1
|
Hu L, Lin C, Lin F, Wang L, Li Z, Cai Z, Liu X, Ye Q, Wu Y, Cai G. Different impulse control disorder evolution patterns and white matter microstructural damage in the progression of Parkinson's disease. Front Aging Neurosci 2023; 15:1260630. [PMID: 38187360 PMCID: PMC10768538 DOI: 10.3389/fnagi.2023.1260630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 01/09/2024] Open
Abstract
Background The course of impulse control disorders (ICD) varies in the early stage of Parkinson's disease (PD). Aim We aimed to delineate the association between the evolution pattern of ICD and the progression of PD. Methods A total of 321 de novo PD patients from the Parkinson's Progression Markers Initiative database were included. Patients were followed up for a mean of 6.8 years and were classified into different groups according to the evolution patterns of ICD. Disease progression was compared among groups using survival analysis, in which the endpoint was defined as progression to Hoehn and Yahr stage 3 or higher for motor progression and progression to mild cognitive impairment for cognitive decline. In the fourth year of follow-up, four types of ICD evolution patterns were identified: (1) non-ICD-stable (68.2%), a patient who is consistently free of ICD; (2) late-ICD (14.6%), ICD developed during the follow-up of patients; (3) ICD-stable (11.5%), patients showed persistent ICD; and (4) ICD-reversion (5.6%), baseline ICD disappeared during the follow-up of patients with ICD. Results The ICD-reversion type shows daily life non-motor symptoms [Movement Disorder Society-Unified Parkinson Disease Rating Scale (MDS-UPDRS) part I], daily life motor symptoms (MDS-UPDRS part II), rapid eye movement sleep behavior disorder, and anxiety symptoms has a greater impact. PD patients with different ICD evolution patterns had different changes in white matter microstructure at the onset of the disease. Those relevant brain regions are involved in ICD and non-motor functions. Conclusion Four early ICD evolution patterns are identified in de novo PD, with different prognoses and brain white matter microstructural damage patterns, and they may predict motor progression and cognitive decline in PD patients.
Collapse
Affiliation(s)
- Ling Hu
- Department of Neurology, Ganzhou People’s Hospital, Ganzhou, China
| | - Changfu Lin
- Department of Medicine, Zhangzhou Fifth Hospital, Zhangzhou, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lingling Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenzhen Li
- Department of Medicine, Zhangzhou Fifth Hospital, Zhangzhou, China
| | - Zhijun Cai
- Department of Medicine, Zhangzhou Fifth Hospital, Zhangzhou, China
| | - Xianghong Liu
- Department of Neurology, Ganzhou People’s Hospital, Ganzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fujian Medical University Union Hospital, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Yiwen Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fujian Medical University Union Hospital, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Mao C, Zhang Y, Jiang J, Qin R, Ye Q, Zhu X, Wu J. Magnetic Resonance Imaging Biomarkers of Punding in Parkinson's Disease. Brain Sci 2023; 13:1423. [PMID: 37891792 PMCID: PMC10605844 DOI: 10.3390/brainsci13101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Punding is a rare condition triggered by dopaminergic therapy in Parkinson's disease (PD), characterized by a complex, excessive, repetitive, and purposeless abnormal movement, and its pathogenesis remains unclear. We aimed to assess the brain structure alterations related to punding by using multipametric magnetic resonance imaging (MRI). Thirty-eight PD patients (19 with punding and 19 without punding) from the Parkinson's Progression Marker Initiative (PPMI) were included in this study. Cortical thickness was assessed with FreeSurfer, and the integrity of white matter fiber tracts and network topologies were analyzed by using FMRIB Software Library (FSL) and Pipeline for Analyzing braiN Diffusion imAges (PANDA). PD patients with punding showed a higher apathy score and more severe cortical atrophy in the left superior parietal, right inferior parietal, and right superior frontal gyrus, and worse integrity of the right cingulum cingulate tract compared to those without punding. On the other hand, no significant difference in structural network topologies was detected between the two groups. These data suggest that the specific area of destruction may be an MRI biomarker of punding risk, and these findings may have important implications for understanding the neural mechanisms of punding in PD.
Collapse
Affiliation(s)
- Chenglu Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Yang Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Jialiu Jiang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Qing Ye
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Jiayong Wu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| |
Collapse
|
3
|
Hernadi G, Perlaki G, Kovacs M, Pinter D, Orsi G, Janszky J, Kovacs N. White matter hyperintensities associated with impulse control disorders in Parkinson's Disease. Sci Rep 2023; 13:10594. [PMID: 37391475 PMCID: PMC10313834 DOI: 10.1038/s41598-023-37054-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/15/2023] [Indexed: 07/02/2023] Open
Abstract
Impulse control disorders (ICDs) in Parkinson's disease (PD) are increasingly recognized as clinically significant non-motor features that potentially impair the quality of life. White matter hyperintensities (WMHs), detected by magnetic resonance imaging, are frequently observed in PD and can be associated with both motor- and certain non-motor symptoms. Given the limited number of non-motor features studied in this context, our aim was to reveal the potential association between the severity of WMHs and ICDs in PD. Fluid-attenuated inversion recovery magnetic resonance images were retrospectively evaluated in 70 patients with PD (48 males; 59.3 ± 10.1 years). The severity of WMHs was assessed by Fazekas scores and by the volume and number of supratentorial WMHs. ICDs were evaluated using the modified Minnesota Impulsive Disorders Interview. Significant interaction between age and the severity of WMHs was present for ICDs. In our younger patients (< 60.5 years), severity of WMHs was positively associated with ICDs (p = 0.004, p = 0.021, p < 0.001 and p < 0.001, respectively for periventricular white matter and total Fazekas scores and the volume and number of WMHs). Our study supports the hypothesis that WMHs of presumed vascular origin may contribute to ICDs in PD. Future prospective studies are needed to assess the prognostic relevance of this finding.
Collapse
Affiliation(s)
| | - Gabor Perlaki
- Pecs Diagnostic Centre, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Marton Kovacs
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary.
| | - David Pinter
- ELKH-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Gergely Orsi
- Pecs Diagnostic Centre, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Jozsef Janszky
- ELKH-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Norbert Kovacs
- ELKH-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
4
|
Mata‐Marín D, Pineda‐Pardo JÁ, Michiels M, Pagge C, Ammann C, Martínez‐Fernández R, Molina JA, Vela‐Desojo L, Alonso‐Frech F, Obeso I. A circuit-based approach to modulate hypersexuality in Parkinson's disease. Psychiatry Clin Neurosci 2023; 77:223-232. [PMID: 36579893 PMCID: PMC11488615 DOI: 10.1111/pcn.13523] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
AIM Impulse-control disorder is a common neuropsychiatric complication in Parkinson's disease (PD) under dopamine replacement therapy. Prior studies tested the balance between enhanced desire towards reward and cognitive control deficits, hypothesized to be biased towards the former in impulse control disorders. We provide evidence for this hypothesis by measuring behavioral and neural patterns behind the influence of sexual desire over response inhibition and tools towards functional restoration using repetitive transcranial stimulation in patients with hypersexuality as predominant impulsive disorder. METHODS The effect of sexual cues on inhibition was measured with a novel erotic stop-signal task under on and off dopaminergic medication. Task-related functional and anatomical connectivity models were estimated in 16 hypersexual and 17 nonhypersexual patients with PD as well as in 17 healthy controls. Additionally, excitatory neuromodulation using intermittent theta-burst stimulation (sham-controlled) was applied over the pre-supplementary motor area in 20 additional hypersexual patients with PD aiming to improve response inhibition. RESULTS Compared with their nonhypersexual peers, patients with hypersexuality recruited caudate, pre-supplementary motor area, ventral tegmental area, and anterior cingulate cortex while on medication. Reduced connectivity was found between pre-supplementary motor area and caudate nucleus in hypersexual compared with nonhypersexual patients (while medicated), a result paralleled by compensatory enhanced anatomical connectivity. Furthermore, stimulation over the pre-supplementary motor area improved response inhibition in hypersexual patients with PD when exposed to sexual cues. CONCLUSION This study, therefore, has identified a specific fronto-striatal and mesolimbic circuitry underlying uncontrolled sexual responses in medicated patients with PD where cortical neuromodulation halts its expression.
Collapse
Affiliation(s)
- David Mata‐Marín
- Centro Integral de Neurociencias Abarca Campal (HM CINAC)Hospital Universitario HM Puerta del Sur. HM HospitalesMadridSpain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED)Instituto Carlos IIIMadridSpain
- PhD program in NeuroscienceAutonoma University of MadridMadridSpain
| | - José Ángel Pineda‐Pardo
- Centro Integral de Neurociencias Abarca Campal (HM CINAC)Hospital Universitario HM Puerta del Sur. HM HospitalesMadridSpain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED)Instituto Carlos IIIMadridSpain
| | - Mario Michiels
- Centro Integral de Neurociencias Abarca Campal (HM CINAC)Hospital Universitario HM Puerta del Sur. HM HospitalesMadridSpain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED)Instituto Carlos IIIMadridSpain
- PhD program in NeuroscienceAutonoma University of MadridMadridSpain
| | - Cristina Pagge
- Centro Integral de Neurociencias Abarca Campal (HM CINAC)Hospital Universitario HM Puerta del Sur. HM HospitalesMadridSpain
- PhD program in NeuroscienceAutonoma University of MadridMadridSpain
| | - Claudia Ammann
- Centro Integral de Neurociencias Abarca Campal (HM CINAC)Hospital Universitario HM Puerta del Sur. HM HospitalesMadridSpain
| | - Raúl Martínez‐Fernández
- Centro Integral de Neurociencias Abarca Campal (HM CINAC)Hospital Universitario HM Puerta del Sur. HM HospitalesMadridSpain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED)Instituto Carlos IIIMadridSpain
| | | | | | | | - Ignacio Obeso
- Centro Integral de Neurociencias Abarca Campal (HM CINAC)Hospital Universitario HM Puerta del Sur. HM HospitalesMadridSpain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED)Instituto Carlos IIIMadridSpain
- Department of Psychobiology & Methods for the Behavioral Sciences DepartmentComplutense University of MadridMadridSpain
| |
Collapse
|
5
|
Rashidi F, Khanmirzaei MH, Hosseinzadeh F, Kolahchi Z, Jafarimehrabady N, Moghisseh B, Aarabi MH. Cingulum and Uncinate Fasciculus Microstructural Abnormalities in Parkinson's Disease: A Systematic Review of Diffusion Tensor Imaging Studies. BIOLOGY 2023; 12:biology12030475. [PMID: 36979166 PMCID: PMC10045759 DOI: 10.3390/biology12030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Diffusion tensor imaging (DTI) is gaining traction in neuroscience research as a tool for evaluating neural fibers. The technique can be used to assess white matter (WM) microstructure in neurodegenerative disorders, including Parkinson disease (PD). There is evidence that the uncinate fasciculus and the cingulum bundle are involved in the pathogenesis of PD. These fasciculus and bundle alterations correlate with the symptoms and stages of PD. PRISMA 2022 was used to search PubMed and Scopus for relevant articles. Our search revealed 759 articles. Following screening of titles and abstracts, a full-text review, and implementing the inclusion criteria, 62 papers were selected for synthesis. According to the review of selected studies, WM integrity in the uncinate fasciculus and cingulum bundles can vary according to symptoms and stages of Parkinson disease. This article provides structural insight into the heterogeneous PD subtypes according to their cingulate bundle and uncinate fasciculus changes. It also examines if there is any correlation between these brain structures' structural changes with cognitive impairment or depression scales like Geriatric Depression Scale-Short (GDS). The results showed significantly lower fractional anisotropy values in the cingulum bundle compared to healthy controls as well as significant correlations between FA and GDS scores for both left and right uncinate fasciculus regions suggesting that structural damage from disease progression may be linked to cognitive impairments seen in advanced PD patients. This review help in developing more targeted treatments for different types of Parkinson's disease, as well as providing a better understanding of how cognitive impairments may be related to these structural changes. Additionally, using DTI scans can provide clinicians with valuable information about white matter tracts which is useful for diagnosing and monitoring disease progression over time.
Collapse
Affiliation(s)
- Fatemeh Rashidi
- School of Medicine, Tehran University of Medical Science, Tehran 1417613151, Iran
| | | | - Farbod Hosseinzadeh
- School of Medicine, Tehran University of Medical Science, Tehran 1417613151, Iran
| | - Zahra Kolahchi
- School of Medicine, Tehran University of Medical Science, Tehran 1417613151, Iran
| | - Niloofar Jafarimehrabady
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Bardia Moghisseh
- School of Medicine, Arak University of Medical Science, Arak 3848176941, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), Padova Neuroscience Center, University of Padova, 35128 Padua, Italy
| |
Collapse
|
6
|
Bergamino M, Keeling EG, Ray NJ, Macerollo A, Silverdale M, Stokes AM. Structural connectivity and brain network analyses in Parkinson's disease: A cross-sectional and longitudinal study. Front Neurol 2023; 14:1137780. [PMID: 37034088 PMCID: PMC10076650 DOI: 10.3389/fneur.2023.1137780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Parkinson's disease (PD) is an idiopathic disease of the central nervous system characterized by both motor and non-motor symptoms. It is the second most common neurodegenerative disease. Magnetic resonance imaging (MRI) can reveal underlying brain changes associated with PD. Objective In this study, structural connectivity and white matter networks were analyzed by diffusion MRI and graph theory in a cohort of patients with PD and a cohort of healthy controls (HC) obtained from the Parkinson's Progression Markers Initiative (PPMI) database in a cross-sectional analysis. Furthermore, we investigated longitudinal changes in the PD cohort over 36 months. Result Compared with the control group, participants with PD showed lower structural connectivity in several brain areas, including the corpus callosum, fornix, and uncinate fasciculus, which were also confirmed by a large effect-size. Additionally, altered connectivity between baseline and after 36 months was found in different network paths inside the white matter with a medium effect-size. Network analysis showed trends toward lower network density in PD compared with HC at baseline and after 36 months, though not significant after correction. Significant differences were observed in nodal degree and strength in several nodes. Conclusion In conclusion, altered structural and network metrics in several brain regions, such as corpus callosum, fornix, and cingulum were found in PD, compared to HC. We also report altered connectivity in the PD group after 36 months, reflecting the impact of both PD pathology and aging processes. These results indicate that structural and network metrics might yield insight into network reorganization that occurs in PD.
Collapse
Affiliation(s)
- Maurizio Bergamino
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
- *Correspondence: Maurizio Bergamino
| | - Elizabeth G. Keeling
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Nicola J. Ray
- Health, Psychology and Communities Research Centre, Department of Psychology, Manchester Metropolitan University, Manchester, United Kingdom
| | - Antonella Macerollo
- Neurology Department, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, School of Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Monty Silverdale
- Manchester Centre for Clinical Neurosciences, University of Manchester, Manchester, United Kingdom
| | - Ashley M. Stokes
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
7
|
Gu L, Shu H, Wang Y, Xu H. Exploring brain changes of impulse control disorders in Parkinson's disease: An ALE study. Front Aging Neurosci 2022; 14:966525. [PMID: 36110428 PMCID: PMC9468821 DOI: 10.3389/fnagi.2022.966525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous neuroimaging studies reported inconsistent results for comparison between Parkinson's disease (PD) with impulse control disorder (PD-ICD) and without ICD (PD-no ICD). Methods A search was performed in databases (PubMed and Web of Science) to identify studies published before May 2022. An anatomic likelihood estimation (ALE) method study was made for neuroimaging studies in PD-ICD. Results The study included 20 studies (including 341 PD-ICD and 437 PD-no ICD). PD-ICD patients showed significant cortical thinning in the right inferior frontal gyrus (IFG), the right middle frontal gyrus (MFG), the left superior frontal gyrus (SFG), the right precentral gyrus (PCG) and the left cingulate gyrus (CG), compared to PD-no ICD patients. The ALE study showed reduced resting-state brain activation in the right IFG, the right PCG, the left insula and the right transverse temporal gyrus (TTG) in PD-ICD, compared to PD-no ICD patients. In addition, PD-ICD showed increased resting-state brain activation in the right caudate, the bilateral insula and the left orbital gyrus (OG), compared to PD-no ICD patients. The study indicated reduced task-related brain activation in the right caudate, the right MFG, the right lentiform nucleus (LN) and the right precuneus (PCUN) in PD-ICD, compared to PD-no ICD patients. The study showed increased task-related brain activation in the left inferior parietal lobule (IPL), the right medial frontal gyrus, the right caudate and the right PCG in PD-ICD, compared to PD-no ICD patients. Conclusions The present ALE analysis has confirmed that brain changes in frontal, temporal and basal ganglia regions are among the most frequently reported regions in PD-ICD. Deficits in these regions could play a role in diagnosis of PD-ICD.
Collapse
Affiliation(s)
- Lihua Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Lihua Gu
| | - Hao Shu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yanjuan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hui Xu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Haghshomar M, Shobeiri P, Seyedi SA, Abbasi-Feijani F, Poopak A, Sotoudeh H, Kamali A, Aarabi MH. Cerebellar Microstructural Abnormalities in Parkinson's Disease: a Systematic Review of Diffusion Tensor Imaging Studies. CEREBELLUM (LONDON, ENGLAND) 2022; 21:545-571. [PMID: 35001330 DOI: 10.1007/s12311-021-01355-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Diffusion tensor imaging (DTI) is now having a strong momentum in research to evaluate the neural fibers of the CNS. This technique can study white matter (WM) microstructure in neurodegenerative disorders, including Parkinson's disease (PD). Previous neuroimaging studies have suggested cerebellar involvement in the pathogenesis of PD, and these cerebellum alterations can correlate with PD symptoms and stages. Using the PRISMA 2020 framework, PubMed and EMBASE were searched to retrieve relevant articles. Our search revealed 472 articles. After screening titles and abstracts, and full-text review, and implementing the inclusion criteria, 68 papers were selected for synthesis. Reviewing the selected studies revealed that the patterns of reduction in cerebellum WM integrity, assessed by fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity measures can differ symptoms and stages of PD. Cerebellar diffusion tensor imaging (DTI) changes in PD patients with "postural instability and gait difficulty" are significantly different from "tremor dominant" PD patients. Freezing of the gate is strongly related to cerebellar involvement depicted by DTI. The "reduced cognition," "visual disturbances," "sleep disorders," "depression," and "olfactory dysfunction" are not related to cerebellum microstructural changes on DTI, while "impulsive-compulsive behavior" can be linked to cerebellar WM alteration. Finally, higher PD stages and longer disease duration are associated with cerebellum white matter alteration depicted by DTI. Depiction of cerebellar white matter involvement in PD is feasible by DTI. There is an association with disease duration and severity and several clinical presentations with DTI findings. This clinical-imaging association may eventually improve disease management.
Collapse
Affiliation(s)
- Maryam Haghshomar
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Shobeiri
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, No. 10, Al-e-Ahmad and Chamran Highway intersection, Tehran, 1411713137, Iran.
| | | | | | - Amirhossein Poopak
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Houman Sotoudeh
- Department of Radiology and Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Arash Kamali
- Department of Diagnostic and Interventional Radiology, University of Texas McGovern Medical School, Houston, TX, USA
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), Padova Neuroscience Center-PNC, University of Padova, Padua, Italy
| |
Collapse
|
9
|
Takeshige-Amano H, Hatano T, Kamagata K, Andica C, Uchida W, Abe M, Ogawa T, Shimo Y, Oyama G, Umemura A, Ito M, Hori M, Aoki S, Hattori N. White matter microstructures in Parkinson's disease with and without impulse control behaviors. Ann Clin Transl Neurol 2022; 9:253-263. [PMID: 35137566 PMCID: PMC8935280 DOI: 10.1002/acn3.51504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/20/2021] [Accepted: 12/28/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Impulse control behaviors (ICBs) in Parkinson's disease (PD) are thought to be caused by an overdose of dopaminergic therapy in the relatively spared ventral striatum, or by hypersensitivity of this region to dopamine. Alterations in brain networks are now also thought to contribute to the development of ICBs. OBJECTIVE To comprehensively assess white matter microstructures in PD patients with ICBs using advanced diffusion MRI and magnetization transfer saturation (MT-sat) imaging. METHODS This study included 19 PD patients with ICBs (PD-ICBs), 18 PD patients without ICBs (PD-nICBs), and 20 healthy controls (HCs). Indices of diffusion tensor imaging (DTI), diffusion kurtosis imaging, neurite orientation dispersion and density imaging, and MT-sat imaging were evaluated using tract-based spatial statistics (TBSS), regions of interest (ROIs), and tract-specific analysis (TSA). RESULTS Compared with HCs, PD-nICBs had significant alterations in many major white matter tracts in most parameters. In contrast, PD-ICBs had only partial changes in several parameters. Compared with PD-ICBs, TBSS, ROI, and TSA analyses revealed that PD-nICBs had lower axial kurtosis, myelin volume fraction, and orientation dispersion index in the uncinate fasciculus and external capsule, as well as in the retrolenticular part of the internal capsule. These are components of the reward system and the visual and emotional perception areas, respectively. INTERPRETATION Myelin and axonal changes in fibers related to the reward system and visual emotional recognition might be more prominent in PD-nICBs than in PD-ICBs.
Collapse
Affiliation(s)
- Haruka Takeshige-Amano
- Department of Neurology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 1138421, Japan.,Department of Neurology, Juntendo University Nerima Hospital, 3-1-10 Takanodai Nerima-ku, Tokyo, 1778521, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 1138421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 1138421, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 1138421, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 1138421, Japan
| | - Masahiro Abe
- Department of Radiology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 1138421, Japan
| | - Takashi Ogawa
- Department of Neurology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 1138421, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 1138421, Japan.,Department of Neurology, Juntendo University Nerima Hospital, 3-1-10 Takanodai Nerima-ku, Tokyo, 1778521, Japan
| | - Genko Oyama
- Department of Neurology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 1138421, Japan
| | - Atsushi Umemura
- Department of Neurosurgery, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 1138421, Japan
| | - Masanobu Ito
- Department of Psychiatry, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 1138421, Japan
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 1438540, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 1138421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 1138421, Japan
| |
Collapse
|
10
|
Martín-Bastida A, Delgado-Alvarado M, Navalpotro-Gómez I, Rodríguez-Oroz MC. Imaging Cognitive Impairment and Impulse Control Disorders in Parkinson's Disease. Front Neurol 2021; 12:733570. [PMID: 34803882 PMCID: PMC8602579 DOI: 10.3389/fneur.2021.733570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
Dementia and mild forms of cognitive impairment as well as neuropsychiatric symptoms (i. e., impulse control disorders) are frequent and disabling non-motor symptoms of Parkinson's disease (PD). The identification of changes in neuroimaging studies for the early diagnosis and monitoring of the cognitive and neuropsychiatric symptoms associated with Parkinson's disease, as well as their pathophysiological understanding, are critical for the development of an optimal therapeutic approach. In the current literature review, we present an update on the latest structural and functional neuroimaging findings, including high magnetic field resonance and radionuclide imaging, assessing cognitive dysfunction and impulse control disorders in PD.
Collapse
Affiliation(s)
- Antonio Martín-Bastida
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, Pamplona, Spain
| | | | - Irene Navalpotro-Gómez
- Cognitive Impairment and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain.,Clinical and Biological Research in Neurodegenerative Diseases, Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.,Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - María Cruz Rodríguez-Oroz
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
11
|
Zhu X, Liu L, Xiao Y, Li F, Huang Y, Han D, Yang C, Pan S. Abnormal Topological Network in Parkinson's Disease With Impulse Control Disorders: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2021; 15:651710. [PMID: 34497483 PMCID: PMC8419312 DOI: 10.3389/fnins.2021.651710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022] Open
Abstract
In recent years, neuroimaging evidence shows that the brains of Parkinson disease (PD) with impulse control disorders (ICDs) patients have functional disconnection changes. However, so far, it is still unclear whether the topological organization is damaged in PD patients with ICD. In this study, we aimed to explore the functional brain network in 18 patients with PD with ICDs (PD-ICD) and 18 patients with PD without ICDs (PD-nICD) by using functional magnetic resonance imaging and graph theory approach. We found that the PD-ICD patients had increased clustering coefficient and characteristic path length, while decreased small-world index compared with PD-nICD patients. Furthermore, we explored the hypothesis whether the abnormality of the small-world network parameters of PD-ICD patients is accompanied by the change of nodal centrality. As we hypothesized, the nodal centralities of the default mode network, control network, and dorsal attention network were found to be significantly damaged in the PD-ICD group compared with the PD-nICD group. Our study provides more evidence for PD-ICD patients' brain network abnormalities from the perspective of information exchange, which may be the underlying pathophysiological basis of brain abnormalities in PD-ICD patients.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Langsha Liu
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Xiao
- Department of Day Surgery Center, Zhuzhou Central Hospital, Zhuzhou, China
| | - Fan Li
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Yongkai Huang
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Deqing Han
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Chun Yang
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Sian Pan
- Department of Rehabilitation Medicine, Zhuzhou Central Hospital, Zhuzhou, China
| |
Collapse
|
12
|
Zhang JF, Wang XX, Feng Y, Fekete R, Jankovic J, Wu YC. Impulse Control Disorders in Parkinson's Disease: Epidemiology, Pathogenesis and Therapeutic Strategies. Front Psychiatry 2021; 12:635494. [PMID: 33633615 PMCID: PMC7900512 DOI: 10.3389/fpsyt.2021.635494] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Impulse control disorders (ICDs) in Parkinson's disease (PD) are aberrant behavior such as pathological gambling, hypersexuality, binge eating, and compulsive buying, which typically occur as a result of dopaminergic therapy. Numerous studies have focused on the broad spectrum of ICDs-related behaviors and their tremendous impact on patients and their family members. Recent advances have improved our understanding of ICDs. In this review, we discuss the epidemiology, pathogenesis and treatment of ICDs in the setting of PD.
Collapse
Affiliation(s)
- Jun-Fang Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Xi Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai General Hospital of Nanjing Medical University, Nanjing, China
| | - Ya Feng
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robert Fekete
- Department of Neurology, New York Medical College, New York, NY, United States
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Zhang Y, Burock MA. Diffusion Tensor Imaging in Parkinson's Disease and Parkinsonian Syndrome: A Systematic Review. Front Neurol 2020; 11:531993. [PMID: 33101169 PMCID: PMC7546271 DOI: 10.3389/fneur.2020.531993] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Diffusion tensor imaging (DTI) allows measuring fractional anisotropy and similar microstructural indices of the brain white matter. Lower than normal fractional anisotropy as well as higher than normal diffusivity is associated with loss of microstructural integrity and neurodegeneration. Previous DTI studies in Parkinson's disease (PD) have demonstrated abnormal fractional anisotropy in multiple white matter regions, particularly in the dopaminergic nuclei and dopaminergic pathways. However, DTI is not considered a diagnostic marker for the earliest Parkinson's disease since anisotropic alterations present a temporally divergent pattern during the earliest Parkinson's course. This article reviews a majority of clinically employed DTI studies in PD, and it aims to prove the utilities of DTI as a marker of diagnosing PD, correlating clinical symptomatology, tracking disease progression, and treatment effects. To address the challenge of DTI being a diagnostic marker for early PD, this article also provides a comparison of the results from a longitudinal, early stage, multicenter clinical cohort of Parkinson's research with previous publications. This review provides evidences of DTI as a promising marker for monitoring PD progression and classifying atypical PD types, and it also interprets the possible pathophysiologic processes under the complex pattern of fractional anisotropic changes in the first few years of PD. Recent technical advantages, limitations, and further research strategies of clinical DTI in PD are additionally discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Psychiatry, War Related Illness and Injury Study Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Marc A Burock
- Department of Psychiatry, Mainline Health, Bryn Mawr Hospital, Bryn Mawr, PA, United States
| |
Collapse
|
14
|
Incentive-driven decision-making networks in de novo and drug-treated Parkinson's disease patients with impulsive-compulsive behaviors: A systematic review of neuroimaging studies. Parkinsonism Relat Disord 2020; 78:165-177. [PMID: 32927414 DOI: 10.1016/j.parkreldis.2020.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND In Parkinson's disease (PD), impulsive-compulsive behaviors (ICBs) may develop as side-effect of dopaminergic medications. Abnormal incentive-driven decision-making, which is supported by the cognitive control and motivation interaction, may represent an ICBs signature. This systematic review explored whether structural and/or functional brain differences between PD patients with vs without ICBs encompass incentive-driven decision-making networks. METHODS Structural and functional neuroimaging studies comparing PD patients with and without ICBs, either de novo or medicated, were included. RESULTS Thirty articles were identified. No consistent evidence of structural alteration both in de novo and medicated PD patients were found. Differences in connectivity within the default mode, the salience and the central executive networks predate ICBs development and remain stable once ICBs are fully developed. Medicated PD patients with ICBs show increased metabolism and cerebral blood flow in orbitofrontal and cingulate cortices, ventral striatum, amygdala, insula, temporal and supramarginal gyri. Abnormal ventral striatum connectivity with anterior cingulate cortex and limbic structures was reported in PD patients with ICBs. DISCUSSION Functional brain signatures of ICBs in PD encompass areas involved in cognitive control and motivational encoding networks of the incentive-driven decision-making. Functional alterations predating ICBs may be related to abnormal synaptic plasticity in these networks.
Collapse
|
15
|
Sgambato V. Breathing new life into neurotoxic-based monkey models of Parkinson's disease to study the complex biological interplay between serotonin and dopamine. PROGRESS IN BRAIN RESEARCH 2020; 261:265-285. [PMID: 33785131 DOI: 10.1016/bs.pbr.2020.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Numerous clinical studies have shown that the serotonergic system also degenerates in patients with Parkinson's disease. The causal role of this impairment in Parkinson's symptomatology and the response to treatment remains to be refined, in particular thanks to approaches allowing the two components DA and 5-HT to be isolated if possible. We have developed a macaque monkey model of Parkinson's disease exhibiting a double lesion (dopaminergic and serotonergic) thanks to the sequential use of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and MDMA (3,4-methylenedioxy-N-methamphetamine) (or MDMA prior MPTP). We characterized this monkey model by multimodal imaging (PET, positron emission tomography with several radiotracers; DTI, diffusion tensor imaging), behavioral assessments (parkinsonism, dyskinesia, neuropsychiatric-like behavior) and post-mortem analysis (with DA and 5-HT markers). When administrated after MPTP, MDMA damaged the 5-HT presynaptic system without affecting the remaining DA neurons. The lesion of 5-HT fibers induced by MDMA altered rigidity and prevented dyskinesia and neuropsychiatric-like symptoms induced by levodopa therapy in MPTP-treated animals. Interestingly also, prior MDMA administration aggravates the parkinsonian deficits and associated DA injury. Dystonic postures, action tremor and global spontaneous activities were significantly affected. All together, these data clearly indicate that late or early lesions of the 5-HT system have a differential impact on parkinsonian symptoms in the macaque model of Parkinson's disease. Whether MDMA has an impact on neuropsychiatric-like symptoms such as apathy, anxiety, depression remains to be addressed. Despite its limitations, this toxin-based double-lesioned monkey model takes on its full meaning and provides material for the experimental study of the heterogeneity of patients.
Collapse
Affiliation(s)
- Véronique Sgambato
- Université de Lyon, CNRS UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France.
| |
Collapse
|
16
|
Neural bases of impulse control disorders in Parkinson’s disease: A systematic review and an ALE meta-analysis. Neurosci Biobehav Rev 2019; 107:672-685. [DOI: 10.1016/j.neubiorev.2019.09.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 12/16/2022]
|
17
|
Abstract
In addition to motor symptoms, behavioural complications are commonly found in patients with Parkinson's disease (PD). Behavioural complications, including depression, anxiety, apathy, impulse control disorder and psychosis, together have a large impact on PD patient's quality of life. Many neuroimaging studies using PET, SPECT and MRI techniques have been conducted to study the underlying neural mechanisms of PD pathogenesis and pathophysiology in relation to its behavioural complications. This review will survey these PET, SPECT and MRI studies to describe the current understanding of the neuro-chemical, functional and structural changes associated with behavioural complications in PD patients.
Collapse
|
18
|
Abstract
Purpose of Review Parkinson’s disease (PD) has a wide spectrum of symptoms including the presence of psychiatric disease. At present, most treatment plans, comprised of dopaminergic drugs, are chronic and complex. Though dopaminergic agents are quite efficient in managing the motor aspects of the disease, chronic pharmacotherapy specifically with dopamine receptor agonists has been highly linked to the occurrence of Impulse Compulsive disorder (ICD), which can be problematic for individual patients. Recent Findings Much of what is known today about PD-related ICD stems from brain imaging studies, however, evidence is not quite conclusive. Research in the field has been focused on identifying the underlying mechanisms of PD-related ICD and understanding the functions of the structures involved in the reward network. Summary This article presents an update of recent findings from key neuroimaging studies in PD-related ICD, discusses results from controversial studies, and identifies areas for future research in the field.
Collapse
Affiliation(s)
- Andreas-Antonios Roussakis
- Neurology Imaging Unit, Imperial College London - Hammersmith Hospital, 1st Floor, B-Block, Du Cane Road, London, W12 0NN, UK
| | - Nicholas P Lao-Kaim
- Neurology Imaging Unit, Imperial College London - Hammersmith Hospital, 1st Floor, B-Block, Du Cane Road, London, W12 0NN, UK
| | - Paola Piccini
- Neurology Imaging Unit, Imperial College London - Hammersmith Hospital, 1st Floor, B-Block, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
19
|
Gatto EM, Aldinio V. Impulse Control Disorders in Parkinson's Disease. A Brief and Comprehensive Review. Front Neurol 2019; 10:351. [PMID: 31057473 PMCID: PMC6481351 DOI: 10.3389/fneur.2019.00351] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/22/2019] [Indexed: 12/25/2022] Open
Abstract
Impulse control and related disorders (ICDs-RD) encompasses a heterogeneous group of disorders that involve pleasurable behaviors performed repetitively, excessively, and compulsively. The key common symptom in all these disorders is the failure to resist an impulse or temptation to control an act or specific behavior, which is ultimately harmful to oneself or others and interferes in major areas of life. The major symptoms of ICDs include pathological gambling (PG), hypersexualtiy (HS), compulsive buying/shopping (CB) and binge eating (BE) functioning. ICDs and ICDs-RD have been included in the behavioral spectrum of non-motor symptoms in Parkinson's disease (PD) leading, in some cases, to serious financial, legal and psychosocial devastating consequences. Herein we present the prevalence of ICDs, the risk factors, its pathophysiological mechanisms, the link with agonist dopaminergic therapies and therapeutic managements.
Collapse
Affiliation(s)
- Emilia M Gatto
- Department of Neurology, Sanatorio de la Trinidad Mitre, Buenos Aires, Argentina.,Instituto de Neurociencias Buenos Aires, Ineba, Buenos Aires, Argentina
| | - Victoria Aldinio
- Department of Neurology, Sanatorio de la Trinidad Mitre, Buenos Aires, Argentina
| |
Collapse
|
20
|
Ramdave S, Dawson A, Carter A, Dissanayaka NNW. Unmasking neurobiological commonalities between addictive disorders and impulse control disorders in Parkinson’s disease. Brain Imaging Behav 2019; 14:2785-2798. [PMID: 30707344 DOI: 10.1007/s11682-019-00041-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Changes in reward circuitry have been studied extensively in substance and behavioural addictions. However, comparatively little is known about the neurobiology underlying impulse control disorders (ICDs) in Parkinson's disease, which show roughly similar risk factors and behavioural presentations to both stimulant and behavioural addictions. ICDs occur in a subset of susceptible patients with Parkinson's disease (PD) following intake of dopamine replacement therapy (DRT). These behavioural disorders often have debilitating effects on a patient's quality of life and increase caregiver burden. This comprehensive review examined findings of 40 neuroimaging studies of ICDs in PD to determine (a) whether there are putative neurobiological commonalities between traditional substance and behavioural addictions and DRT-induced ICD in PD and (b) opportunities for future studies to advance current neurobiological understanding of the phenomenon. Results revealed that strikingly similar (a) deficits in dopaminergic receptor expression, (b) connectivity changes in corticostriatal circuitry and (c) neural responses to cue exposure are observed in both ICDs in PD and addictive disorders. These findings point to the value of adopting a transdiagnostic approach when studying addicted populations and pave the way for demystifying this peculiar, often-devastating phenomenon in PD that has so far proven extremely difficult to treat and predict with any precision.
Collapse
Affiliation(s)
- Swathi Ramdave
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
- School of Psychology, The University of Queensland, Brisbane, Australia.
| | - Andrew Dawson
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Australia
| | - Adrian Carter
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Australia
| | - Nadeeka N W Dissanayaka
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Psychology, The University of Queensland, Brisbane, Australia
- Department of Neurology, Royal Brisbane & Woman's Hospital, Brisbane, Australia
| |
Collapse
|
21
|
Ghazi Sherbaf F, Same K, Aarabi MH. High angular resolution diffusion imaging correlates of depression in Parkinson's disease: a connectometry study. Acta Neurol Belg 2018; 118:573-579. [PMID: 29728904 DOI: 10.1007/s13760-018-0937-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/26/2018] [Indexed: 11/30/2022]
Abstract
Depression is a significant disabling feature in Parkinson's disease (PD). However, the neuropathology of this comorbidity is still unclear. In fact, few studies have tried to elucidate the neural correlates of depression in PD and have mostly examined specific regions of interest. In this study, we applied diffusion MRI connectometry, a powerful complementary approach to investigate alterations in whole white matter pathways regarding the severity of depressive symptoms. Using a multiple regression model, the correlation of severity of depressive symptoms assessed by the Hospital Anxiety and Depression Scale (HADS) with white matter connectivity was surveyed in 27 non-demented PD patients related to 26 age, sex, and educational level-matched healthy subjects. Results revealed areas, where white matter quantitative anisotropy (QA) was correlated with depression score in PD patients, without any significant association in healthy controls. The analysis showed a significant negative association (false discovery rate < 0.05) between scores on depression subscale of HADS in PD patients and QA of left Cingulum, Genu, and Splenium of the Corpus Callosum, and anterior and posterior limbs of the right internal capsule. This finding might improve our understanding of the neural basis of depression and its severity in PD.
Collapse
Affiliation(s)
- Farzaneh Ghazi Sherbaf
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Same
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
De Micco R, Russo A, Tessitore A. Structural MRI in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:405-438. [PMID: 30314605 DOI: 10.1016/bs.irn.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Among modern neuroimaging modalities, magnetic resonance imaging (MRI) is a widely available, non-invasive, and cost-effective method to detect structural and functional abnormalities related to neurodegenerative disorders. In the last decades, MRI have been widely implemented to support PD diagnosis as well as to provide further insights into motor and non-motor symptoms pathophysiology, complications and treatment-related effects. Different aspects of the brain morphology and function may be derived from a single scan, by applying different analytic approaches. Biomarkers of neurodegeneration as well as tissue microstructural changes may be extracted from structural MRI techniques. In this chapter, we analyze the role of structural imaging to differentiate PD patients from controls and to define neural substrates of motor and non-motor PD symptoms. Evidence collected in the premotor PD phase will be also critically discussed. White matter as well as gray matter integrity imaging studies has been reviewed, aiming to highlight points of strength and limits to their potential application in clinical settings.
Collapse
Affiliation(s)
- Rosa De Micco
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonio Russo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Napoli, Italy.
| |
Collapse
|
23
|
Haghshomar M, Dolatshahi M, Ghazi Sherbaf F, Sanjari Moghaddam H, Shirin Shandiz M, Aarabi MH. Disruption of Inferior Longitudinal Fasciculus Microstructure in Parkinson's Disease: A Systematic Review of Diffusion Tensor Imaging Studies. Front Neurol 2018; 9:598. [PMID: 30093877 PMCID: PMC6070770 DOI: 10.3389/fneur.2018.00598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder accompanied by a series of pathological mechanisms which contribute to a variety of motor and non-motor symptoms. Recently, there has been an increasing interest in structural diffusion tensor imaging (DTI) in PD which has shed light on our understanding of structural abnormalities underlying PD symptoms or its associations with pathological mechanisms. One of the white matter tracts shown to be disrupted in PD with a possible contribution to some PD symptoms is the inferior longitudinal fasciculus (ILF). On the whole, lower ILF integrity contributes to thought disorders, impaired visual emotions, cognitive impairments such as semantic fluency deficits, and mood disorders. This review outlines the microstructural changes in ILF associated with systemic inflammation and various PD symptoms like cognitive decline, facial emotion recognition deficit, depression, color discrimination deficit, olfactory dysfunction, and tremor genesis. However, few studies have investigated DTI correlates of each symptom and larger studies with standardized imaging protocols are required to extend these preliminary findings and lead to more promising results.
Collapse
Affiliation(s)
- Maryam Haghshomar
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Dolatshahi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mehdi Shirin Shandiz
- Department of Medical Physics, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
24
|
Mojtahed Zadeh M, Ashraf-Ganjouei A, Ghazi Sherbaf F, Haghshomar M, Aarabi MH. White Matter Tract Alterations in Drug-Naïve Parkinson's Disease Patients With Impulse Control Disorders. Front Neurol 2018; 9:163. [PMID: 29662464 PMCID: PMC5890183 DOI: 10.3389/fneur.2018.00163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
Impulse control disorders (ICDs) are relatively frequent in patients with Parkinson’s disease (PD), although it is still unclear whether an underlying pathological process plays a significant role in the development of ICD in PD apart from dopaminergic replacement therapy. In this study, we have investigated alterations of white matter tract in drug-naïve PD patients with ICDs via diffusion MRI connectometry. Our results showed that disrupted connectivity in the complex network of dynamic connections between cerebellum, basal ganglia, cortex, and its spinal projections serves as the underlying neuropathology of ICD in PD not interfered with the contribution of dopaminergic replacement therapy. These findings provide the first evidence on involved white matter tracts in the neuropathogenesis of ICD in drug-naïve PD population, supporting the hypothesis that neural disturbances intrinsic to PD may confer an increased risk for ICDs. Future studies are needed to validate the attribution of the impaired corticocerebellar network to impulsivity in PD.
Collapse
Affiliation(s)
- Mahtab Mojtahed Zadeh
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Ghazi Sherbaf
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Haghshomar
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Prell T. Structural and Functional Brain Patterns of Non-Motor Syndromes in Parkinson's Disease. Front Neurol 2018; 9:138. [PMID: 29593637 PMCID: PMC5858029 DOI: 10.3389/fneur.2018.00138] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/26/2018] [Indexed: 11/26/2022] Open
Abstract
Parkinson’s disease (PD) is a common, progressive and multisystem neurodegenerative disorder characterized by motor and non-motor symptoms. Advanced magnetic resonance imaging, positron emission tomography, and functional magnetic resonance imaging can render the view toward understanding the neural basis of these non-motor syndromes, as they help to understand the underlying pathophysiological abnormalities. This review provides an up-to-date description of structural and functional brain alterations in patients with PD with cognitive deficits, visual hallucinations, fatigue, impulsive behavior disorders, sleep disorders, and pain.
Collapse
Affiliation(s)
- Tino Prell
- Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
26
|
Imperiale F, Agosta F, Canu E, Markovic V, Inuggi A, Jecmenica-Lukic M, Tomic A, Copetti M, Basaia S, Kostic VS, Filippi M. Brain structural and functional signatures of impulsive-compulsive behaviours in Parkinson's disease. Mol Psychiatry 2018; 23:459-466. [PMID: 28265121 DOI: 10.1038/mp.2017.18] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/30/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022]
Abstract
This study assessed brain structural and functional alterations in patients with Parkinson's disease and impulsive-compulsive behaviours (PD-ICB) compared with controls and PD no-ICB cases. Eighty-five PD patients (35 PD-ICB) and 50 controls were recruited. All subjects underwent three-dimensional T1-weighted, diffusion tensor (DT), and resting state functional magnetic resonance imaging (RS fMRI). We assessed cortical thickness with surface-based morphometry, subcortical volumes using FIRST, DT MRI metrics using region of interest and tractography approaches, and RS fMRI using a model free approach. Compared with controls, both PD groups showed a pattern of brain structural alterations in the basal ganglia (more evident in PD no-ICB patients), sensorimotor and associative systems. Compared with PD no-ICB, PD-ICB cases showed left precentral and superior frontal cortical thinning, and motor and extramotor white matter tract damage. Compared with controls, all patients had an increased functional connectivity within the visual network. Additionally, PD no-ICB showed increased functional connectivity of bilateral precentral and postcentral gyri within the sensorimotor network compared with controls and PD-ICB. Severity and duration of PD-ICB modulated the functional connectivity between sensorimotor, visual and cognitive networks. Relative to PD no-ICB, PD-ICB patients were characterised by a more severe involvement of frontal, meso-limbic and motor circuits. These data suggest ICB in PD as the result of a disconnection between sensorimotor, associative and cognitive networks with increasing motor impairment, psychiatric symptoms, and ICB duration. These findings may have important implications in understanding the neural substrates underlying ICB in PD.
Collapse
Affiliation(s)
- F Imperiale
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - F Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - E Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - V Markovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - A Inuggi
- Unit of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genoa, Italy
| | - M Jecmenica-Lukic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - A Tomic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - M Copetti
- Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - S Basaia
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - V S Kostic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - M Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
27
|
White matter tract alterations in Parkinson's disease patients with punding. Parkinsonism Relat Disord 2017; 43:85-91. [PMID: 28780181 DOI: 10.1016/j.parkreldis.2017.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To assess brain white matter tract alterations in patients with Parkinson's disease and punding (PD-punding) compared with controls and PD cases without any impulsive-compulsive behaviour. METHODS Forty-nine PD patients (21 PD-punding and 28 PD with no impulsive-compulsive behaviours) and 28 controls were consecutively recruited. Clinical, cognitive and psychopathological evaluations were performed. Diffusion tensor MRI metrics of the main white matter tracts were assessed using a tractography approach. RESULTS Compared with controls, both PD groups showed white matter microstructural alterations of the left pedunculopontine tract and splenium of the corpus callosum. PD-punding patients showed a further damage to the right pedunculopontine tract and uncinate fasciculus, genu of the corpus callosum, and left parahippocampal tract relative to controls. When adjusting for depression and/or apathy severity, a greater damage of the genu of the corpus callosum and the left pedunculopontine tract was found in PD-punding compared with patients with no impulsive-compulsive behaviours. CONCLUSIONS PD-punding is associated with a disconnection between midbrain, limbic and white matter tracts projecting to the frontal cortices. These alterations are at least partially independent of their psychopathological changes. Diffusion tensor MRI is a powerful tool for understanding the neural substrates underlying punding in PD.
Collapse
|
28
|
Atkinson-Clement C, Pinto S, Eusebio A, Coulon O. Diffusion tensor imaging in Parkinson's disease: Review and meta-analysis. Neuroimage Clin 2017; 16:98-110. [PMID: 28765809 PMCID: PMC5527156 DOI: 10.1016/j.nicl.2017.07.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuroimaging studies help us better understand the pathophysiology and symptoms of Parkinson's disease (PD). In several of these studies, diffusion tensor imaging (DTI) was used to investigate structural changes in cerebral tissue. Although data have been provided as regards to specific brain areas, a whole brain meta-analysis is still missing. METHODS We compiled 39 studies in this meta-analysis: 14 used fractional anisotropy (FA), 1 used mean diffusivity (MD), and 24 used both indicators. These studies comprised 1855 individuals, 1087 with PD and 768 healthy controls. Regions of interest were classified anatomically (subcortical structures; white matter; cortical areas; cerebellum). Our statistical analysis considered the disease effect size (DES) as the main variable; the heterogeneity index (I2) and Pearson's correlations between the DES and co-variables (demographic, clinical and MRI parameters) were also calculated. RESULTS Our results showed that FA-DES and MD-DES were able to distinguish between patients and healthy controls. Significant differences, indicating degenerations, were observed within the substantia nigra, the corpus callosum, and the cingulate and temporal cortices. Moreover, some findings (particularly in the corticospinal tract) suggested opposite brain changes associated with PD. In addition, our results demonstrated that MD-DES was particularly sensitive to clinical and MRI parameters, such as the number of DTI directions and the echo time within white matter. CONCLUSIONS Despite some limitations, DTI appears as a sensitive method to study PD pathophysiology and severity. The association of DTI with other MRI methods should also be considered and could benefit the study of brain degenerations in PD.
Collapse
Affiliation(s)
| | - Serge Pinto
- Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France
- Brain and Language Research Institute, Aix Marseille Univ, Aix-en-Provence, France
| | - Alexandre Eusebio
- Aix Marseille Univ, APHM, Hôpital de la Timone, Service de Neurologie et Pathologie du Mouvement, Marseille, France
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille France
| | - Olivier Coulon
- Brain and Language Research Institute, Aix Marseille Univ, Aix-en-Provence, France
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille France
- Aix Marseille Univ, CNRS, LSIS lab, UMR 7296, Marseille, France
| |
Collapse
|
29
|
Santangelo G, Raimo S, Barone P. The relationship between Impulse Control Disorders and cognitive dysfunctions in Parkinson's Disease: A meta-analysis. Neurosci Biobehav Rev 2017; 77:129-147. [PMID: 28242338 DOI: 10.1016/j.neubiorev.2017.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 02/14/2017] [Accepted: 02/18/2017] [Indexed: 01/03/2023]
Abstract
Impulse Control Disorders (ICD) are associated with impairment in cognitive flexibility and cortical inhibition. In Parkinson's Disease (PD) the relationship between ICD and cognitive dysfunctions is still unclear: some studies found different cognitive profiles between Parkinsonians with and without ICD, whereas others did not. Moreover, findings from studies on ICD in PD are conflicting on which cognitive function is altered. A meta-analysis of 34 studies was performed to shed light on relationship between ICD and cognitive dysfunctions and to reveal the cognitive function compromised in Parkinsonians with ICD. Data were analysed in global cognitive functioning, memory, executive functions, attention/working memory, language, and visuospatial functions. Significant relationship between ICD and dysfunction of abstraction ability/concept formation, set-shifting, visuospatial/constructional abilities and decision-making was found. These findings suggested that people affected by PD with specific frontal dysfunctions are more vulnerable to develop ICD when they take antiparkinsonian drug. Evaluation of specific cognitive functions in routine clinical practice might help to detect those people with PD susceptible to ICD before treating them with antiparkinsonian drugs.
Collapse
Affiliation(s)
- Gabriella Santangelo
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy.
| | - Simona Raimo
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Paolo Barone
- Department of Medicine, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, Italy
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Impulse control behaviours (ICBs) are a frequent comorbidity for patients with Parkinson's disease. They consist of impulse control disorders, dopamine dysregulation syndrome, and punding. The field continues to evolve in the understanding of impulsivity and assessment of risk factors in the development of these behaviours and their appropriate management in patients with Parkinson's disease. RECENT FINDINGS Impulsivity is a multifaceted concept that is surprisingly common in untreated patients with Parkinson's disease. The incidence of ICBs increases with demographic, clinical, and biochemical risk factors. Treatments rely on reduction of dopamine agonists with exception of cognitive behavioural therapy and possibly repetitive transcranial magnetic stimulation. SUMMARY Reduction of dopamine agonist dose is the mainstay of treatment of ICBs. Other forms of dopaminergic treatment such as deep brain stimulation or jejunal infusion are alternative treatments but may be complicated by dopamine agonist withdrawal syndrome. Other therapies show promise but data are insufficient to suggest their regular use.
Collapse
|
31
|
Buoli M, Caldiroli A, Altamura AC. Psychiatric Conditions in Parkinson Disease: A Comparison With Classical Psychiatric Disorders. J Geriatr Psychiatry Neurol 2016; 29:72-91. [PMID: 26377851 DOI: 10.1177/0891988715606233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Psychiatric conditions often complicate the outcome of patients affected by Parkinson disease (PD), but they differ from classical psychiatric disorders in terms of underlying biological mechanisms, clinical presentation, and treatment response. The purpose of the present review is to illustrate the biological and clinical aspects of psychiatric conditions associated with PD, with particular reference to the differences with respect to classical psychiatric disorders. A careful search of articles on main databases was performed in order to obtain a comprehensive review about the main psychiatric conditions associated with PD. A manual selection of the articles was then performed in order to consider only those articles that concerned with the topic of the review. Psychiatric conditions in patients with PD present substantial differences with respect to classical psychiatric disorders. Their clinical presentation does not align with the symptom profiles represented by Diagnostic and Statistical Manual for Mental Disorders and International Classification of Diseases. Furthermore, psychiatry treatment guidelines are of poor help in managing psychiatric symptoms of patients with PD. Specific diagnostic tools and treatment guidelines are needed to allow early diagnosis and adequate treatment of psychiatric conditions in comorbidity with PD.
Collapse
Affiliation(s)
- Massimiliano Buoli
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alice Caldiroli
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alfredo Carlo Altamura
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|