1
|
Zhang X, Ahn S, Qiu P, Datta S. Identification of shared biological features in four different lung cell lines infected with SARS-CoV-2 virus through RNA-seq analysis. Front Genet 2023; 14:1235927. [PMID: 37662846 PMCID: PMC10468990 DOI: 10.3389/fgene.2023.1235927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has resulted in millions of confirmed cases and deaths worldwide. Understanding the biological mechanisms of SARS-CoV-2 infection is crucial for the development of effective therapies. This study conducts differential expression (DE) analysis, pathway analysis, and differential network (DN) analysis on RNA-seq data of four lung cell lines, NHBE, A549, A549.ACE2, and Calu3, to identify their common and unique biological features in response to SARS-CoV-2 infection. DE analysis shows that cell line A549.ACE2 has the highest number of DE genes, while cell line NHBE has the lowest. Among the DE genes identified for the four cell lines, 12 genes are overlapped, associated with various health conditions. The most significant signaling pathways varied among the four cell lines. Only one pathway, "cytokine-cytokine receptor interaction", is found to be significant among all four cell lines and is related to inflammation and immune response. The DN analysis reveals considerable variation in the differential connectivity of the most significant pathway shared among the four lung cell lines. These findings help to elucidate the mechanisms of SARS-CoV-2 infection and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Seungjun Ahn
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peihua Qiu
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Somnath Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Zyrianova T, Lopez B, Zou K, Gu C, Pham D, Talapaneni S, Waters CM, Olcese R, Schwingshackl A. Activation of TREK-1 ( K2P2.1) potassium channels protects against influenza A-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 324:L64-L75. [PMID: 36410022 PMCID: PMC9829483 DOI: 10.1152/ajplung.00116.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Influenza-A virus (IAV) infects yearly an estimated one billion people worldwide, resulting in 300,000-650,000 deaths. Preventive vaccination programs and antiviral medications represent the mainstay of therapy, but with unacceptably high morbidity and mortality rates, new targeted therapeutic approaches are urgently needed. Since inflammatory processes are commonly associated with measurable changes in the cell membrane potential (Em), we investigated whether Em hyperpolarization via TREK-1 (K2P2.1) K+ channel activation can protect against influenza-A virus (IAV)-induced pneumonia. We infected mice with IAV, which after 5 days caused 10-15% weight loss and a decrease in spontaneous activity, representing a clinically relevant infection. We then started a 3-day intratracheal treatment course with the novel TREK-1 activating compounds BL1249 or ML335. We confirmed TREK-1 activation with both compounds in untreated and IAV-infected primary human alveolar epithelial cells (HAECs) using high-throughput fluorescent imaging plate reader (FLIPR) assays. In mice, TREK-1 activation with BL1249 and ML335 counteracted IAV-induced histological lung injury and decrease in lung compliance and improved BAL fluid total protein levels, cell counts, and inflammatory IL-6, IP-10/CXCL-10, MIP-1α, and TNF-α levels. To determine whether these anti-inflammatory effects were mediated by activation of alveolar epithelial TREK-1 channels, we studied the effects of BL1249 and ML335 in IAV-infected HAEC, and found that TREK-1 activation decreased IAV-induced inflammatory IL-6, IP-10/CXCL10, and CCL-2 secretion. Dissection of TREK-1 downstream signaling pathways and construction of protein-protein interaction (PPI) networks revealed NF-κB1 and retinoic acid-inducible gene-1 (RIG-1) cascades as the most likely targets for TREK-1 protection. Therefore, TREK-1 activation may represent a novel therapeutic approach against IAV-induced lung injury.
Collapse
Affiliation(s)
- Tatiana Zyrianova
- Department of Pediatrics, University of California, Los Angeles, California
| | - Benjamin Lopez
- Department of Pediatrics, University of California, Los Angeles, California
| | - Kathlyn Zou
- Department of Pediatrics, University of California, Los Angeles, California
| | - Charles Gu
- Department of Pediatrics, University of California, Los Angeles, California
| | - Dayna Pham
- Department of Pediatrics, University of California, Los Angeles, California
| | | | | | - Riccardo Olcese
- Department of Anesthesiology & Perioperative Medicine, University of California, Los Angeles, California
- Department of Physiology, University of California, Los Angeles, California
| | | |
Collapse
|
3
|
Hao Q, Kundu S, Shetty S, Tucker TA, Idell S, Tang H. Inducible general knockout of Runx3 profoundly reduces pulmonary cytotoxic CD8 + T cells with minimal effect on outcomes in mice following influenza infection. Front Immunol 2022; 13:1011922. [PMID: 36275778 PMCID: PMC9586250 DOI: 10.3389/fimmu.2022.1011922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Respiratory viruses pose a continuing and substantive threat to human health globally. Host innate and adaptive immune responses are the critical antiviral defense mechanisms to control viral replication and spread. The present study is designed to determine the role of transcription factor Runx3 in the host immune response to influenza A virus (IAV) infection. As Runx3 is required for embryonic development, we generated an inducible Runx3 global knockout (KO) mouse model and found that Runx3 KO in adult C57BL/6 mice minimally affected thymic function under normal conditions and survival was at least 250 days post Runx3 deletion. We applied the mouse model to IAV infection and found that Runx3 KO resulted in a huge reduction (>85%) in numbers of total and antigen-specific pulmonary CD8+ cytotoxic T cells during IAV infection, while it had a minor effect on pulmonary generation of CD4+ T cells. To our surprise, this general KO of Runx3 did not significantly alter viral clearance and animal survival following IAV infection. Interestingly, we found that Runx3 KO significantly increased the numbers of pulmonary innate immune cells such as macrophages and neutrophils and the production of pro-inflammatory cytokines during IAV infection. We further found that Runx3 was strongly detected in CCR2+ immune cells in IAV-infected mouse lungs and was induced in activated macrophages and dendritic cells (DCs). As pulmonary CD8+ cytotoxic T cells play a central role in the clearance of IAV, our findings suggest that Runx3 KO may enhance host innate immunity to compensate for the loss of pulmonary CD8+ cytotoxic T cells during IAV infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Tang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| |
Collapse
|
4
|
Nagai E, Iwai M, Koketsu R, Okuno Y, Suzuki Y, Morimoto R, Sumitani H, Ohshima A, Enomoto T, Isegawa Y. Anti-Influenza Virus Activity of Adlay Tea Components. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:538-543. [PMID: 31728799 DOI: 10.1007/s11130-019-00773-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Our previous study showed anti-influenza virus activity in adlay tea prepared from adlay seeds, naked barley seeds, soybean, and cassia seeds. In this study, we evaluated the anti-influenza virus activity of each component of this tea and analyzed their active ingredients. Each component was roasted and extracted in hot water; the extracts were tested for antiviral activity and their mechanisms of action were studied. All the tea components showed antiviral activity against the H1N1 and H3N2 influenza subtypes and against influenza B. The viral stages inhibited by the components were virus adsorption and replication in proliferative process, suggesting that the action mechanisms of the components might differ from those of oseltamivir acid. Of the tea components, soybean showed the strongest activity. Therefore, we analyzed its active ingredients by liquid chromatography quadruple time-of-flight mass spectrometry (LC/qTOF-MS) and daidzein and glycitein were detected as active ingredients. Here, anti-influenza virus action of glycitein was the first report.
Collapse
Affiliation(s)
- Emiko Nagai
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| | - Miwa Iwai
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Ikebiraki, Nishinomiya, Hyogo, 663-8558, Japan
| | - Ritsuko Koketsu
- Research Foundation for Microbial Diseases of Osaka University, Osaka University, Suita, Osaka, 565-0871, Japan
| | | | - Yuri Suzuki
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Ikebiraki, Nishinomiya, Hyogo, 663-8558, Japan
| | - Ryosuke Morimoto
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Ikebiraki, Nishinomiya, Hyogo, 663-8558, Japan
| | - Hidenobu Sumitani
- Toyo Institute of Food Technology, Kawanishi, Hyogo, 666-0026, Japan
| | - Atsushi Ohshima
- Genomics Program, Nagahamabio Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Toshiki Enomoto
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Ikebiraki, Nishinomiya, Hyogo, 663-8558, Japan.
| |
Collapse
|
5
|
Wang Y, Hao Q, Florence JM, Jung BG, Kurdowska AK, Samten B, Idell S, Tang H. Influenza Virus Infection Induces ZBP1 Expression and Necroptosis in Mouse Lungs. Front Cell Infect Microbiol 2019; 9:286. [PMID: 31440477 PMCID: PMC6694206 DOI: 10.3389/fcimb.2019.00286] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Programmed cell death and especially necroptosis, a programmed and regulated form of necrosis, have been recently implicated in the progression and outcomes of influenza in mouse models. Moreover, Z-DNA/RNA binding protein 1 (ZBP1) has been identified as a key signaling molecule for necroptosis induced by Influenza A virus (IAV). Direct evidence of IAV-induced necroptosis has not been shown in infected lungs in vivo. It is also unclear as to what cell types undergo necroptosis during pulmonary IAV infection and whether ZBP1 expression can be regulated by inflammatory mediators. In this study, we found that IAV infection induced ZBP1 expression in mouse lungs. We identified that mediators implicated in the pathogenesis of IAV infection including interferons (IFNs), TNFα, and agonists for Toll-like receptors 3 and 4 were potent inducers of ZBP1 expression in primary murine alveolar epithelial cells, bone marrow derived macrophages, and dendritic cells. We further found that IAV infection induced a strong necroptosis through phosphorylation of the necroptosis effector mixed lineage kinase domain-like protein in infiltrating immune cells and alveolar epithelial cells by day 7 post-infection. Lastly, we found different cell type-specific responses to IAV-induced cell death upon inhibition of caspases and/or necroptosis pathways. Our findings provide direct evidence that IAV infection induces necroptosis in mouse lungs, which may involve local induction of ZBP1 and different programmed cell death signaling mechanisms in alveolar epithelial and infiltrating inflammatory cells in the lungs.
Collapse
Affiliation(s)
- Yun Wang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Qin Hao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Jon M Florence
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Bock-Gie Jung
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Anna K Kurdowska
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Buka Samten
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States.,Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Hua Tang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| |
Collapse
|
6
|
Ramana CV. Insights into the Signal Transduction Pathways of Mouse Lung Type II Cells Revealed by Transcription Factor Profiling in the Transcriptome. Genomics Inform 2019; 17:e8. [PMID: 30929409 PMCID: PMC6459171 DOI: 10.5808/gi.2019.17.1.e8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
Alveolar type II cells constitute a small fraction of the total lung cell mass. However, they play an important role in many cellular processes including trans-differentiation into type I cells as well as repair of lung injury in response to toxic chemicals and respiratory pathogens. Transcription factors are the regulatory proteins dynamically modulating DNA structure and gene expression. Transcription factor profiling in microarray datasets revealed that several members of AP1, ATF, NF-kB, and C/EBP families involved in diverse responses were expressed in mouse lung type II cells. A transcriptional factor signature consisting of Cebpa, Srebf1, Stat3, Klf5, and Elf3 was identified in lung type II cells, Sox9+ pluripotent lung stem cells as well as in mouse lung development. Identification of the transcription factor profile in mouse lung type II cells will serve as a useful resource and facilitate the integrated analysis of signal transduction pathways and specific gene targets in a variety of physiological conditions.
Collapse
Affiliation(s)
- Chilakamarti V Ramana
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Dartmouth Medical School, Lebanon, NH 03766, USA
| |
Collapse
|
7
|
RIG-I Signaling via MAVS Is Dispensable for Survival in Lethal Influenza Infection In Vivo. Mediators Inflamm 2018; 2018:6808934. [PMID: 30532653 PMCID: PMC6250004 DOI: 10.1155/2018/6808934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/26/2018] [Indexed: 01/01/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is an important regulator of virus-induced antiviral interferons (IFNs) and proinflammatory cytokines. It requires interaction with an adaptor molecule, mitochondrial antiviral-signaling protein (MAVS), to activate downstream signaling pathways. To elucidate the mechanism(s) by which RIG-I-dependent recognition of IAV infection in vivo triggers innate immune responses, we infected mutant mice lacking RIG-I or MAVS with influenza A virus (IAV) and measured their innate immune responses. As has previously been demonstrated with isolated deletion of the virus recognition receptors TLR3, TLR7, and NOD2, RIG-I or MAVS knockout (KO) did not result in higher mortality and did not reduce IAV-induced cytokine responses in mice. Infected RIG-I KO animals displayed similar lung inflammation profiles as did WT mice, in terms of the protein concentration, total cell count, and inflammatory cell composition in the bronchoalveolar lavage fluid. RNA-Seq results demonstrated that all types of mice exhibited equivalent antiviral and inflammatory gene responses following IAV infection. Together, the results indicated that although RIG-I is important in innate cytokine responses in vitro, individual deletion of the genes encoding RIG-I or MAVS did not change survival or innate responses in vivo after IAV infection in mice.
Collapse
|
8
|
Wang X, Wu W, Zhang W, Leland Booth J, Duggan ES, Tian L, More S, Zhao YD, Sawh RN, Liu L, Zou MH, Metcalf JP. RIG-I overexpression decreases mortality of cigarette smoke exposed mice during influenza A virus infection. Respir Res 2017; 18:166. [PMID: 28865477 PMCID: PMC5581920 DOI: 10.1186/s12931-017-0649-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/25/2017] [Indexed: 12/22/2022] Open
Abstract
Background Retinoic acid-inducible gene I (RIG-I) is an important regulator of virus-induced antiviral interferons (IFNs) and proinflammatory cytokines which participate in clearing viral infections. Cigarette smoke (CS) exposure increases the frequency and severity of respiratory tract infections. Methods We generated a RIG-I transgenic (TG) mouse strain that expresses the RIG-I gene product under the control of the human lung specific surfactant protein C promoter. We compared the mortality and host immune responses of RIG-I TG mice and their litter-matched wild type (WT) mice following challenge with influenza A virus (IAV). Results RIG-I overexpression increased survival of IAV-infected mice. CS exposure increased mortality in WT mice infected with IAV. Remarkably, the effect of RIG-I overexpression on survival during IAV infection was enhanced in CS-exposed animals. CS-exposed IAV-infected WT mice had a suppressed innate response profile in the lung compared to sham-exposed IAV-infected WT mice in terms of the protein concentration, total cell count and inflammatory cell composition in the bronchoalveolar lavage fluid. RIG-I overexpression restored the innate immune response in CS-exposed mice to that seen in sham-exposed WT mice during IAV infection, and is likely responsible for enhanced survival in RIG-I TG mice as restoration preceded death of the animals. Conclusions Our results demonstrate that RIG-I overexpression in mice is protective for CS enhanced susceptibility of smokers to influenza infection, and that CS mediated RIG-I suppression may be partially responsible for the increased morbidity and mortality of the mice exposed to IAV. Thus, optimizing the RIG-I response may be an important treatment strategy for CS-enhanced lung infections, particularly those due to IAV.
Collapse
Affiliation(s)
- Xiaoqiu Wang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei Zhang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elizabeth S Duggan
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lili Tian
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sunil More
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ravindranauth N Sawh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Lin Liu
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Ming-Hui Zou
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Jordan P Metcalf
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Veterans Affairs Medical Center, Oklahoma City, OK, USA. .,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
9
|
Transcription Factor Runx3 Is Induced by Influenza A Virus and Double-Strand RNA and Mediates Airway Epithelial Cell Apoptosis. Sci Rep 2015; 5:17916. [PMID: 26643317 PMCID: PMC4672321 DOI: 10.1038/srep17916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
Influenza A virus (IAV) targets airway epithelial cells and exploits the host cell machinery to replicate, causing respiratory illness in annual epidemics and pandemics of variable severity. The high rate of antigenic drift (viral mutation) and the putative antigenic shift (reassortant strains) have raised the need to find the host cell inducible factors modulating IAV replication and its pathogenesis to develop more effective antiviral treatment. In this study, we found for the first time that transcription factor Runx3, a developmental regulator and tumor suppressor, was induced by IAV H1N1 and H3N2, viral RNA, a synthetic analog of viral double-stranded RNA (dsRNA) polyinosinic-polycytidylic acid, and type-II interferon-γ (IFNγ) in human airway epithelial cells. Whereas Runx3 was essentially not induced by type-I IFNα and type-III IFNλ, we show that Runx3 induction by IAV infection and viral RNA is mediated through the innate immune receptor MDA5 and the IκB kinase-β−NF-κB pathway. Moreover, we provide substantial evidence indicating that Runx3 plays a crucial role in airway epithelial cell apoptosis induced by IAV infection and dsRNA through the activation of extrinsic and intrinsic apoptosis pathways. Thus, we have identified Runx3 as an inducible and important transcription factor modulating IAV-induced host epithelial cell apoptosis.
Collapse
|
10
|
Abstract
Many ribonucleases (RNases) are able to inhibit the reproduction of viruses in infected cell cultures and laboratory animals, but the molecular mechanisms of their antiviral activity remain unclear. The review discusses the well-known RNases that possess established antiviral effects, including both intracellular RNases (RNase L, MCPIP1 protein, and eosinophil-associated RNases) and exogenous RNases (RNase A, BS-RNase, onconase, binase, and synthetic RNases). Attention is paid to two important, but not always obligatory, aspects of molecules of RNases that have antiviral properties, i.e., catalytic activity and ability to dimerize. The hypothetic scheme of virus elimination by exogenous RNases that reflects possible types of interaction of viruses and RNases with a cell is proposed. The evidence for RNases as classical components of immune defense and thus perspective agents for the development of new antiviral therapeutics is proposed.
Collapse
Affiliation(s)
- O. N. Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia
| | - R. Shah Mahmud
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia
| |
Collapse
|
11
|
Vijayan M, Hahm B. Influenza viral manipulation of sphingolipid metabolism and signaling to modulate host defense system. SCIENTIFICA 2014; 2014:793815. [PMID: 24672735 PMCID: PMC3920843 DOI: 10.1155/2014/793815] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
Viruses attempt to create a distinctive cellular environment to favor viral replication and spread. Recent studies uncovered new functions of the sphingolipid signaling/metabolism during pathogenic virus infections. While sphingolipids such as sphingomyelin and ceramide were reported to influence the entry step of several viruses, sphingolipid-metabolizing enzymes could directly alter viral replication processes. Influenza virus was shown to increase the level of sphingosine kinase (SK) 1 to promote virus propagation. The mechanism involves regulation of intracellular signaling pathways, leading to the amplification of influenza viral RNA synthesis and nuclear export of viral ribonucleoprotein (RNP) complex. However, bovine viral diarrhea virus inhibits SK1 to enhance the efficacy of virus replication, demonstrating the presence of virus-specific strategies for modulation of the sphingolipid system. Therefore, investigating the sphingolipid metabolism and signaling in the context of virus replication could help us design innovative therapeutic approaches to improve human health.
Collapse
Affiliation(s)
- Madhuvanthi Vijayan
- Departments of Surgery and Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Bumsuk Hahm
- Departments of Surgery and Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
- University of Missouri-Columbia, One Hospital Drive, Medical Sciences Building, NW301C, Columbia, MO 65212, USA
| |
Collapse
|