 PMCID: PMC8178854 DOI: 10.1186/s12906-021-03335-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/24/2021] [Indexed: 12/03/2022] Open
Abstract
Background Recent experimental studies using herbal extracts have shown the possibility of peripheral nerve regeneration. This study aimed to investigate the effects of herbal extracts on peripheral nerve regeneration in a rat sciatic nerve injury model. Methods A total of 53 rats were randomly assigned to a control group or one of four experimental groups. In all rats, the sciatic nerve was completely severed and microscopic epineural end-to-end neurorrhaphy was performed. Normal saline (2 mL) was topically applied to the site of nerve repair in the control group, whereas four different herbal extracts – 2 mL each of Astragalus mongholicus Bunge, Coptis japonica (Thunb.) Makino, Aconitum carmichaelii Debeaux, or Paeonia lactiflora Pall. – were topically applied to the site of nerve repair in each experimental group. Nerve conduction studies were performed at an average of 11.9 weeks after the operation, and conduction velocity and proximal and distal amplitudes were measured. Biopsies were performed at an average of 13.2 weeks after the initial neurorrhaphy. The quality of nerve anastomosis and perineural adhesion to the surrounding soft tissues was macroscopically evaluated. The neuroma size at the site of the neurorrhaphy was microscopically measured, whereas the size of the scar tissue was evaluated relative to the diameter of the repaired nerve. Results The nerve conduction study results showed the highest nerve conduction velocity in the experimental group that used the Coptis japonica (Thunb.) Makino extract and the highest proximal and distal amplitudes in the experimental group that used the Aconitum carmichaelii Debeaux extract. Macroscopic evaluations after the second operation showed that grade 2 perineural adhesion was found in 70.8% of rats. The mean neuroma size in the Coptis japonica (Thunb.) Makino, Aconitum carmichaelii Debeaux, and Paeonia lactiflora Pall. groups showed statistically significant decreases relative to the control group. The mean scar tissue formation index in the Paeonia lactiflora Pall. group showed a statistically significant decrease relative to the control group. Conclusions The peripheral nerve regeneration effect of the herbal extracts was confirmed through decreased neuroma and scar tissue formation. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03335-w.
Collapse
Affiliation(s)
- Young Jun Kim
- Department of Orthopedic Surgery, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, Republic of Korea
| | - Kyu Jin Kim
- Department of Orthopedic Surgery, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, Republic of Korea
| | - Jae Hoon Lee
- Department of Orthopedic Surgery, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, Republic of Korea
| | - Seong-Uk Park
- Department of Cardiology and Neurology, Kyung Hee University Hospital at Gangdong, College of Korean Medicine, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, Republic of Korea.,Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Seung-Yeon Cho
- Department of Cardiology and Neurology, Kyung Hee University Hospital at Gangdong, College of Korean Medicine, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, Republic of Korea. .,Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Cycloastragenol as an Exogenous Enhancer of Chondrogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. A Morphological Study. Cells 2020; 9:cells9020347. [PMID: 32028592 PMCID: PMC7072395 DOI: 10.3390/cells9020347] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 12/24/2022] Open
Abstract
Stem cell therapy and tissue engineering represent a promising approach for cartilage regeneration. However, they present limits in terms of mechanical properties and premature de-differentiation of engineered cartilage. Cycloastragenol (CAG), a triterpenoid saponin compound and a hydrolysis product of the main ingredient in Astragalus membranaceous, has been explored for cartilage regeneration. The aim of this study was to investigate CAG’s ability to promote cell proliferation, maintain cells in their stable active phenotype, and support the production of cartilaginous extracellular matrix (ECM) in human adipose-derived mesenchymal stem cells (hAMSCs) in up to 28 days of three-dimensional (3D) chondrogenic culture. The hAMSC pellets were cultured in chondrogenic medium (CM) and in CM supplemented with CAG (CAG–CM) for 7, 14, 21, and 28 days. At each time-point, the pellets were harvested for histological (hematoxylin and eosin (H&E)), histochemical (Alcian-Blue) and immunohistochemical analysis (Type I, II, and X collagen, aggrecan, SOX9, lubricin). After excluding CAG’s cytotoxicity (MTT Assay), improved cell condensation, higher glycosaminoglycans (sGAG) content, and increased cell proliferation have been detected in CAG–CM pellets until 28 days of culture. Overall, CAG improved the chondrogenic differentiation of hAMSCs, maintaining stable the active chondrocyte phenotype in up to 28 days of 3D in vitro chondrogenic culture. It is proposed that CAG might have a beneficial impact on cartilage regeneration approaches.
Collapse
|
7
|
Costa IM, Lima FOV, Fernandes LCB, Norrara B, Neta FI, Alves RD, Cavalcanti JRLP, Lucena EES, Cavalcante JS, Rego ACM, Filho IA, Queiroz DB, Freire MAM, Guzen FP. Astragaloside IV Supplementation Promotes A Neuroprotective Effect in Experimental Models of Neurological Disorders: A Systematic Review. Curr Neuropharmacol 2020; 17:648-665. [PMID: 30207235 PMCID: PMC6712289 DOI: 10.2174/1570159x16666180911123341] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 01/22/2023] Open
Abstract
Background: Neurological disorders constitute a growing worldwide concern due to the progressive aging of the population and the risky behavior they represent. Herbal medicines have scientific relevance in the treatment of these pathol-ogies. One of these substances, Astragaloside IV (AS-IV), is the main active compound present in the root of Astragalus membranaceus (Fisch.) Bge, a Chinese medicinal herb with neuroprotective properties. Objective: In the present study we performed a systematic review that sought to comprehend the neuroprotective effect pre-sented by AS-IV in experimental models of neurological disorders. Method: This study is a systematic review, where an electronic search in United States National Library of Medicine (Pub-Med), Science Direct, Cochrane Library, Scientific Electronic Library Online (SciELO), Scopus, Web of Science, Medline via Proquest and Periodicos Capes databases covering the years between 2007 and 2017, using “Astragaloside IV” and “Neurodegenerative diseases”; “Astragaloside IV” and “ Neurological disorders” as reference terms was made. Results: A total of 16 articles were identified, in which the efficacy of AS-IV was described in experimental models of Par-kinson’s disease, Alzheimer’s disease, cerebral ischemia and autoimmune encephalomyelitis, by improving motor deficits and/or neurochemical activity, especially antioxidant systems, reducing inflammation and oxidative stress. Conclusion: The findings of the present study indicate that the administration of AS-IV can improve behavioral and neuro-chemical deficits largely due to its antioxidant, antiapoptotic and anti-inflammatory properties, emerging as an alternative therapeutic approach for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Ianara M Costa
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Francisca O V Lima
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Luciana C B Fernandes
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Bianca Norrara
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Francisca I Neta
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Rodrigo D Alves
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - José R L P Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Eudes E S Lucena
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Center of Biological Sciences, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil
| | - Amalia C M Rego
- Post Graduation Program in Biotechnology, Health School, Potiguar University (UnP), Natal/RN, Brazil
| | - Irami A Filho
- Post Graduation Program in Biotechnology, Health School, Potiguar University (UnP), Natal/RN, Brazil
| | - Dinalva B Queiroz
- Post Graduation Program in Biotechnology, Health School, Potiguar University (UnP), Natal/RN, Brazil
| | - Marco A M Freire
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Fausto P Guzen
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil.,Post Graduation Program in Biotechnology, Health School, Potiguar University (UnP), Natal/RN, Brazil
| |
Collapse
|
8
|
Yin Q, Zhang Y, Lv R, Gong D, Ke B, Yang J, Tang L, Zhang W, Zhu T. A Fixed-Dose Combination, QXOH/Levobupivacaine, Produces Long-Acting Local Anesthesia in Rats Without Additional Toxicity. Front Pharmacol 2019; 10:243. [PMID: 30971919 PMCID: PMC6443723 DOI: 10.3389/fphar.2019.00243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
QXOH, a QX314 derivative with longer duration and lesser local toxicity, is a novel local anesthetic in preclinical drug development. Previous studies demonstrated that bupivacaine can prolong the effects of QX314. So, we attempted to combine QXOH with levobupivacaine to shorten the onset time and lengthen the duration. In this study, we investigated the efficacy, local and systemic toxicity in rats. In subcutaneous infiltration anesthesia, the inhibition of cutaneous trunci muscle reflex for QXOH-LB was greater than QXOH and levobupivacaine in the first 8 h (QXOH-LB vs. QXOH, P = 0.004; QXOH-LB vs. LB, P = 0.004). The completely recovery time for QXOH-LB (17.5 ± 2.5 h) was significantly longer than levobupivacaine (9.0 ± 1.3 h, P = 0.034) and QXOH (9.8 ± 0.9 h, P = 0.049). In sciatic nerve block, QXOH-LB produced a rapid onset time, which was obviously shorter than QXOH. For sensory, the time to recovery for QXOH-LB was 17.3 ± 2.6 h, which was statistically longer than 6.0 ± 1.8 h for QXOH (P = 0.027), and 4 h for levobupivacaine (P = 0.001). Meanwhile, the time to motor recovery for QXOH-LB was 7.9 ± 2.8 h, significantly longer than 4 h for levobupivacaine (P = 0.003) but similar to 6.0 ± 1.7 h for QXOH (P = 0.061). In local toxicity, there was no significant difference of histological score regarding muscle and sciatic nerve in QXOH-LB, QXOH, levobupivacaine and saline (P < 0.01). In the combination, the interaction index of LD50 was 1.39, indicating antagonistic interaction between QXOH and levobupivacaine in terms of systemic toxicity. In this study, we demonstrated that QXOH-LB produced cutaneous anesthesia which was 2-fold greater than that produced by QXOH or LB alone, and elicited sciatic nerve block with a potency that was 5- and 3-fold that of LB and QXOH, respectively. Local tissue inflammation by QXOH-LB was mild, similar to that induced by LB. This fixed-dose combination led to an antagonistic interaction between QXOH and LB in terms of systemic toxicity. These results suggested that QXOH-LB induced a long-lasting local anesthesia, likely, avoiding clinically important local and systemic toxicities.
Collapse
|
9
|
Türedi S, Yuluğ E, Alver A, Bodur A, İnce İ. A morphological and biochemical evaluation of the effects of quercetin on experimental sciatic nerve damage in rats. Exp Ther Med 2018; 15:3215-3224. [PMID: 29545838 PMCID: PMC5841083 DOI: 10.3892/etm.2018.5824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022] Open
Abstract
The present study evaluated the neuroprotective and antioxidant effects of quercetin in a rat model of sciatic nerve crush injury using histopathological, morphometric and biochemical methods. A total of 48 male Sprague Dawley rats, aged 10-12 weeks old were randomly divided into eight groups, consisting of two sham groups (S-7, S-28), three quercetin-treated groups (Q-7, Q-28; 200 mg/kg/7 days), trauma (T-7, T-28; 1 min sciatic nerve crush injury) and three trauma+quercetin groups (T+Q-7, T+Q-28; trauma+quercetin 200 mg/kg/7 days). Rats were sacrificed on day 7 or 28. Oxidant-antioxidant biochemical parameters in nerve tissues from all groups were analyzed using histopathological staining with toluidine blue and Masson's trichrome. DNA fragmentations were identified using terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling in cells from each tissue sample. Degeneration of the axons and myelin sheath, the breakdown of the concentric lamellar structure of the myelin sheath and axonal swelling were observed in groups T-7 and T-28. Myelin sheath thicknesses, nerve fiber diameters and the number of myelinated nerve fibers decreased, while the apoptotic index (AI) increased in the T-7 and T-28 groups. However, it was observed that nerve regeneration began in the T+Q-7 and T+Q-28 groups compared with the sham groups, together with the healing of cellular damage and axonal structure and a decrease in the AI. Malondialdehyde and superoxide dismutase activity did not differ significantly between the T-7 and S-7 groups. However, catalase activity significantly decreased in the T-28 group when compared with the sham 7 day group. Tissue malondialdehyde levels significantly increased, while serum catalase activity increased in the T+Q-7 group compared with the T-7 group. These results suggest that quercetin has beneficial effects on nerve regeneration and may shorten the healing period in crush-type sciatic nerve injuries.
Collapse
Affiliation(s)
- Sibel Türedi
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Esin Yuluğ
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Akin Bodur
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - İmran İnce
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| |
Collapse
|
10
|
Tongluo Zhitong Prescription Alleviates Allodynia, Hyperalgesia, and Dyskinesia in the Chronic Constriction Injury Model of Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8197281. [PMID: 29358972 PMCID: PMC5735685 DOI: 10.1155/2017/8197281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/13/2017] [Indexed: 12/05/2022]
Abstract
Neuropathic pain is common in clinical practice. Exploration of new drug therapeutics has always been carried out for more satisfactory effects and fewer side-effects. In the present study, we aimed to investigate effects of Tongluo Zhitong Prescription (TZP), a compounded Chinese medicine description, on neuropathic pain model of rats with chronic constriction injury (CCI). The CCI model was established by loosely ligating sciatic nerve with catgut suture, proximal to its trifurcation. The static and dynamic allodynia, heat hyperalgesia, mechanical allodynia, cold allodynia, and gait were assessed. Our results showed that TZP alleviated CCI-induced static and dynamic allodynia, suppressed heat hyperalgesia and cold and mechanical allodynia, and improved gait function. These results suggest that TZP could alleviate neuropathic pain. Further experiments are needed to explore its mechanisms.
Collapse
|
11
|
Astragali radix: could it be an adjuvant for oxaliplatin-induced neuropathy? Sci Rep 2017; 7:42021. [PMID: 28186109 PMCID: PMC5301199 DOI: 10.1038/srep42021] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022] Open
Abstract
Neurotoxicity is a major side effect of platinum derivatives both during and after treatment. In the absence of effective pharmacological compounds, the opportunity to identify safe adjuvant treatments among medicinal plants seems appropriate. Astragali radix is an adaptogenic herbal product recently analyzed in platinum-treated cancer patients. With the aim of evaluating the anti-neuropathic profile of Astragali radix, a previously characterized aqueous (Aqu) and two hydroalcoholic (20%HA and 50%HA) extracts were tested in a rat model of oxaliplatin-induced neuropathy. Repeated administrations significantly reduced oxaliplatin-dependent hypersensitivity with 50%HA, the most effective, fully preventing mechanical and thermal hypersensitivity. Ex vivo, 50%HA reduced morphometric and molecular alterations induced by oxaliplatin in peripheral nerve and dorsal-root-ganglia. In the spinal cord and in brain areas, 50%HA significantly decreased activation of microglia and astrocytes. Furthermore, 50%HA prevented the nephro- and hepato-toxicity induced by the anticancer drug. The protective effect of 50%HA did not alter oxaliplatin-induced apoptosis in colon tumors of Pirc rats, an Apc-driven model of colon carcinogenesis. The hydroalcoholic extract (50%HA) of Astragali radix relieves pain and promotes the rescue mechanisms that protect nervous tissue from the damages triggering chronic pain. A safe profile strongly suggests the usefulness of this natural product in oxaliplatin-induced neuropathy.
Collapse
|
12
|
Radix Astragali-Based Chinese Herbal Medicine for Oxaliplatin-Induced Peripheral Neuropathy: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2421876. [PMID: 27795728 PMCID: PMC5067479 DOI: 10.1155/2016/2421876] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/07/2016] [Indexed: 01/14/2023]
Abstract
Background. Treatment of chemotherapy-induced peripheral neuropathy (CIPN) remains a big challenge for oncologists. The aim of this study is to evaluate the effects of Radix Astragali- (RA-) based Chinese herbal medicine in the prevention and treatment of oxaliplatin-induced peripheral neuropathy, including the incidence and grading of neurotoxicity, effective percentage, and nerve conduction velocity. Methods. All randomized controlled trials (RCTs) were found using PubMed, Cochrane, Springer, China National Knowledge Infrastructure (CNKI), and Wanfang Database of China Science Periodical Database (CSPD) by keyword search. Meta-analysis was conducted using RevMan 5.0. Results. A total of 1552 participants were included in 24 trials. Meta-analysis showed the incidence of all-grade neurotoxicity was significantly lower in experimental groups and high-grade neurotoxicity was also significantly less. Effective percentage was significantly higher and sensory nerve conduction velocity was improved significantly, but changes in motor nerve conduction velocity were not statistically significant. No adverse events associated with RA-based intervention were reported. Conclusion. RA-based intervention may be beneficial in relieving oxaliplatin-induced peripheral neuropathy. However, more double-blind, multicenter, large-scale RCTs are needed to support this theory. Trial Registration. PROSPERO International prospective register of systematic reviews has registration number CRD42015019903.
Collapse
|
13
|
Wu M, Zhao G, Yang X, Peng C, Zhao J, Liu J, Li R, Gao Z. Puerarin accelerates neural regeneration after sciatic nerve injury. Neural Regen Res 2014; 9:589-93. [PMID: 25206860 PMCID: PMC4146233 DOI: 10.4103/1673-5374.130097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2014] [Indexed: 11/18/2022] Open
Abstract
Puerarin is a natural isoflavone isolated from plants of the genus Pueraria and functions as a protector against cerebral ischemia. We hypothesized that puerarin can be involved in the repair of peripheral nerve injuries. To test this hypothesis, doses of 10, 5, or 2.5 mg/kg per day puerarin (8-(β-D-Glucopyranosyl-7-hydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) were injected intraperitoneally into mouse models of sciatic nerve injury. Puerarin at the middle and high doses significantly up-regulated the expression of growth-associated protein 43 in the L4–6 segments of the spinal cord from mice at 1, 2, and 4 weeks after modeling, and reduced the atrophy of the triceps surae on the affected side and promoted the regeneration of nerve fibers of the damaged spinal cord at 8 weeks after injury. We conclude that puerarin exerts an ongoing role to activate growth-associated protein 43 in the corresponding segment of the spinal cord after sciatic nerve injury, thus contributing to neural regeneration after sciatic nerve injuries.
Collapse
Affiliation(s)
- Minfei Wu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Guanjie Zhao
- Department of Nephropathy, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaoyu Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chuangang Peng
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jianwu Zhao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jun Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Li
- Hand & Foot Surgery and Reparative & Reconstruction Surgery Center, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhongli Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
14
|
Jia YX, Li JR, Mao CY, Yin WT, Jiang RH. Glycyrrhizin improves p75NTR-associated sciatic nerve regeneration in a BALB/c mouse model. Exp Ther Med 2014; 7:1141-1146. [PMID: 24940400 PMCID: PMC3991491 DOI: 10.3892/etm.2014.1546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/10/2014] [Indexed: 12/22/2022] Open
Abstract
Glycyrrhizin has a role in immune regulation in the central nervous system, but its impact on sciatic nerve injury had not previously been reported. In this study, a BALB/c mouse model of sciatic nerve injury was used to explore the role of glycyrrhizin in sciatic nerve repair and its underlying mechanism. Glycyrrhizin with intragastric gavage of 10 and 20 mg/kg weight per day (mid- and high-dose, respectively) inhibited p75 neurotrophin receptor (p75NTR) expression at the protein and mRNA levels versus the 5 mg/kg (low-dose) group and control (0.9% NaCl solution) at one, two, four and eight weeks following sciatic nerve injury, and simultaneously improved the action potential amplitude and motor nerve conductive velocity. Combined Marsland, Glees and Erikson’s silver stain and Luxol fast blue staining results indicated that high- and mid-dose glycyrrhizin promoted improved sciatic nerve myelination compared with the low-dose or control groups eight weeks after injury. Immunofluorescence staining demonstrated that glycyrrhizin had an inhibitory effect to a certain degree on local hypertrophic scar and inflammatory responses in the mouse model. In conclusion, glycyrrhizin can promote sciatic nerve regeneration and functional repair, in which doses of 10 and 20 mg/kg per day are more effective than lower doses, and such regeneration is associated with the downregulation of p75NTR.
Collapse
Affiliation(s)
- Yu-Xi Jia
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jin-Ran Li
- Jilin University Bethune School of Medical Sciences, Changchun, Jilin 130021, P.R. China
| | - Cui-Ying Mao
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Wei-Tian Yin
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ri-Hua Jiang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|